§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2906200500475600
DOI 10.6846/TKU.2005.00724
論文名稱(中文) 無機奈米管式薄膜於巨分子溶液中分離胺基酸之探討
論文名稱(英文) Separations of Amino Acid from Macromolecules by Inorganic Nanofiltration Membrane
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 許益嘉
研究生(英文) I-Chia Hsu
學號 692360661
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-06-07
論文頁數 131頁
口試委員 指導教授 - 鄭東文
委員 - 蔡少偉
委員 - 葉和明
關鍵字(中) 奈米過濾
無機薄膜
胺基酸
關鍵字(英) Nanofiltration
Inorganic membrane
Amino acid
第三語言關鍵字
學科別分類
中文摘要
本研究探討在不同的操作變數下無機奈米管式薄膜於巨分子溶液中分離胺基酸之最佳操作條件,操作參數包括有pH值、不同溶質、濃度及掃流流速等,實驗結果包括有溶液濾速與溶質阻隔率的變化。
實驗結果顯示,濾速方面,胺基酸與BSA混合水溶液之濾速隨pH値的改變並無明顯的變化;但隨掃流速度的增高而些許增加是由於增加掃流速度會增加膜內流體的擾動,減少濃度極化層阻力; BSA溶液之濾速隨著濃度的增高而減少是由於濃度極化層阻力隨著濃度增高而增加。阻隔率方面,帶電溶質如BSA(pI=4.9)、Glu (pI=3.3)及Lysine (pI=9.74)之阻隔率隨著pH値的改變而有不同的變化,是由於無機陶瓷薄膜(pI=4.22)均隨著pH値的改變而改變電性,但β-cyclodextrin為不帶電溶質,因此pH値的改變不影響其電性,因此對於β-cyclodextrin之阻隔率而言不受pH値影響。選擇率方面,在胺基酸與BSA混合水溶液中,MWCO為1kDa的薄膜在pH値為3.3時有最佳之選擇率;MWCO為5kDa的薄膜在pH値為10時有最佳之選擇率。但由胺基酸與β-cyclodextrin混合水溶液之選擇率發現,其選擇率不理想,因此此薄膜不適用於較為精密之分離。
此外本文中以阻力串連模式與滲透壓模式,預測出BSA之理論濾速,理論濾速與實驗值比較發現阻力串連模式趨勢吻合;滲透壓模式之理論濾速在趨近於直線,與實驗值趨勢不同。
英文摘要
In this study, separations of amino acid from macromolecules by inorganic nanofiltration membrane was investigated under various operating parameters, such as pH value, different solutes, concentration and cross flow rate. The results have the changes of permeate flux and solute rejection.
Experimental results indicate that about the results of flux, the flux of the mixed solution of amino acid and BSA doesn’t have a significant influence with changing pH value, but it increases with the cross flow rate due to the resistance of concentration polarization layer decreases with increasing cross flow rate. The flux of BSA solution decreases with increasing concentration due to the resistance of concentration polarization layer increases with increasing concentration. About the results of rejection, the rejections of the charged solutes, such as BSA (pI=4.9), Glu (pI=3.3) and Lysine (pI=9.74), change with changing pH value due to the charged of inorganic membrane (pI=4.22) change with changing pH value. The rejection of β-cyclodextrin doesn’t have a significant influence because it isn’t a charged solute. About selectivity, the best selectivity of the mixed solution of amino acid and BSA withn MWCO 1kDa membrane is at pH 3.3; the best selectivity with MWCO 5kDa membrane is at pH 10. However, selectivity of the mixed solution of amino acid andβ-cyclodextrin isn’t ideal, so inorganic membrane doesn’t suit the exact separation.
 In this work, predicting flux of BSA with resistance-in-series model and the osmosis pressure model. Then theoretical flux will compare with experiment flux. The theoretical flux of resistance-in-series model agree with the experimental data. The trend of theoretical flux of osmosis pressure model is near the linear but it’s not similar to the experiment flux.
