§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2812200912372100
DOI 10.6846/TKU.2010.01067
論文名稱(中文) 同步生產之多人工作站的生產線平衡問題之研究
論文名稱(英文) SIMULTANEOUS PERSPECTIVE-BASED ASSEMBLY LINE BALANCING PROBLEM WITH MULTI-MANNED WORKSTATIONS
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 管理科學研究所博士班
系所名稱(英文) Graduate Institute of Management Science
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 1
出版年 99
研究生(中文) 張東孟
研究生(英文) Tung-Meng Chang
學號 892560227
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2009-12-26
論文頁數 116頁
口試委員 指導教授 - 張紘炬(chj@mail.tku.edu.tw)
委員 - 林進財
委員 - 陳淼勝
委員 - 歐陽良裕
委員 - 李培齊
委員 - 黃志文
委員 - 王智立
關鍵字(中) 組裝線平衡
同步生產
多人工作站
作業編碼系統
關鍵字(英) Assembly line balancing
Simultaneous Production
Multi-manned Workstation
Task Code System
第三語言關鍵字
學科別分類
中文摘要
生產線平衡是許多生產系統進行生產線設計時的重要主題。為了滿足顧客期望及不斷變化的市場需求,生產線產出率必須能因應產品需求的變動。然而生產線平衡將影響工廠的生產產能與生產資源配置等決策,進而決定產品生產線的產出率。傳統的生產線平衡問
題是以循序指派方式進行生產線作業指派,在滿足各種限制下,尋求各種目標函數之最佳化。
  在車輛最後組裝階段、大型家電等大型產品的生產組裝下,其同一工作站常需多人同步進行生產組裝。所謂作業的同步生產,即在一多人工作站上多位操作人員可同步執行同一產品之相同或不同作業。當生產線平衡問題考慮同步生產時,生產線平衡問題將變得更
複雜。本研究考慮作業在單邊直線之生產線上同步生產組裝下,建立多人工作站之組裝線平衡問題的最佳化數學模型。在第二章針對本研究之問題加以說明,並提出進行同步指派時可能遭遇的問題:如共同作業的指派問題,同一零件不同作業路徑之共同作業指派時的重複指派等問題。為了使同步指派之問題得以解決,本章究提出以零件之作業路徑做為同步指派作業的方式,進行各零件作業之多人工作站指派,即被指派至多人工作站之每一零件的部分作業由一位操作員負責執行。亦提出一套作業編碼系統,俾作業之重新編碼及問題之求解。
  本研究針對最普遍的單邊直線之生產線平衡問題:單一產品類別與混合產品類別的生產線平衡問題,在第三、四章探討此兩種模型在同步生產的情況下,考慮指派限制、先行關係限制、週程時間限制、共同作業限制及工作站限制等限制式,建構目標函數為指派工作站數最小化之數學模型,並根據最佳解進一步指派各工作站所需之人數及計算生產線之閒置率。另外,針對上述之數學模型提出範例說明其求解之過程,且為了了解在不同的週程時間下,上述兩種不同數學模型之最佳解的變化,亦分別在第三、四章進行數值模擬與模型的績效分析。最後,在第五章針對上述提出之問題模型探討做一總結,同時也提出未來可持續研究的方向。
英文摘要
Assembly line balancing is an important subject of many production systems whenever the line design is performed. The output rate of the line must deal with
the change in the demand of various products so as to satisfy the customers’expectation and the fluctuant market demands. However, assembly line balancing will affect the decisions on the capacity of a factory and the resource allocations, and then the output rate of the line is decided. In the traditional assembly line balancing problems, the assignment of tasks to an assembly line is in sequential way, and some different objectives are optimized under satisfying various constraints while performing a line balancing.
  Assembly lines with multi-manned workstations, where workers simultaneously perform different tasks on the same workstation, are widely used in producing large-sized products such as the case of vehicle’s final assembly. Therefore, this research considers the simultaneous production for tasks. That is, workers simultaneously perform same or different tasks on the same product and
workstation in an assembly line. Whenever a simultaneous production is allowed for the entire tasks in an assembly line, the assembly line balancing problems become more complicated. In this paper, the mathematical optimization models for the assembly line balancing problems with multi-manned workstations are proposed under considering the simultaneous production, and the tasks assignments to a multi-manned workstation are performed in terms of the task
routes of individual part. That is, the partial tasks belonging to a part, which are assigned into a multi-manned workstation, are performed by one worker. In
Chapter 2, a statement of the problem we deal with is given, and some problems, such as the assignment of the common tasks, encountered in performing simultaneous tasks assignments are described. A coding system, Four-Position
Code (FPC), is also proposed to re-code the tasks to tackle above issue.
