§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2901201810575800
DOI 10.6846/TKU.2018.00933
論文名稱(中文) 應用於超音波系統變頻之單電感雙輸出穩壓器
論文名稱(英文) Single-Inductor Dual-Output DC-DC Converters Using Variable Frequency for Ultrasound Systems
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 1
出版年 107
研究生(中文) 黃子昂
研究生(英文) Zi-Ang Huang
學號 604450196
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2018-01-15
論文頁數 63頁
口試委員 指導教授 - 楊維斌
委員 - 楊維斌
委員 - 江正雄
委員 - 羅有龍
關鍵字(中) 單電感雙輸出轉換器
直流-直流轉換器
脈波寬度調變
電壓控制
關鍵字(英) Single-Inductor dual-output
DC-DC Converter
Pulse Width Modulation
voltage control
第三語言關鍵字
學科別分類
中文摘要
隨著科技不斷的進步,積體電路與製程越來越先進,晶片功能與效能也越來越多元,晶片尺寸越來越小,所以可攜式電子產品也成為未來趨勢之一,那需要完成可攜式產品就必須將許多電路系統整合至系統單晶片。而系統上所需要的供應電壓也就越來越多,那也將提高設計供應電壓電路的困難度,所以利用一輸入電源而產生兩個不同電壓的轉換器,來達到減少電路元件的數量。主要有兩種電路供應所需的電壓,一是低壓降線性穩壓器,二是直流直流轉換器,這兩種為最常見的供應電壓電路。此次設計應用於手持式超音波系統,而供應電壓需要到高壓,在佈局方面增加了不少挑戰,以及不同的供應電壓如何在同一電路上盡量不互相影響,轉換效率如何提高,都是需要突破的難題。目前可攜式電子產品中因為功能複雜,使內部電路需要的供應電壓準位需求也增加。而在手持式超音波系統需求有高壓和低壓的部分,而此研究提供了兩種供應電壓分別為1.2V和12V,最大需要提供各350mA的電流負載,為了驅動超音波系統的探頭,需要以高電壓來驅動,使超音波探棒頭能正常操作。在這次的電路裡需要使用到HV元件,所以製程是使用T25HVG2 1P3M。
  這次研究所提出的是應用於超音波系統變頻之單電感雙輸出穩壓器,主要分為功率級和控制器部分,而控制器部分有兩條回授路徑,分別為降壓到1.2V和升壓到12V,內部電路主要包含: 電壓參考電路(Bandgap)、時脈及斜波產生電路(Clock&Ramp Generator)、誤差放大器(Error Amplifier)、比較器(Comparator)、死區控制電路(Dead Control Circuit)。電流在IL在開關SX導通時充電,其斜率上升為VIN/L,第一組為降壓,當比較器收到輸出端Voa的訊號之後會進到比較器和參考電壓比較,如果輸出端Voa比參考電壓大,就會關閉電感電流對Voa充電,而輸出Voa小於參考電壓,就會繼續讓電感電流對Voa充電,直到輸出到設計的準位才會停止。第二組為升壓,當比較器接收到Vob的訊號會進到誤差放大器與參考電壓比較,若大於參考電壓,則會減少充電時間,若小於參考電壓,則會增加充電時間,直到輸出穩定。而接下來當輸出負載有變動的狀態,例如當負載為重載狀態時,脈波寬度調變電路就會增加放電時間,使負載充到一定的電壓和電流準位,反之當負載為輕載狀態時,會縮短放電時間,使負載穩在需要的電流和電壓準位。
  而在未來的電源管理系統中需要輸出多組不同電壓供電,因此如何設計出高效能以及多不同輸出,在多不同輸出能夠不互相影響,抗製程、溫度、電壓變異…等,或是可能為超低壓或超高壓,以及在很多獵能系統都需要非常高效能的電源管理系統,以上都為電源管理未來研究發展的重點。
英文摘要
With the continuous improvement of technology, integrated circuit and process more advanced,Chip functionality and performance is also more diverse and Chip Size is getting smaller, so portable electronic products have become one of the future trends, Portable products must integrate many circuit into SoC, And the system needs more supply voltage, it will also increase the difficulty of designing supply voltage circuit, So using a single input power to produce two different voltage converter, to reduce the number of circuit components. 
The research proposed is the Single-Inductor Dual-Output DC-DC Converters Using Variable Frequency for Ultrasound System, System is divided into the power stage and controller, the controller has two feedback paths, respectively, buck to 1.2V and boost to 12V, Provide 350mA maximum current load, in order to drive the ultrasonic system probe, ultrasonic probe head needs to be driven by high voltage, In this paper need to use the HV components, so the process is to use T25HVG2 1P3M. The internal circuits include: Bandgap, Clock & Ramp Generator, Error Amplifier, Comparator, Dead Control Circuit, In the future of the power management system needs to output multiple sets of different voltage supply, so how to design a high efficiency and many different outputs, the above are the focus of future research and development of power management
第三語言摘要
論文目次
目錄
致謝	I
中文摘要	II
英文摘要	III
內文目錄	IV
圖目錄	VII
表目錄	XI