第三語言摘要
論文目次
目錄

	圖索引							V
	表索引							XI
第一章 緒論								1
	1.1 前言								1
 	1.2	何謂薄膜								2
 	1.3 薄膜分離技術….	   			4
	1.4 薄膜分離技術之優缺點….										6
1.5 本研究之目標….	  			8
第二章 文獻回顧		   		11
	2.1 蛋白質簡介			 			11
			2.1.1 BSA溶液分離之相關研究      		11
2.2 胺基酸簡介									13
2.2.1 胺基酸的酸鹼性質	14
2.2.2 胺基酸的等電點	15
2.2.3 胺基酸的化學性質	17
2.2.4 胺基酸的分類	18
2.3 薄膜奈米過濾之特性									20
2.4 奈米過濾之相關文獻探討									22
2.5 提高濾速的方法									32
第三章 實驗裝置與方法 						40
 	3.1 實驗裝置					40
 	3.2 實驗方法與步驟					41
3.3 操作條件					41
3.4 分析方法					42
3.4.1 牛血清蛋白的分析方法與條件	42
3.4.2 β-Cyclodextrin的分析方法與條件	43
3.4.3 高效率液相層析儀分析方法與條件			43
			3.4.3.1 儀器			 		43
 	3.4.3.2 分析藥品				44
			3.4.3.3 移動相			 	44
			3.4.3.4 胺基酸衍生物製備方法			 		45
			3.4.3.5 檢量曲線的製作			 		46
			3.4.3.6 檢量線之標準誤差				46
			3.4.3.7 胺基酸的分析				47
3.5 薄膜之清洗			47
第四章 理論計算 						46
4.1 阻力串聯模式										 					54
4.2 滲透壓模式										 					58
第五章 結果與討論            				63
	5.1 薄膜純水濾速              				63
5.2 溶液pH值的影響	    	64
	5.3 掃流速度的影響       			    			69
5.4 濃度的影響			    			71
5.5 阻力串聯模式濾速分析										 					72
5.5.1 Jlim的實驗公式				72
5.5.2 A1的實驗公式				73
5.6 滲透壓模式濾速分析										 					75
5.6.1 決定各項參數				76
5.6.2 決定質傳係數k				78
5.6.2 濾速估計				79
第六章 結論								109
6.1 溶液pH值的影響	  									109
	6.2 掃流速度的影響       																	110
6.3 濃度的影響			 											111
6.4 阻力串聯模式濾速分析										 				111
6.5 滲透壓模式濾速分析										 				112
6.6 總結																	113
符號說明						115
參考文獻							118
附錄								126


圖索引

圖1-1 	薄薄膜分離程序之分類	9
圖1-2 	濾餅過濾(dead-end filtration)示意圖	9
圖1-3 	掃流過濾(cross-flow filtration)示意圖	10
圖2.1 	胺基酸的雙極結構	15
圖2.2 	胺基酸的帶電荷與環境性質	15
圖2.3 	丙胺酸的離子化	17
圖2.4 	丙胺酸的滴定曲線以及pKa1、pKa2與pI值 	36
圖2.5 	提高濾速方法之流程圖	37
圖3.1	管式陶瓷薄膜奈米過濾之實驗裝置圖	49
圖3.2	管式陶瓷薄膜示意圖		50
圖3.3	DABS-Cl前處理法與反應機構		50
圖3.4	高效率液相層析儀圖表		51
圖4-1	影響薄膜過濾之各種阻力示意圖	61
圖5-1	MWCO 1000薄膜純水濾速圖	81
圖5-2	MWCO 5000薄膜純水濾速圖	81
圖5-3	不同pH值下濾速隨著時間變化圖(MWCO 1kDa 進料2 kg/m3 Glu+3 kg/m3 BSA)	82
圖5-4	不同pH值下濾速隨著壓力變化圖(MWCO 1kDa 進料2 kg/m3 Glu+3 kg/m3 BSA)	82
圖5-5	不同pH值下濾速隨著時間變化圖(MWCO 5kDa 進料2 kg/m3 Glu+3 kg/m3 BSA)	83