  In this study, the single-model and mixed-model assembly line balancing problems are considered. Hence, the mathematical optimization models for the above-mentioned assembly line balancing problems with simultaneous production are proposed in Chapter 3 and Chapter 4, respectively. The objective functions of the proposed models are to minimize the number of workstations of the assembly line under the following constraints: assignment constraints, precedence constraints, cycle time constraints, and workstations constraints. And then, based on the optimal results, the number of workers is assigned to each workstation of the line, and the total idle rate of the line is also computed. In addition, the proposed models are further clarified by some illustrative examples, and simulation analyses for various cycle times and performance of the proposed model are also conducted.
第三語言摘要
論文目次
目錄
頁次
表目錄................................................ IV
圖目錄................................................ VI
第一章 緒論............................................ 1
1.1 研究背景與目的.................................. 1
1.2 相關文獻探討.................................... 7
1.2.1 單一產品類別的組裝線平衡問題................. 7
1.2.2 混合產品類別的組裝線平衡問題................ 11
1.2.3 多人工作站之組裝線平衡問題.................. 14
1.3 本文架構....................................... 17
第二章 問題描述與作業編碼系統......................... 20
2.1 問題描述....................................... 20
2.2 編碼系統....................................... 22
2.3 同步生產之生產線平衡問題之求解流程............. 25
第三章 單一產品類別同步生產的生產線平衡問題- SALBPS ... 29
3.1 前言........................................... 29
3.2 假設與符號說明................................. 31
3.3 模型建立....................................... 34
3.4 數值範例....................................... 37
3.5 數值模擬與模型績效分析......................... 46
第四章 混合產品類別同步生產的生產線平衡問題--MALBPS ... 51
4.1 前言........................................... 51
4.2 假設與符號說明................................. 53
4.3 模型建立....................................... 57
4.4 數值範例....................................... 60
4.5 數值模擬與模型績效分析......................... 72
第五章 結論........................................... 77
5.1 主要研究成果與貢獻............................. 77
5.2 研究限制....................................... 79
5.3 未來研究方向................................... 79
參考文獻.............................................. 82
附錄 A ................................................ 88
附錄 B ............................................... 108
附錄 C ............................................... 112
表目錄
頁次
表 1.1 相關文獻之生產線平衡問題比較表.................. 17
表3.1 各零件(作業路徑)之作業流程...................... 38
表3.2 各零件作業之作業編碼............................ 42
表3.3 最小指派工作站數下之最適作業指派................ 45
表3.4 各零件之最小工作站數指派........................ 45
表3.5 不同週程時間下之最小工作站數與閒置率............ 48
表3.6 SALBPS 不同問題之實驗結果....................... 50
表4.1 組合先行關係網路圖上之零件的作業路徑............ 64
表4.2 組合先行關係網路圖上之共同作業.................. 65
表4.3 數值範例之各零件作業的作業編碼.................. 67
表4.4 各零件作業之最小指派工作站數及所需工人數........ 71
表4.5 W = 6 下,不同週程時間之最小指派工作站數與閒置率. 74
表4.6 W = 6 下,固定2 CT ,變動1 CT 之最小指派工作站數與閒置率
.................................................. 75
表4.7 W = 6 下,固定1 CT ,變動2 CT 之最小指派工作站數與閒置率.................................................. 76
表4.8 MALBPS 不同問題之實驗結果....................... 76
圖目錄
頁次
圖 1.1 先行關係網路圖.................................. 3
圖1.2 組裝線平衡問題的型式............................ 3
圖 1.3 本文架構流程圖................................. 19
圖2.1 求解程序流程圖.................................. 28
圖3.1 各零件之製造程序................................ 39
圖3.2 數值範例的先行關係網路圖........................ 40
圖3.3 數值範例之先行關係矩陣.......................... 41
圖3.4 最小指派工作站數下生產系統之最適工作站指派...... 45
圖3.5 最小指派工作站數下各零件作業之最適工作站指派.... 46
圖 4.1 各產品類別之零件的製造流程...................... 62
圖 4.2 產品類別1 和2 的先行關係網路圖.................. 60
圖 4.3 數值範例的組合先行關係網路圖.................... 61
圖 4.4 產品類別1 和2 的先行關係矩陣.................... 66
圖 4.5 數值範例之組合的先行關係矩陣.................... 67
圖 4.6 各產品類別之零件作業的工作站最適指派............ 71
參考文獻
Agpak, K. & Gokcen, H. (2005), Assembly line balancing: Two resource constrained cases, Inernational Journal of Production Economics, Vol. 96, pp.129-140.
