§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2905201212433000
DOI 10.6846/TKU.2012.01261
論文名稱(中文) 使用代理變數進行統計製程管制
論文名稱(英文) Implementing Statistical Process Control Using Surrogate Variables
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 管理科學學系博士班
系所名稱(英文) Doctoral Program, Department of Management Sciences
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 江俊佑
研究生(英文) Jyun-You Chiang
學號 895620622
學位類別 博士
語言別 英文
第二語言別
口試日期 2012-05-18
論文頁數 71頁
口試委員 指導教授 - 蔡宗儒
委員 - 歐陽良裕
委員 - 劉玉龍
委員 - 林宗儀
委員 - 邵曰仁
委員 - 侯家鼎
委員 - 李燊銘
委員 - 吳碩傑
關鍵字(中) 兩階段的經濟管制圖
最適的篩選過程
代理變數
關鍵字(英) Non-central chi-square chart
Profit function
Screening limits
Surrogate variable
Two-stage control charts
第三語言關鍵字
學科別分類
中文摘要
本論文使用代理變數針對統計製程管制提出兩種新的統計方 法,在第一個方法中,我們建立一個兩階段的經濟管制圖,藉由輪 流監控績效變數及它的代理變數以利對由績效變數之製程平均數偏 移或者製程變異數偏移所引起的製程失控快速預警。在第二個方法 中,我們利用一個廣義的利潤函數及代理變數,針對績效變數發展 出一個最適的篩選過程,以設定績效變數之最佳製程平均水準及篩 選界限。除使用數值方法來評估兩種新統計方法的績效外,本論文 並使用實例說明如何使用建議的統計方法。研究中發現基於經濟的 考量,這兩種新方法皆能顯著的改進現有方法的成效。
英文摘要
In this dissertation, two approaches are proposed for statistical quality control applications based on surrogate variables. A two-stage economic control chart is developed in first approach to monitor either the performance variable or its surrogate variable in an alternating fashion to quickly alarm for out-of-control signals caused by the mean shift or the variance shift of the performance variable. In second approach, an optimum screening procedure is developed based on a new generalized profit function using the surrogate variable of the performance variable to set up the optimal process mean level of the performance variable and the screening limits. Numerical studies are conducted to evaluate the performance of the proposed methods. Examples are presented to demonstrate the applications of two proposed methods. Both proposed approaches result in a significant improvement over the existing methods in term of the economic viewpoint.
第三語言摘要
論文目次
Contents
1 Introduction          1
1.1 Problem Statement          1
1.2 Literature Review and Motivation          2
2 The Economic Two-Stage Design of Non-central Chi-square Chart          8
2.1 The Non-central Chi-square Charts          9
2.2 The Two-Stage Non-central Chi-square Charts          10
2.3 The Cost Model          16
3 An Optimum Screening Procedure Using Surrogate Variables           19
3.1 Traditional Optimum Screening Procedures          20
3.2 The Optimum Screening Procedure for a Modified Profit Model          24
3.3 A General Case of the Profit Function          27
4 Examples          30
4.1 Example 1          30
4.2 Example 2          34
5 Numerical Results          37
5.1 Numerical Results for the Economic Two-Stage NCS Charts          37
5.2 Comparison of the Expected Profit Based on Various Optimum Screening Procedures          50
6 Conclusions          59
Appendices          62
Bibliography          66
List of Figures
2.1 The flowchart of the proposed two-stage charting design          13
5.1 Effect of X on w1 and w2 for E(PIII)          54
5.2 Effect of sigmax0 on w1 and w2 for E(PIII)          54
5.3 Effect of b on w1 and w2 for E(PIII)          55
5.4 Effect of cy on w1 and w2 for E(PIII)          55
5.5 Effect of X on the proportions of different markets for E(PIII)          56
5.6 Effects of sigmax0 on the proportions of different markets for E(PIII)          56
5.7 Effects of rho on the proportions of different markets for E(PIII)          57
5.8 Effects of cy on the proportions of different markets for E(PIII)          57
5.9 Compares the expected profits between E(PG) and other designs          58
List of Tables
4.1 Control charts and their expected net incomes per unit time          33
4.2 The expected net income per unit time for various rho          34
4.3 The optimum process mean level, screening limits of surrogate variable and expected profit for various profit functions          36
5.1 Cost and process parameters for test examples          39
5.2 The optimum design for test examples          39
5.3 The optimum designs when using cost components in Table 5.1          51
5.4 The values of mux0III*, E(PII) and E(PIII) for various X, sigmax0, rho, b and cx           52
參考文獻
[1] O. Carlsson (1984). Determining the most profitable process level for a production process under different sales conditions. Journal of Quality Technology, 16,
pp. 44-49.