圖5-6	不同pH值下濾速隨著壓力變化圖(MWCO 5kDa 進料2 kg/m3 Glu+3 kg/m3 BSA)	83
圖5-7	BSA阻隔率隨著pH值變化圖(進料2 kg/m3 Glu+3 kg/m3 BSA)	84
圖5-8	Glu阻隔率隨著pH值變化圖(進料2 kg/m3 Glu+3 kg/m3 BSA)	84
圖5-9	二氧化鈦薄膜介達電位隨著pH值變化圖	85
圖5-10	Lysine阻隔率隨著pH值變化圖(進料2 kg/m3 Lysine)	85
圖5-11	選擇率隨著pH值變化圖(進料2 kg/m3 Glu+3 kg/m3 BSA)	86
圖5-12	不同pH值對於濾速之變化圖(p=5 bar,掃流速度2.18 cm/s) (MWCO 1kDa 進料2 kg/m3 Glu+3 kg/m3  β-cyclodextrin)	86
圖5-13	不同pH值對於β-cyclodextrin阻隔率之變化圖(MWCO 1kDa 進料2 kg/m3 Glu+3 kg/m3  β-cyclodextrin)	87
圖5-14	不同pH值對於選擇率之變化圖(p=5 bar,掃流速度2.18 cm/s  MWCO 1kDa 進料2 kg/m3 Glu+3 kg/m3 β-cyclodextrin)	87
圖5-15	BSA以及Glu濾速隨著壓力變化圖	88
圖5-16	不同掃流速度下濾速隨著壓力變化圖(MWCO=5000 進料1 kg/m3 BSA)	88
圖5-17	不同掃流速度下濾速隨著壓力變化圖(MWCO=5000 進料2 kg/m3 BSA)	89
圖5-18	不同掃流速度下濾速隨著壓力變化圖(MWCO=5000 進料3 kg/m3 BSA)	89
圖5-19	不同掃流速度下濾速隨著時間變化圖(MWCO 1kDa 進料2 kg/m3 Glu+3 kg/m3 BSA)	80
圖5-20	不同掃流速度下濾速隨著壓力變化圖(MWCO 1kDa 進料2 2 kg/m3 Glu+3 kg/m3 BSA)	90
圖5-21	不同掃流速度下濾速隨著時間變化圖(MWCO 5kDa 進料2 kg/m3 Glu+3 kg/m3 BSA)	91
圖5-22	不同掃流速度下濾速隨著壓力變化圖(MWCO 5kDa 進料2 kg/m3 Glu+3 kg/m3 BSA)	91
圖5-23	BSA阻隔率隨著掃流速度變化圖(進料2 kg/m3 Glu+3 kg/m3 BSA)	92
圖5-24	Glu阻隔率隨著掃流速度變化圖(進料2 kg/m3 Glu+3 kg/m3 BSA)	92
圖5-25	選擇率隨著掃流速度變化圖(進料2 kg/m3 Glu+3 kg/m3 BSA)	93
圖5-26	不同BSA濃度下濾速隨著壓力變化圖(MWCO=5000 掃流速度2.18 cm/s)	93
圖5-27	不同BSA濃度下濾速隨著壓力變化圖(MWCO=5000 掃流速度4.36 cm/s)	94
圖5-28	不同BSA濃度下濾速隨著壓力變化圖(MWCO=5000 掃流速度6.54 cm/s)	94
圖5-29	極限濾速Jlim計算圖(BSA 3kg/m3,掃流速度2.16 cm/s)	95
圖5-30	ln(Jlim)與ln(Ci)關係圖	95
圖5-31	ln(JlimCi0.2291)與ln(UL)關係圖	96
圖5-32	A1計算圖(BSA 3kg/m3,掃流速度2.16 cm/s)	96
圖5-33	ln(A1)與ln(Ci)關係圖	97
圖5-34	ln(A1Ci-0.0257)與ln(UL)關係圖	97
圖5-35	阻力串連模式不同濃度下理論與實驗比較圖(UL=2.18 cm/s)	98
圖5-36	阻力串連模式不同濃度下理論與實驗比較圖(UL=4.36 cm/s)	98
圖5-37	阻力串連模式不同濃度下理論與實驗比較圖(UL=6.54 cm/s)	99
圖5-38	阻力串連模式不同掃流速度下理論與實驗比較圖(BSA濃度=1 kg/m3)	99
圖5-39	阻力串連模式不同掃流速度下理論與實驗比較圖(BSA濃度=2 kg/m3)	100
圖5-40	阻力串連模式不同掃流速度下理論與實驗比較圖(BSA濃度=3 kg/m3)	100
圖5-41	純水濾速圖	101	
圖5-42	純水濾速實驗前後比較圖	101
圖5-43	實驗後純水濾圖	102
圖5-44	液體流量計校正圖	102
圖5-45	不同液體流量的雷諾數圖	103
圖5-46	滲透壓模式不同濃度下理論圖(UL=2.18 cm/s)	103
圖5-47	滲透壓模式不同濃度下理論圖(UL=4.36 cm/s)	104