Akagi, F., Osaki, H. & Kikuchi, S. (1983), A method for assembly line balancing with more than one worker in each station, Inernational Journal of Production Research, Vol. 21, pp.755-770.
Bartholdi, J. J. (1993), Balancing two-sided assembly lines: A case study, Inernational Journal of Production Research, Vol. 31, pp.2447-2461.
Baybars, I. (1986), A survey of exact algorithms for the simple assembly line balancing problem, Management Science, Vol. 32, pp. 909-932.
Becker, C. & Scholl, A. (2006), A survey on problems and methods in generalized assembly line balancing, European Journal of Operational Research, Vol. 168, pp.694-715.
Boysen, N., Fliedner, M. & Scholl, A. (2007), A classification of assembly line balancing problems, European Journal of Operations Research,Vol. 183, pp. 674-693.
Bukchin, J. (1998), A comparative study of performance measures for throughput of a mixed model assembly line in a JIT environment, International Journal of Production Research, Vol. 36, pp.2669-2685.
Bukchin, J., Dar-El, E.M. & Rubinovitz, J. (2002), Mixed model assembly line design in a make-to-order environment, Computers & Industrial Engineering, Vol. 41, pp.405-421.
Buxey, G. M. (1974), Assembly line balancing with multiple stations, Management Science, Vol. 20, pp. 1010-1021.
Chiang, W. C. & Urban, T. L. (2006), The stochastic U-line balancing problem: A heuristic procedure, European Journal of Operational Research, Vol. 175, pp.1767-1781.
Dar-El, E. M. (1973), MALB- a heuristic technique for balancing large single-model assembly lines, AIIE Transactions, Vol. 5, pp.343-356.
Dar-El, E. M. & Nadivi, A. (1981), A mixed-model sequencing
application, International Journal of Production Research, Vol. 19, pp. 69-84.
Dimitriadis, S. G.. (2006), Assembly line balancing and group working: A heuristic procedure for workers’ groups operating on the same product and workstation, Computers & Operations Research, Vol. 33, pp.2757-2774.
Erel, E. & Gokcen, H. (1999), Shortest-route formulation of
mixed-model assembly line balancing problem, European Journal of Operations Research, Vol. 116, pp.194-204.
Erel, E. & Sarin, S. C. (1998), A survey of the assembly line balancing procedures, Production Planning and Control, Vol. 9, pp.414-434.
Erel, E., Sabuncuoglu, I. & Aksu, B. A. (2001), Balancing of U-type assembly systems using simulated annealing, International Journal of Production Research, vol. 39, pp.3003-3015.
Fleszar, K. & Hindi, K. S. (2003), An enumerative heuristic and reduction methods for the assembly line balancing problem, European Journal of Operational Research, Vol. 145, pp.606-620.
Garey, M. R. & Johnson, D. S. (1979), Computers and Intractability: A Guide to the Theory of NP-Completeness, WH Freeman, San Francisco.
Gokcen, H., Agpak, K., Gencer, C. & Kizilkaya, E. (2005), A shortest route formulation of simple U-type assembly line balancing problem, Applied Mathematical Modelling, Vol. 29, pp. 373-380.
Gokcen, H. & Erel, E. (1998), Binary integer formulation for mixed-model assembly line balancing problem, Computers & Industrial Engineering, Vol. 34, pp.451-461.
Guerriero, F. & Miltenburg, J. (2003), The stochastic U-line balancing problem, Naval Research Logistics, Vol. 50, pp.31-57.
Gutjahr, A. L. & Nemhauser, G. L. (1964), An algorithm for the line balancing problem, Management Science, Vol. 11, pp.308-315.
Hoffmann, T. R. (1963), Assembly line balancing with a precedence matrix, Management Science, Vol. 9, pp.551-562.
Kim, Y. K., Kim, Y. J. & Kim, Y. (1996), Genetic algorithms for assembly line balancing with various objectives, Computers & Industrial Engineering, Vol. 30, pp.397-409.
Kim, Y. K., Kim, Y. & Kim, Y. J. (2000), Two-sided assembly line balancing: a genetic algorithm approach, Production Planning & Control, Vol. 11, pp.44-53.
Klein, R. & Scholl, A. (1996), Maximizing the production rate in sample assembly line balancing- A branch and bound procedure, European Journal of Operational Research, Vol. 91, pp.367-385.
Lapierre, S. D. & Ruiz, A. B. (2004), Balancing assembly lines: An industrial case study, Journal of the Operational Research Society, Vol. 55, pp.589-597.