[2] K. Tang, J. Lo (1993). Determination of the optimal process mean when inspection is based on a correlated variable. IIE Transactions, 25, pp. 66-72.
[3] D.S. Bai, M.K. Lee (1993). Optimal target values for a filling process when inspection is based on a correlated variable. International Journal of Production Economics, 32, pp. 327-334.
[4] D.S. Bai, H.M. Kwon, M.K. Lee (1995). An economic two-stage screening procedure with a prescribed outgoing quality in logistic and normal models. Naval Research Logistics, 42, pp. 1081-1097.
[5] M.K. Lee, S.H. Hong, E.A. Elsayed (2001). The optimum target value under single and two-stage screenings. Journal of Quality Technology, 33, pp. 506-514.
[6] M.K. Lee, E.A. Elsayed (2002). Process mean and screening limits for filling processes under two-stage screening procedure. European Journal of Operational Research, 138, pp. 118-126.
[7] A.F.B. Costa, M.S. De Magalhaes (2005). Economic design of two-stage Xbar chart: The Markov chain approach. International Journal of Production Economics, 95, pp. 9-20.
[8] S.O. Samuelsen, H. Anestad, A. Skrondal (2007). Stratified case-cohort analysis of general cohort sampling designs, Scandinavian Journal of Statistics, 34, pp. 103-119.
[9] J.T. Leek, J.D. Storey (2008). A general framework for multiple testing dependence, Proceedings of the National Academy of Sciences of the United States of America, 105, pp. 18718-18723.
[10] S.H. Hong (2009). Development of the optimal screening procedures for normal and logistic models, International Journal of Quality Engineering and Technology, 1, pp. 62-74.
[11] Y. Nakagawa, S. Miyazaki (1981). Surrogate constraints algorithm for reliability optimization problems with two constraints, IEEE Transactions on Reliability, R-30, pp. 175-180.
[12] Q. Wang, R. Zhang (2009). Statistical estimation in varying coefficient models with surrogate data and validation sampling, Journal of Multivariate Analysis, 100, pp. 2389-2405.
[13] D. Manner, J.J.W. Seaman, D.M. Young (2004). Bayesian methods for regression using surrogate variables. Biometrical Journal, 46, pp. 750-759.
[14] J. Lee, W.J. Kwon (1999). Economic design of a two-stage control chart based on both performance and surrogate variable. Naval Research Logistics, 46, pp. 958-977.
[15] A.F.B. Costa, M.A. Rahim (2000). Joint Xbar and R charts with two stage samplings. Quality and Reliability Engineering International, 20, pp. 699-708.
[16] M.A. Rahim, A.F.B. Costa (2000). Joint economic design of Xbar and R charts under Weibull shock models. International Journal of Production Research, 38, pp. 2871-2889.
[17] F.F. Gan (1995). Joint monitoring of process mean and variance using exponentially weighted moving average control charts. Technometrics, 37, pp. 446-453.
[18] S.L. Albin, L. Kang, and G. Sheha (1997). An X and EWMA chart for individual observations. Journal of Quality Technology, 29, pp. 41-48.
[19] G. Chen, S.W. Cheng, H. Xie (2001). Monitoring process mean and variability with one EWMA chart. Journal of Quality Technology, 33, pp. 223-233.