圖5-48	滲透壓模式不同濃度下理論圖(UL=6.54 cm/s)	104
圖5-49	滲透壓模式不同掃流速度下理論圖(BSA濃度 = 1 kg/m3)	105
圖5-50	滲透壓模式不同掃流速度下理論圖(BSA濃度 = 2 kg/m3)	105
圖5-51	滲透壓模式不同掃流速度下理論圖(BSA濃度 = 3 kg/m3)	106
圖5-52	滲透壓模式不同濃度下理論與實驗比較圖(UL=2.18 cm/s)	106
圖A-1	BSA檢量線	126
圖B-1	葡萄糖脫水之化學原理	129
圖B-2	β-cyclodextrin檢量線	130
圖C-1	Glutamine acid檢量線	131
圖C-2	Lysine檢量線	131



表索引

表2.1	胺基酸的解離常數和等電點		38
表2.2	常見胺基酸的名稱與縮寫		39
表3.1	陶瓷薄膜性質表		52
表3.2	牛血清蛋白特性說明		   53
表3-3 	移動相濃度梯度控制		45
表4.1	質傳係數參數表		62
表5.1	各薄膜之純水透過率及薄膜阻力		63
表5-2 	限濾速在不同掃流速度與BSA濃度下之値	107
表5-3 	A1值在不同掃流速度與BSA濃度下之値	107
表5-4 	水濾速實驗數據		108
表5-5 	驗後純水濾速實驗數據		108
參考文獻
參考文獻
Bhattacharya P.K., S. Agarwal, S. De, R. U.V.S. Gopal, “Ultrafiltration of sugar cane juice for recovery of sugar: analysis of flux and retention”, Separation and Purification Technology, 21, 247-259 (2001)
Bowen, W. R. and H. Mukhtar, “Charaterisation and prediction of separation performance of nanofiltration membranes.”, Journal of Membrane Science, 112, 263-274 (1996)
Bowen, W. R., A. W. Mohammad and N. Hilal, “Characterisation of nanofiltration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy”, Journal of Membrane Science, 126, 91-105 (1997)
Bowen, W. R. and A. W. Mohammad, “Diafiltration by Nanofiltration: Prediction and Optimization”, AIChE Journal, 44, 1799-1812 (1998)
Bowen, W. R. and T. A. Doneva, “Atomic force microscopy of manofiltration membranes: surface morphology, pore size distribution and adhesion”, Desalination, 129, 163-172 (2000)
Bowen, W. R. and J. S. Welfoot, “Modelling the performance of membrane nanofiltration – critical assessment and model development”, Chemical Engineering Science, 57, 1121-1137 (2002)
Cheng, T. W., Yeh H. M. and Gau C. T., “Flux analysis by modified osmotic-pressure model for laminar ultrafiltration of macromolecular solutions”, Separation and Purification Technology, 13, 1-8 (1998)
Chiang, B. H. and M. Cheryan, “Ultrafiltration of Skin milk in Hollow Fibers”, Journal of food Science, 51, 340 (1986). 
