淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2906200515341400
中文論文名稱 氨水吸收式熱泵系統效率提昇研究-應用薄膜裝置
英文論文名稱 Study on performance enhancement for ammonia-water absorption heat pump using membrane devices
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 陳相如
研究生英文姓名 Siang-Ru Chen
電子信箱 darktempler2@pchome.com.tw
學號 692360521
學位類別 碩士
語文別 中文
口試日期 2005-06-24
論文頁數 76頁
口試委員 指導教授-張煖
委員-陳錫仁
委員-程學恆
中文關鍵字 吸收式熱泵  薄膜  中空纖維薄膜模組  氨水 
英文關鍵字 absorption heat pump system  hollow fiber membrane module  membrane  ammonia-water  PHEFFA  HFMAE 
學科別分類
中文摘要 本論文提出一個創新的新裝置,以中空纖維模組作為具有混合氣液質傳與熱交換功能之裝置,並探討應用於氨水吸收式熱泵之吸收器的性能。嚴謹之熱質傳模式用以模擬此裝置之性能與熱質傳特性,並與另一文獻報導之具鰭設計之板式熱交換器式吸收器進行比較。中空纖維模組型式較之板式熱交換器型式具有十倍以上之單位體積界面面積,且多項熱質傳係數均較高。熱質傳阻力分析結果顯示只有吸收液相質傳係數較為顯著,但影響程度不高。對整體冷凍系統之性能而言,採用中空纖維模組型式吸收器可使性能係數提升14.8%。
英文摘要 An innovative device is proposed which uses a hollow fiber membrane module as both a gas-liquid contactor and a heat exchanger. The performance of the device as an absorber in the ammonia-water absorption heat pump system, HFMAE (hollow fiber membrane absorber and exchanger), is investigated. A rigorous mathematical model for HFMAE considering the heat and mass transfers of the ammonia-water absorber is used to simulate the performances and heat and mass transfer characteristics. Performances of HFMAE and a falling film type absorber using a plate heat exchanger with an offset strip fin (PHEFFA) are compared by simulation for employed as the solution-cooled absorber and the water-cooled absorber in the heat pump cycle. The unit volume interfacial area of HFMAE is more than ten times higher than PHEFFA and the heat and mass transfer coefficients are higher too. The analysis indicated that the major resistance is in liquid phase for both heat and mass transfers. For a typical ammonia-water absorption chiller, using HFMAE as the absorbers can result in an improvement in COP (coefficient of performance) of 14.8%.
論文目次 目錄

中文摘要 ………………………………………………………………...i
英文摘要 .…………………………………………………………….....ii
誌謝 …………………………………………………………………….iii
目錄 …………………………………………………………………….iv
圖目錄 ………………………………………………………………….vi
表目錄 ………………………………………………………………...viii
第一章 前言 …..………………..………………………………………1
第二章 文獻回顧 ………………………………………………………6
第三章 模式建立 ………………………………………………………8
3.1 系統配置 ……………………………………………………...8
3.2 單元分析模式 ………………………………………………...9
3.3 熱力性質繼計算模式………………………………………...22
3.4 輸送性質與熱質傳係數……………………………………...23
3.5 裝置尺寸參數………………………………………………...27
3.6 數值方法及程式架構………………………………………...30
第四章 吸收器性能模擬分析…………………………………………32
4.1 溶液冷卻吸收器……………………………………………...35
4.2 水冷卻吸收器………………………………………………...44
第五章 吸收器熱質傳阻力分析..……………………………………..54
5.1 溶液冷卻吸收器……………………………………………….54
5.2 水冷卻吸收器………………………………………………….57
第六章 整体系統性能分析….………………………………………...59
第七章 結論 …………………………………………………………..66
符號說明 ………………………………………………………………69
參考文獻 ………………………………………………………………73