Lee, T. O., Kim, Y. & Kim, Y. K. (2001), Two-sided assembly line balancing to maximize work relatedness and slackness, Computers & Industrial Engineering, Vol. 40, pp.273-292.
Macaskill, J. L. C. (1972), Production-line balancing for mixed-model lines, Management Science, Vol. 19, pp.423-434.
Matanachai, S. & Yano, C. A. (2001), Balancing mixed-model assembly lines to reduce work overload, IIE Transactions, Vol. 33, pp.29-42.
Merengo, C., Nava, F. & Pozzetti, A. (1999), Balancing and sequencing manual mixed-model assembly lines,International Journal of Production Research, Vol. 37, pp.2835-2860.
Miltenburg, G. J. & Wijngaard, J. (1994), The U-line line balancing problem, Management Science, Vol. 40, pp.1378-1388.
Milterburg, J. (1998), Balancing U-line in a multiple U-line facility, European Journal of Operational Research, Vol. 109, pp.1-23.
Nakade, K. & Ohno, K. (1999), An optimal worker allocation problem for a U-shaped production line, International Journal of Production Economics, Vol. 60-61, pp.353-358.
Nicosia, G., Pacciarelli, D. & Pacifici, A. (2002), Optimally balancing assembly lines with different workstations, Discrete Applied Mathematics, Vol. 118, pp.99-113.
Noorul Haq A., Jayaprakash, J. & Rengarajan, K. (2006), A hybrid genetic algorithm approach to mixed-model assembly line balancing, International Journal of Advanced Manufacturing Technology, Vol. 28, pp.337-341.
Patterson, J. H. & Albracht, J. J. (1975), Assembly line balancing: zero-one programming with Fibonacci search, Operations Research, Vol. 23, pp.166-172.
Pinto, P. A., Dannenbring, D. G. & Khumawala, B. M. (1981), Branch and bound and heuristic procedures for assembly line balancing with paralleling of stations, International Journal of Production Research,Vol. 19, pp.565-576.
Rekiek, B., Dolgui, A., Delchambre, A. & Bratcu, A.(2002), State of art of optimization methods for assembly line design, Annual Reviews in Control, Vol. 26, pp.163-174.
Sabuncuoglu, I., Erel, E. & Tanyer, M. (2000), Assembly line balancing using genetic algorithms, Journal of Intelligent Manufacturing, Vol. 11, pp.295-310.
Salvenson, M. E. (1955), The assembly line balancing problem, The Journal of Industrial Engineering, Vol. 6, pp.18-25.
Sarin, S. C., Erel, E. & Dar-El, E. M. (1999), A methodology for solving single-model, stochastic assembly line balancing problem, International Journal of Management Science, Vol. 27, pp.525-535.
Scholl, A. (1999), Balancing and Sequencing of Assembly Lines, 2nd ed., Physica, Heideberg and New York.
Scholl, A. & Becker, C. (2006), State-of-the-art exact and heuristic solution procedures for simple assembly line balancing, European Journal of Operational Research, Vol. 168, pp.666-693.
Scholl, A. & Klein, R. (1999), ULINO: Optimally balancing U-shaped JIT assembly lines, International Journal of Production Research, Vol. 37, pp.721- 736.
Shewchuk, J. P. (2008), Worker allocation in lean U-shaped production lines, International Journal of Production Research, Vol. 46, pp.3485–3502 .
Simaria, A. S. & Vilarinho, P. M. (2004), A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II, Computers and Industrial Engineering, Vol. 47, pp.391-407.
Sparling, D. (1998), Balancing just-in-time production units: the N U-line balancing problem. INFOR, Vol. 36, pp.215-237.
Suer, G. A. (1998), Designing parallel assembly lines, Computers & Industrial Engineering, Vol. 35, pp.467-470.
Thomopoulos, N .T. (1970), Mixed model line balancing with smoothed station assignments, Management Science, Vol. 16, pp.593-603.
Ugurdag, H. F., Rachamadugu, R. & Papachristou, C. A. (1997), Designing paced assembly lines with fixed number of stations, European Journal of Operational Research, Vol. 102, pp.488-501.
Van Zante-de Fokkert, J. I., & de Kok, T. G. (1997), The mixed andmulti model line balancing problem: A Comparison, European Journal of Operations Research, Vol. 100, pp.399-412.
Vilarinho, P. M. & Simaria, A. S. (2002), A two-stage heuristic method for balancing mixed-model assembly lines with parallel workstations, International Journal of Production Research, Vol.40, pp.1405-1420.
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信