Corinne C., E. Karim, D. Gaelle and L. Alain, “Spherical cap bubbles in a flat sheet nanofiltration module: experiments and numerical simulation”, Chemical Engineering Science, 56, 6321-6327 (2001) 
Dorange, G., Y. Garba, S. Taha, N. Gondrexon, “Ion transport modelling through nanofiltration membrane”, Journal of Membrane Science, 160, 187-200 (1999)
Fane, A. G., C. J. D. Fell and A. Suki, “The Effect of pH and Ionic Environment on the Ultrafiltration of Protein Solutions with Retentive Membranes”, ,Journal of Membrane Science, 16, 195-203 (1983)
Ghosh, R., Z. F. Cui., “Mass Transfer in Gas-sparged Ultrafiltration: Upward Slug Flow in Tubular Membranes”, Journal of Membrane Science, 162, 91 (1999)
Ghosh, R., and Z. F. Cui, “Fractionation of BSA and lysozyme using ultrafiltration: effect of pH and membrane pretreatment”, Journal of Membrane Science, 139, 17 (1998)
Ghosh Raja, Qiangyi Li, and Zhanfeng Cui, ” “Fractionation of BSA and lysozyme using ultrafiltration: effect of Gas Sparging”, American Institute of Chemical Engineers Journal, 44, 1 (1998) 
Gill, W. N., Wiley, D.E., Fell, C.J.D. and Fane, A.G., “Effects of viscosity on concentration polarization in ultrafiltration”, American Institute of Chemical Engineers Journal 34, 1563. (1988)
Grib H., M. Persin, C. Gavach, D.L. Piron, J. Sandeaux, N. Mameri, “Amino acid retention with alumina γnanofiltration membrane”, Journal of Membrane Science, 172, 9-17 (2000)
Hasson, D., R. Levenstein and R. Semiat, “Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes”, Journal of Membrane Science, 116, 93-104 (1996)
Hidetoshi M., Chen, Y. C., Ryotaro Y., Yuichi K., Mie M.and Akihiko T., “Membrane potentials across nanofiltration membranes:effect of nanoscaled cavity structure”, Journal of Molecular Structure, 739, 99–104 (2005)
Iritani, E. J., Y. T. Mukai, T. R. Murase, “Separation of Binary Protein Mixtures by Ultrafiltration”, Filtration & Separation, 976 (1997)
Johan, S., V. D. B. Bart, V. Carlo and W. Dirk, “Influence of ion size and charge in nanofiltration.” Separation and Purification Technology, 14, 155-162 (1998)
Johan, S. and V. Carlo, “Evaluating the charge of nanofiltration membranes” ,Journal of Membrane Science, 188, 129-136 (2001)
Juang R.S. and Y.Y. Wang, ”Amino acid separation with D2EHPA by solvent extration and liquid surfactant membranes”, Journal of Membrane Science, 207, 241-252 (2002) 
Kelly, S. T., and A. L. Zydney, “Mechanisms for BSA fouling during microfiltration”, Journal of Membrane Science, 107, 115 (1995)
Kenneth, M. P., and G. Vassilis, “Review: Factors influencing aggregation of macromolecules in solution”, Process Biochemistry, 29, 89 (1994)
Kim, K. J., V. Chen, and A. G. Fane, “Some factors determining protein aggregation during ultrafiltration”, Biotechnol. Bioeng., 55, 91 (1997)
Kim, B. S., H. N. Chang, “Effects of Periodic Backflushing on Ultrafiltration Performance”, Bioseparation, 2, 23 (1991)
Kleinstreuer, C. and M. S. Paller, “Laminar Dilute Suspension Flows in Plate-and-Frame Ultrafiltration Units”, American Institute of Chemical Engineers Journal, 29, 529 (1983).
Leung, W. and R. F. Probstein, “Low Polarization in Laminar Ultrafiltration of Macromolecular Solutions”, Ind. Eng. Chem. Fundam., 18, 274 (1979).
Li, S. L., C. Li, Y. S. Liu, X. L. Wang and Z. A. Cao, “Separation of L-glutamine from fermentation broth by nanofiltration.” ,Journal of Membrane Science, 222, 191-201 (2003)
Marie, C. W., Pouliot, F. G. Sylvie, P. Michel and N. Lyson , “Use of nanofiltration membrane for the desalting of peptide fractions from whey protein enzymatic hydrolysates” Lait, 78, 621-632 (1998)
Michaels, A. S., “New Separation Technology for the CPI”, Chemical Engineering Progress, 64, 31-42 (1968)
Mika, m., P. Arto, K. Eero and N. Marianne, “Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes” Desalination, 145, 81-86 (2002) 
Mir, L., “Positive-charged Ultrafiltration Membrane for the Separation of Cathodic/electrodeposition Paint Cimposition”, U. S. Patent, 4, 412-421 (1983)
Moritz, T., Benfer, S., Arki, P. and Tomandl, G., ” Influence of the surface charge on the permeate flux in the dead-end filtration with ceramic membranes”, Separation and Purification Technology, 25, 501–508 (2001)
Nabetani, H., M. Nakajima, A. Watanabe, S. Nakao and S. Kimura, “Effects of Osmotic Pressure and Adsorption on Ultrafiltration of Ovalbumin”, American Institute of Chemical Engineers Journal, 36, 907 (1990).