第一章  緒論	1
1.1 研究背景	1
1.2 研究動機	2
1.3 論文架構	2

第二章  單電感多輸出轉換器介紹	3
2.1 穩壓器的分類	3
2.1.1切換式電容穩壓器(Switching Capacitance Regulator)	4
2.1.2線性穩壓器(Low Dropout Voltage Regulator)	6
2.1.3 切換式穩壓器(Switching Regulator)	8
2.1.4 比較	10
2.2單電感多輸出轉換器分類	.11
2.3 單電感多輸出轉換器的控制方式	13
2.3.1 脈波寬度調變(Pulse Width Modulation, PWM)	13
2.3.2 脈波頻率調變(Pulse Frequency Modulation, PFM)	14
2.3.3 電壓控制單電感多輸出轉換器	16
2.3.4 電流控制單電感多輸出轉換器	17
2.4 切換式穩壓器規格說明	18
2.4.1 輸出電壓漣波(Output Voltage Ripple)	18
2.4.2 輸入電壓(Input Voltage)	19
2.4.3負載調節率(Load Regulation)	19
2.4.4 線性調節率(Line Regulation)	19
2.4.5 轉換效率(Efficiency)	20
2.4.6 電磁干擾(Electromagnetic Interference)	21
2.4.7 暫態響應(Transient Response)	21
2.4.8 交互穩壓(Cross Regulation)	22
第三章  系統介紹與控制模式	23
3.1 系統簡介	23
3.2 單電感雙輸出轉換器的控制模式	25
3.2.1 連續導通模式	25
3.2.2不連續導通模式	26
3.2.3偽連續導通模式	27
3.2.4 能量保存模式	28



第四章  電路設計與模擬	30
4.1 誤差放大器	31
4.2 遲滯比較器	33
4.3時脈與斜波產生器	34
4.4 準位移轉器	38
4.5 帶差參考電路	39
4.6 死區控制電路	40
4.7 脈波寬度調變電路	42
4.8 電路模擬與佈局	43
4.9 全系統模擬結果	45