[20] A.F.B. Costa (1998). Joint Xbar and R charts with variable parameters. IIE Transactions, 30, pp. 505-514.
[21] A.F.B. Costa (1999). Joint Xbar and R charts with variable sample sizes and sampling intervals. Journal of Quality Technology, 31, pp. 387-397.
[22] M.S. De Magalhaes, F.D. Moura Neto (2005). Joint economic model for totally adaptive Xbar and R charts. European Journal of Operational Research, 161, pp.
148-161.
[23] M.R. Reynolds, Z.G. Stoumbos (2001). Monitoring the process mean and variance using individual observations and variable sampling intervals. Journal of Quality Technology, 33, pp. 181-205.
[24] A.F.B. Costa, M.A. Rahim (2004). Monitoring process mean and variability with one non-central Chi-square chart. Journal of Applied Statistics, 31, pp. 1171-1183.
[25] A.F.B. Costa, M.S. De Magalhaes (2007). An adaptive chart for monitoring the process mean and variance. Quality and Reliability Engineering International, 23, pp. 821-831.
[26] C.H. Springer (1951). A method of determining the most economic position of a process mean. Industrial Quality Control, 8, pp. 36-39.
[27] D.C. Bettes (1962). Finding an optimum target value in relation to a fixed lower limit and an arbitrary upper limit. Applied Statistics, 11, pp. 202-210.
[28] D.Y. Golhar (1987). Determination of the best mean contents for a canning problem. Journal of Quality Technology, 19, pp. 82-84.
[29] D.Y. Golhar, S.M. Pollock (1988). Determination of the optimal process mean and upper limit for a canning problem. Journal of Quality Technology, 20, pp. 188-192.
[30] W.G. Hunter, C.D. Kartha (1977). Determining the most profitable target value for a production process. Journal of Quality Technology, 9, pp. 176-181.
[31] S. Bisgaard, W.G. Hunter, L. Pallesen (1984). Economic selection of quality of manufactured product. Technometrics, 26, pp. 9-18.
[32] K. Tang (1988). Design of a two-stage screening procedure using correlated variables: A loss function approach. Naval Research Logistics, 35, pp. 513-533.
[33] C.T. Kim, K. Tang, M. Peters (1994). Design of a two-stage procedure for three-class screening. European Journal of Operational Research, 79, pp. 431-442.
[34] M.K. Lee, J.S. Jang (1997). The optimum target values for a production process with three-class screening. International Journal of Production Economics, 49, pp. 91-99.
[35] S.H. Hong, K.B. Kim, H.M. Kwon, M.K. Lee (1998). Economic design of screening procedures when the rejected items are reprocessed. European Journal of Operational Research, 108, pp. 65-73.
[36] C.H. Chen, H.S. Kao (2009). The determination of optimum process mean and screening limits based on quality loss function. Expert Systems with Applications, 36, pp. 7332-7335.
[37] M.K. Lee, S.H. Hong, H.M. Kwon, S.B. Kim (2000). Optimum process mean and screening limits for a production process with three-class screening. International Journal of Reliability, Quality and Safety Engineering, 7, pp. 179-190.
[38] W.A. Fuller (1987). Measurement error models. Wiley: New York, pp. 1-5.
[39] S.M. Ross (1992). Applied Probability Models with Optimization Applications. Dover, New York, pp. 119-168.
[40] G. N. Vanderplaats and H. Sugimoto (1986). A general-purpose optimization program for engineering design. Computers & Structures, 24, pp. 13-21.
[41] M.K. Lee, G.S. Kim (1994). Determination of the optimal target values for a filling process when inspection is based on a correlated variable. International Journal of Production Economics, 37, pp. 205-213.
[42] M.R. Panagos, R.G. Heikes, D.C. Montgomery (1985). Economic design of Xbar control charts for two manufacturing process models. Naval Research Logistics,
32, pp. 631-464.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信