Nakao, S. I., X. L. Wang, T. Tsuru and S. I. Kimura, “Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model”, ,Journal of Membrane Science, 103, 117-133 (1995)
Nakao, S., T. Nomura, and S. Kimura, “Characteristics of Macromolecular Gel Layer Formed on Ultrafiltration Tubular Membrane”, American Institute of Chemical Engineers Journal, 25, 615 (1979)
Nau F., F.L. Kerherve, J. Leonil, and G. Daufin, “Selective separation of tryptic β-casein peptides through ultrafiltration membranes: Influnce of ionic interactions,” Biotechnol. Bioeng., 46, 246-253 (1995)
Nau F., F.L. Kerherve, J. Leonil, G. Daufin and P. Aimar, “Separation of β-casein peptides through UF inorganic membranes”, Bioseparation, 3, 205-215 (1993)
Persson Anna, Ann-Sofi Jonsson, Guido Zacchi, “Transmission of BSA during cross-flow microfiltration: influence of pH and salt concentration”, Journal of Membrane Science, 233, 11 (2003)
Philles, G. D., Benedek, G.B. and N.A. Mazer, “Diffusion in protein solutions at high concentrations: a study by quasi-elastic light scattering spectroscopy”, J. Chem. Phys. 65 (5) (1976) 1883.
Shu-liang Li, Chun Li , Yuan-shuai Liu, Xiao-lin Wang, Zhu-an Cao, “Separation of l-glutamine from fermentation broth by nanofiltration”, Journal of Membrane Science, 222, 191–201 (2003)
thiol-disulfide interchange reactions on BSA fouling during Kelly, S. T., and A. L. Zydney, “Effects of intermolecular microfiltration”, Biotechnol. Bioeng., 44, 972 (1994)
Tim Van Gestel, Carlo Vandecasteele, Anita Buekenhoudt, Chris Dotremont, Jan Luyten,Roger Leysen, Bart Van der  Bruggen, Guido Maesc, ”Salt retention in nanofiltration with multilayer ceramic TiO2 membranes”, ,Journal of Membrane Science, 209, 379–389 (2002)
Tsuru, T., M. Urairi, S. Nakao and S. Kimura “Reverse osmosis of single and mixed electrolytes with charged membrane: Experiment and analysis.” Journal of Chemical Engineering of Japan, 24, 518-524 (1991)
Van Den Berg, G. B., and Smolders, C. A.  “Flux Decline in Ultrafiltration Pressures”, Desalination, 77, 101 (1990).
Van der Horst, H. C., J. M. K. Timmer and M. P. J. Speelmans, “Separation of amino acids by nanofiltration and ultrafiltration membranes”, Separation and Purification Technology, 14, 133-144 (1998)
Vilker, V.L., Colton, C.K. and Smith, K.A., “The osmotic pressure of concentrated protein solutions: effect of concentration and pH in saline solutions of bovine serum albumin”, Journal of Colloid and Interface Science 79 (2) 548. (1981)
Wang, X. L., W. N. Wang and A. L. Ying,  “Nanofiltration of L-phenylalanine and L-aspartic acid aqueous solutions “, ,Journal of Membrane Science, 196, 59-67 (2002)
Wijers, M. C., Y. Pouliot, S. F. Gauthier, M. Pouliot and L. Nadeau, “Use of nanofiltration  membranes for the desalting of peptide fractions from whey protein enzymatic hydrolysates”, Lait, 78, 621-632 (1998)
Yang , X. J., A. G. Livingston and L. Freitas dos Santos, “Experimental observations of nanofiltration with organic solvents”, ,Journal of Membrane Science, 190, 45-55 (2001)
Yazhen X. and E. L. Remi, “Investigation of the solute separation by charged nanofiltration membrane: effect of pH, ion strength and solute type”, Journal of Membrane Science, 158, 93-104 (1999) 
林順富等編輯, “生物化學” 偉明圖書, 台北(2001)
林昆憲, “利用UF/NF掃流系統於巨分子溶液中分離胺基酸之探討”, 淡江大學化學工程研究所碩士論文 (2004)
林家福, “陶瓷薄膜兩相流動超過濾系統中蛋白質溶液濃縮與濾速之探討”, 淡江大學化學工程研究所碩士論文 (2004)
邱東林, “奈米過濾對從巨分子溶液分離胺基酸與胜肽之探討”, 淡江大學化學工程研究所碩士論文 (2003)
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信