第五章  電路量測	59
5.1 量測方式	59
第六章  結論與未來展望	60

參考文獻(REFERENCES)	61


圖目錄
圖1.1 系統單晶片(SoC)	1
圖2.1升壓型切換式電容穩壓器	4
圖2.2低壓降線性穩壓器基本架構	6
圖2.3 切換式穩壓器基本架構	8
圖2.4單電感多輸出直流-直流轉換器基本架構	11
圖2.5文獻[25]發表單電感雙輸出轉換器架構(a)升壓-升壓型(b)降壓-降壓型(c)降壓-升壓型	12
圖2.6脈波寬度調變電路	13
圖2.7脈波寬度調變電路波型	14
圖2.8 脈波頻率調變電路	15
圖2.9脈波頻率調變電路波型	15
圖2.10文獻[18]發表的降壓型單電感雙輸出轉換器	16
圖2.11文獻[19]升壓-降壓型單電感雙輸出轉換器	17
圖2.12輸出電壓漣波	18
圖2.13暫態響應示意圖	22
圖3.1應用於超音波系統之單電感雙輸出穩壓器架構圖	24
圖3.2單電感雙輸出的連續導通模式時序圖	25
圖3.3單電感雙輸出的不連續導通模式時序圖	26
圖3.4單電感雙輸出的偽連續導通模式時序圖	27
圖3.5能量保存模式四個不同傳遞能量路徑	28
圖4.1應用於超音波系統變頻之單電感雙輸出穩壓器架構圖	31
圖4.2誤差放大器電路架構圖	32
圖4.3誤差放大器電路穩態時波型	32
圖4.4遲滯比較器電路架構圖	33
圖4.5比較器電路遲滯曲線圖	34
圖4.6時脈與斜波產生器電路架構圖	35
圖4.7時脈與斜波產生器模擬圖	35
圖4.8改良的時脈及斜波產生電路架構	36
圖4.9時脈及斜波產生電路不同頻率的波型圖	37
圖4.10全系統鎖定比較圖	37
圖4.11準位移轉器的電路架構圖	38
圖4.12準位移轉器的輸出波型圖	39
圖4.13帶差參考電路架構圖	39
圖4.14帶差參考電路模擬圖	40
圖4.15死區控制電路模擬圖	41
圖4.16死區控制電路模擬圖	41
圖4.17脈波寬度調變電路架構圖	42
圖4.18應用於超音波系統之單電感雙輸出穩壓器架構圖	43
圖4.19電路佈局圖	44
圖4.20電路佈局示意圖	45
圖4.21 TT 27℃模擬結果與電路鎖定情形	46
圖4.22 TT -20℃模擬結果與電路鎖定情形	46
圖4.23 TT 0℃模擬結果與電路鎖定情形	47
圖4.24 TT 75℃模擬結果與電路鎖定情形	47
圖4.25 TT 125℃模擬結果與電路鎖定情形	48
圖4.26 SS -20℃模擬結果與電路鎖定情形	48
圖4.27 SS 0℃模擬結果與電路鎖定情形	49
圖4.28 SS 27℃模擬結果與電路鎖定情形	49
圖4.29 SS 75℃模擬結果與電路鎖定情形	50
圖4.30 SS 125℃模擬結果與電路鎖定情形	50
圖4.31 FF -20℃模擬結果與電路鎖定情形	51
圖4.32 FF 0℃模擬結果與電路鎖定情形	51
圖4.33 FF 27℃模擬結果與電路鎖定情形	52
圖4.34 FF 75℃模擬結果與電路鎖定情形	52
圖4.35 FF 125℃模擬結果與電路鎖定情形	53
圖4.36製程變異與輸出電壓(低壓)結果	53
圖4.37製程變異與輸出電壓(高壓)結果	54
圖4.38重載轉輕載模擬結果	54
圖4.39輕載轉重載模擬結果	55
圖4.40線性調節率(5V→5.5V)模擬結果	55
圖4.41線性調節率(5V→4.5V)模擬結果	56
圖4.42頻率切換模擬圖	56
圖4.43全系統鎖定比較圖	57
圖5.1量測儀器與晶片腳位之量測環境連接圖	59