圖目錄

圖1-1 吸收式熱泵系統示意圖…………………………………………2
圖3-1 氨水吸收式冰水機………………………………………………8
圖3-2 中空纖維模組配置圖…………………………………………..12
圖3-3 同向流中空纖維薄膜模組第n段之進出物流與熱質傳通量示
意圖……………………………………………………………..13
圖3-4 偏置條狀鰭片板式熱交換器形式之落膜吸收器裝置………..16
圖3-5 同向流偏置條狀鰭片板式熱交換器形式之落膜吸收器裝置系
統中第n段之進出物流與熱質傳通量示意圖………………...17
圖3-6 殼側具隔根(baffle)之中空纖維模組…………………………..25
圖3-7 程式架構圖-吸收器…………………………………………….30
圖3-8 程式架構圖-氨水吸收式冷凍系統…………………………….31
圖4-1 溶液冷卻吸收器中各物流之局部溫度分佈…………………..36
圖4-2 溶液冷卻吸收器中物流局部組成分佈………………………..38
圖4-3 溶液冷卻吸收器中物流局部熱傳通量分佈…………………..40
圖4-4 溶液冷卻吸收器中物流局部質傳通量分佈…………………..41
圖4-5 在溶液冷卻吸收器中物流局部熱傳係數分佈(同向流)………43
圖4-6 溶液冷卻吸收器中物流局部質傳係數分佈(同向流)…………43
圖4-7 在溶液冷卻吸收器中氨之累積吸收量………………………..44
圖4-8水冷卻吸收器中各物流局部溫度分佈…………………………45
圖4-9水冷卻吸收器中物流局組成分佈………………………………47
圖4-10水冷卻吸收器中物流局部熱傳通量分佈……………………..49
圖4-11水冷卻吸收器中物流局部質傳通量分佈……………………..50
圖4-12水冷卻吸收器中物流局部熱傳係數分佈……………………..52
圖4-13水冷卻吸收器中物流局部質傳係數分佈……………………..52
圖4-14 在溶液冷卻吸收器中氨之累積吸收量………………………53
圖5-1 溶液冷卻吸收器各相熱質傳係數對吸收量的影響…………..55
圖5-2 乙二醇水溶液冷卻吸收器各相熱質傳係數對吸收器大小的影
響………………………………………………………………..56
圖5-3 水冷卻吸收器各相熱質傳係數對吸收量的影響……………..57
圖6-1氨水吸收式冰水機系統配置…………………………………....60

表目錄

表3-1 中空纖維薄膜模組之參數-溶液冷卻………………………….28
表3-2 中空纖維薄膜模組之參數-水冷……………………………….28
表3-3 偏置條狀鰭片板式熱交換器之參數-溶液冷卻……………….29
表3-4 偏置條狀鰭片板式熱交換器之參數-水冷卻………………….29
表4-1 進料物流狀態-溶液冷卻……………………………………….33
表4-2 進料物流狀態-水冷卻(PHEFFA)………………………………33
表4-3 進料物流狀態-水冷卻(HFMAE)………………………………34
表4-4 裝置體積與界面面積-溶液冷卻……………………………….34
表4-5 裝置體積與界面面積-水冷卻………………………………….34
表6-1 中空纖維薄膜模組之參數-溶液冷卻………………………….61
表6-2 中空纖維薄膜模組之參數-水冷卻…………………………….61
表6-3 新配置系統之物流狀態表……………………………………..62
表6-4 原配置系統之物流狀態表……………………………………..63
表6-5 新配置與原配置性能參數……………………………………..64
表6-6 新配置與原配置之可用能損失(J/S)…………………………...65
參考文獻 Altenkirch, E. and B. Tenckhoff, Absorptionakaeltemaschine zur kontinuerlichen Erzeugung von Kaelte und Waerme oder acuh von Arbeit, German Patent No. 278, 076, 1914.

Anand, G. and R. N. Christensen, “Design model for thin film condensation in fluted tubes,” ASME HTD-Vol. 108, Heat Transfer Equipments Fundamentals, Design, Applications, and Operating Problems, pp. 105-110, 1989.

Brandrup, J. and E.H. Immergut, Polymer Handbook, 3rd ed., Wiley, New York, 1989.

CHEMCADTM, V.5, Chemstations Inc., 2000.

Christensen, R. N., Y. T. Kang, S. Garimella and D. Priedeman,” Generator absorber heat exchange (GAX) cycle modeling, component design and tests”. Final Report to LG Electronics, Contract number: 862805-01/062805, 1996.

Chua, H.T., H. K. Toh and K. C. Ng, “Thermodynamic modeling of an ammonia-water absorption chiller,” International Journal of Refrigeration, Vol. 25, pp. 896-906, 2002.

Chun, K. R. and R. A. Seban, “Heat Transfer to Evaporating Liquid Films,” Journal of Heat Transfer, Vol. 91, pp. 391-396, 1971.

Colburn, A. P. and T. B. Drew, “The Condensation of Mixer Vapors,” Transactions of the AIChE, Vol. 33, pp. 197-215, 1937.

Cussler, E.L., “Diffusion Mass Transfer in Fluid Systems,” Cambridge University Press, Second Edition, 1997.

Dimitro, M. Z. and K. K. Sirkar, “Polymeric Hollow Fiber Heat Exchangers: An Alternative for Lower Temperature Application,” Ind. Eng. Chem. Res., Vol. 43, pp. 8093-8106, 2004.

Dittus, F.W. and L.M.K. Boelter, “Heat transfer in automobile radiators of the tubular type,” University of California Publications in Engineering, Vol. 2, pp. 443-461, 1930.

Ferreira, C. A., C. Keizer and C.H.M. Machielsen, “Heat and mass transfer in vertical tubular bubble absorbers for ammonia-water absorption refrigeration systems,” International Journal of Refrigeration, Vol. 7, pp. 348-357, 1984.

Frank, M. J.W., J. A.M. Kuipers and W. P.M. van Swaaij, “Diffusion Coefficients and Viscosities of CO2 +H2O, CO2 + CH3OH, NH3 + H2O, and NH3 + CH3OH Liquid Mixture,” Journal of Chemical Engineering Data, Vol. 41, pp. 297-302, 1996.