 
表目錄
表2.1穩壓器之特性比較	10
表4.2預計規格表與模擬結果	58
表4.3本論文與參考文獻特性比較表	58
參考文獻
[1]C. Y. Huang, Y. C. Chen and C. H. Tsai, "Integrated single-inductor dual-output DC-DC converter with power-distributive control," 2013 International Symposium on Next-Generation Electronics, Kaohsiung, 2013, pp. 33-36.
[2]Guan-Lin Li, Ying-Chi Chen, Yi-Ting Chang, C. H. Tsai and Huei-Shan Chen, "A single-inductor dual-output DC-DC converter with output voltage mode switching," 2012 IEEE 13th Workshop on Control and Modeling for Power Electronics (COMPEL), Kyoto, 2012, pp. 1-4
[3]H. W. Chang, W. H. Chang and C. H. Tsai, "Integrated single-inductor buck-boost or boost-boost DC-DC converter with power-distributive control," 2009 International Conference on Power Electronics and Drive Systems (PEDS), Taipei, 2009, pp. 1184-1187
[4]C. C. Chen, Chung-Hsun Huang and Jia-En Chen, "A SIDO buck converter with a load dependent controller to minimize cross-regulation," TENCON 2015 - 2015 IEEE Region 10 Conference, Macao, 2015, pp. 1-5. doi: 10.1109/TENCON.2015.7373032
[5]W. S. Chou, et al., "An Embedded Dynamic Voltage Scaling (DVS) System Through 55 nm Single-Inductor Dual-Output (SIDO) Switching Converter for 12-Bit Video Digital-to-Analog Converter," in IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1568-1584, July 2012
[6]Y. H. Lee et al., "Minimized Transient and Steady-State Cross Regulation in 55-nm CMOS Single-Inductor Dual-Output (SIDO) Step-Down DC-DC Converter," in IEEE Journal of Solid-State Circuits, vol. 46, no. 11, pp. 2488-2499, Nov. 2011
[7]A. T. L. Lee, J. K. O. Sin and P. C. H. Chan, "Scalability of Quasi-Hysteretic FSM-Based Digitally Controlled Single-Inductor Dual-String Buck LED Driver to Multiple Strings," in IEEE Transactions on Power Electronics, vol. 29, no. 1, pp. 501-513, Jan. 2014.
[8]Y. Qian; H. Zhang; Y. Chen; Y. Qin; D. Lu; Z. Hong, "A SIDIDO DC-DC Converter with Dual-Mode and Programmable-Capacitor-Array MPPT Control for Thermoelectric Energy Harvesting," IEEE Transactions on Circuits and Systems II: Express Briefs, vol.PP, no.99, pp.1-1
[9]C. Y. Wang, Y. C. Ou, C. F. Wu and M. T. Shiue, "A voltage-mode DC-DC buck converter with digital PID controller,"2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, 2015, pp. 2322-2326.
[10]C. Y. Huang, K. Y. Hu, S. M. Lin and C. H. Tsai, "Fast transient current mode dc-dc converter with optimized loop response,"2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), Taipei, 2015, pp. 1-4.
[11]Y. Wang, D. Gao, D. A. Tannir and P. Li, "Multi-harmonic nonlinear modeling of low-power PWM DC-DC converters operating in CCM and DCM,"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, 2016, pp. 409-414.
[12]H. M. Chen, R. C. Chang and Pui-Sun Lei, "An exact, high-efficiency PFM DC-DC boost converter with dynamic stored energy,"2008 15th IEEE International Conference on Electronics, Circuits and Systems, St. Julien's, 2008, pp. 622-625.
[13]H. C. Chenet al., "Anti-ESL/ESR variation robust constant-on-time control for DC-DC buck converter in 28nm CMOS technology,"Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, San Jose, CA, 2014, pp. 1-4.
[14]W. C. Chenet al., "Single-Inductor Quad-Output Switching Converter With Priority-Scheduled Program for Fast Transient Response and Unlimited Load Range in 40 nm CMOS Technology," IEEE Journal of Solid-State Circuits, vol. 50, no. 7, pp. 1525-1539, July 2015.
[15]W. C. Chenet al., "Pseudo-Constant Switching Frequency in On-Time Controlled Buck Converter with Predicting Correction Techniques," IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3650-3662, May 2016.
[16]T. F. Yanget al., "Implantable biomedical device supplying by a 28nm CMOS self-calibration DC-DC buck converter with 97% output voltage accuracy,"2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, 2015, pp. 1366-1369.
[17]S. H. Chenet al., "Embedded Single-Inductor Bipolar-Output DC–DC Converter in Class-D Amplifier for Low Common Noise," IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 3106-3117, April 2016.
[18]E. Bonizzoni, F. Borghetti, P. Malcovati, F. Maloberti and B. Niessen, "A 200mA 93% Peak Efficiency Single-Inductor Dual-Output DC-DC Buck Converter," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, 2007, pp. 526-619
[19]Suet-Chui Koon, Yat-Hei Lam and Wing-Hung Ki, "Integrated charge-control single inductor dual-output step-up/step-down converter," 2005 IEEE International Symposium on Circuits and Systems, 2005, pp. 3071-3074 Vol. 4.
doi: 10.1109/ISCAS.2005.1465276
[20]Y. H. Lee et al., "Interleaving Energy-Conservation Mode (IECM) Control in Single-Inductor Dual-Output (SIDO) Step-Down Converters With 91% Peak Efficiency," in IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 904-915, April 2011.
[21]W. H. Yang et al., "95% light-load efficiency single-inductor dual-output DC-DC buck converter with synthesized waveform control technique for USB type-C," 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, 2016, pp. 1-2.
[22]W. H. Yang et al., "A High Efficiency Single-Inductor Multiple-Output Buck-type LED Driver with Average Current Correction Technique," in IEEE Transactions on Power Electronics, vol. PP, no. 99, pp. 1-1.
[23]S. H. Yang et al., "2.3 A single-inductor dual-output converter with linear-amplifier-driven cross regulation for prioritized energy-distribution control of envelope-tracking supply modulator," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 36-37.
[24]Y. P. Su et al., "CCM/GM relative skip energy control in single-inductor multiple-output DC-DC converter for wearable device power solution," 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC), KaoHsiung, 2014, pp. 65-68.
[25]Wing-Hung Ki and Dongsheng Ma, "Single-inductor multiple-output switching converters," 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), Vancouver, BC, 2001, pp. 226-231
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信