Gableman, A. and S. Hwang, “Hollow Fiber Membrane Contactors,” Journal of Membrane Science, Vol. 159, pp. 61-106, 1999.

Kang, Y. T., A. Akisawa and T. Kashiwagi, “Analytical investigation of two different absorption modes: falling film and bubble types,” International Journal of Refrigeration, Vol. 23, pp. 430-443, 2000.

Kang, Y. T., A. Akisawa and T. Kashiwagi, “Experimental correlation of combined heat and mass transfer for NH3-H2O falling film absorption,” International Journal of Refrigeration, Vol. 22, pp. 250-262, 1999.

Kang, Y. T. and R. N. Christensen, “Development of a Counter-Current Model For Vertical Fluted Tube GAX Absorber,” International Absorption Heat Pump Conference, AES- Vol. 31, pp. 7-16, 1993.

Kang, Y. T., R. N. Christensen and K. Vafai, “Analysis of Absorption Process in a Smooth-Tube Heat Exchanger with a Porous Medium,” Heat Transfer Engineering, Vol. 15, No. 4, pp. 42-55, 1994.

Kang, Y. T., W. Chen and R. N. Christensen, “A Generalized Component Design Model by Combined Heat and Mass Transfer Analysis in NH3-H2O Absorption Heat Pump Systems,” ASHRAE Transaction, Vol. 103, pp. 444-453, 1997.
Klein, S. A., A Model of the Steady-State Performance of an Absorption Heat Pump, NTIS PB83152314, 1982.

Kreith, F. and W. Z. Black, Basic Heat Transfer, Harper & Row, New York, 1980.

Lévêque, M. A., “Les lois de la transmission de chaleur par convection,” Ann. Mines, Vol. 13, pp. 201-299, 1928.

Li, K., M. S. L. Tai and W. K. Teo, “Design of CO2 scrubber for self-contained breathing systems using a microporous membrane,” Journal of Membrane Science, Vo. 86, pp. 119, 1994.

Mahmud, H., A. Kumar, R.M. Narbaitz and T. Matsuura, “A study of mass transfer in the membrane air-stripping process using microporous polyproplylene hollw fibers,” Journal of Membrane Science, Vol. 179, pp. 29-41, 2000.

Panchal, C. B. and K. J. Bell, ”Heat and Mass Transfer Consideration in Advanced Heat Pump Systems,” Argonne National Laboratory 9700 S. Cass Avenue Argonne, Illionis 60439, 1992.

Perez-Blanco, H., “A Model of Ammonia-Water Falling Film Absorber,” ASHRAE Transactions, Vol. 95987, No. 1, 1988.

Poddar, T. K., S. Majumdar and K. K. Sirkar, “Removal of VOCs from air by membrane-based absorption and stripping,” Journal of Membrane Science, Vol. 120, p. 221, 1996.

Pruss, A. and W. Wagner, Eine neue Fundamentalgleichung für das Fluide Zustandsgebiet von Wasser für Temperaturen von der Schmelzlinie bis zu 1000 Mpa, Fortschr.-Ber. VDI 6, No. 320, VDI-Verlag, Düsseldorf, 1995.

Reid, R. C., J. M. Prausnitz and B. E. Poling, The Properties of Gases & Liquids, 5th ed., McGraw-Hill, singapore, 2001.

Sirkar, K.K., Other new memberane processes, in: W.S.W. Ho, K.K. Sirkar (Eds.), Memberane Handbook, Chapman & Hall, New York, 1992.

Tillner-Roth, R., D.G. Friend, “Helmholtz free energy formulation of the thermodynamic properties of the mixture {water+ammonia},” Journal of Physical and Chemical Reference Data, Vol. 27, No. 1, pp. 63-96, 1998.

Tillner-Roth, R. and F. Harms-Watzenberg, H.D. Baehr, Eine Neue Fundamentalgleichung für Ammoniak, Proc. 20th DKV-Tagung, Vol. II, Heidelberg, Germany, pp. 167-181, 1993.

Webb, R.L., Principle of enhanced heat transfer, John Wily & Sons, Inc.,
New York, 1994.

Warner, S.B., Fiber Science, Prentice-Hall, Englewood Cliffs, New Jersey, 1995.

Whitley, D. M., “Plastic heat exchangers gain in severe service,” Chemical Engineering., Vol. 64, No. 9, p. 308, 1957.

Zhang, Q. and E.L. Cussler, “Microporous Hollow Fibers for Gas Absorption. I. Mass Transfer in the Liquid,” Journal of Membrance Science, Vol. 23, pp. 321-332, 1985.

Zhang, Q. and E.L. Cussler (1985b), “Microporous Hollow Fibers for Gas Absorption. II. Mass Transfer across the Membrane,” Journal of Membrance Science, Vol. 23, pp. 333-345, 1985.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-07-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-07-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信