淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2808201701203500
中文論文名稱 電漿處理對超奈米晶鑽石薄膜電子場發射特性的影響
英文論文名稱 Effect of plasma post treatment on the electron field emission properties of ultrananocrystalline diamond films
校院名稱 淡江大學
系所名稱(中) 物理學系碩士班
系所名稱(英) Department of Physics
學年度 105
學期 2
出版年 106
研究生中文姓名 徐偉揚
研究生英文姓名 Wei-Yang Hsu
學號 603210112
學位類別 碩士
語文別 中文
口試日期 2017-06-26
論文頁數 119頁
口試委員 指導教授-林諭男
委員-董崇禮
委員-施文欽
中文關鍵字 超奈米晶鑽石  化學汽相沉積 
英文關鍵字 BEG  MPECVD  UNCD 
學科別分類 學科別自然科學物理
中文摘要 鑽石擁有高硬度、極佳耐磨耗、良好場發射性、高導熱等優點。應用在表面聲波元件、微機電元件、生醫材料、場發射元件等材料,薄膜是需要的良好場發射性、導電性鑽石。鑽石薄膜依據表面形貌可以分為微晶鑽石(MCD)、奈米晶鑽石(NCD)、超奈米晶鑽石(UNCD),其中超奈米晶鑽石具備更低的良好場發射性、表面粗糙度及較佳的導電性質。
  在我們成長鑽石薄膜所使用的系統(Innovative Plasma system,IPLAS),是屬於微波電漿輔助化學汽相沉積法(Microwave Plasma enhanced Chemical Vapor Deposition, MPECVD)。一般而言,我們用一定比例的氬氣及甲烷來成長UNCD,但後來發現,當我們將成長好的UNCD再進行不同氣氛的微波電漿處理,薄膜的場發射特性優於原本的UNCD薄膜。因此我們藉由拉曼光譜、電漿光發射光譜、掃描式電子顯微結構、穿透式電子顯微結構、電子能量損失譜等,來探討當我們對UNCD進行微波電漿處理後,對其微結構以及場發射特性有著什麼樣的變化。
  本實驗針對不同的鑽石薄膜基板分別進行甲烷/氬氣/氫氣及甲烷/氮氣兩種混合氣體電漿並施加偏壓處理後,觀察發現場發射起始電場呈現相同趨勢的變化,利用穿透式電子顯微鏡觀測樣品,加上場發射起始電場與霍爾量測等結果,顯示出使用電漿處理對於不同薄膜基板造成改質或是成長之程度有所不同,發現以小顆粒鑽石晶粒為主且擁有充足晶界空間之鑽石薄膜對於其改質的效果越好,改善電子場發射特性的效果最佳。
英文摘要 Diamond films possess high hardness, god tribological properties, super electron field (EFE) properties and high thermal conductivity. They have great potential for applications such as electron field emitters, microelectromechanical devices, biomaterials, surface acoustic wave devices. Diamond films can be microcrystalline (MCD), nanocrystalline (NCD) an ultrananocrystalline (UNCD), among which the UNCD films exhibit the most smooth surface, the best conductivity and moreover, the best EFE properties.
論文目次 目錄

第1章 研究動機.........................................1
第2章 序論.............................................2
2.1 鑽石薄膜的特性與應用.............................2
2.1.1 鑽石及鑽石薄膜的特性........................2
2.1.2 鑽石薄膜之應用.............................5
2.1.3 微米微晶及超奈米微晶鑽石薄膜................7
2.2 微米微晶及超奈米微晶鑽石薄膜之合成方法與理論.......9
2.2.1 鑽石薄膜相關合成方法........................9
2.2.2 鑽石薄膜成核相關理論........................15
第3章 研究方法與實驗步驟................................39
3.1 微波電漿輔助化學汽相沉積法鍍鑽石薄膜結構及原理.....40
3.2 鑽石薄膜實驗方法................................41
3.2.1 浮液之製備及孕核(超音波震盪法(UM)-鑽石/鈦懸浮液)..............................41
3.2.2 鍍膜流程..................................42
3.3 電漿光發射光譜量測..............................44
3.4 薄膜特性之分析..................................45
3.4.1 掃描式電子顯微鏡...........................45
3.4.2 穿透式電子顯微鏡...........................46
3.4.2.1 觀測試片製作..........................52
3.4.3 拉曼光譜..................................53
3.4.4 電子能量損失譜............................54
3.4.5 電子場發射量測............................55
   3.4.6 霍爾量測..................................55
第4章 電漿處理對UNCD薄膜特性之研究.....................61
4.1 實驗步驟與參數.................................61
4.2 樣品分析.......................................62
4.2.1 電漿光發射光譜分析.........................62
4.2.2 偏壓電流分析...............................62
4.2.3 拉曼光譜分析...............................63
4.2.4 掃描式電子顯微結構分析......................63
4.2.5 穿透式電子顯微結構分析......................63
4.2.6 電子能量損失譜分析..........................64
4.2.7 電子場發射分析..............................65
4.2.8 霍爾量測分析...............................65
4.3 結果...........................................65
第5章 電漿處理對NCD薄膜特性之研究........................79
5.1 實驗步驟與參數...................................79
5.2 樣品分析........................................79
5.2.1 電漿光發射光譜分析..........................79
5.2.2 偏壓電流分析...............................80
5.2.3 拉曼光譜分析...............................80
5.2.4 掃描式電子顯微結構分析......................80
5.2.5 穿透式電子顯微結構分析......................81
5.2.6 電子能量損失譜分析..........................82
5.2.7 電子場發射分析.............................82
5.2.8 霍爾量測分析...............................82
5.3 結果...........................................83
第6章 電漿處理對熱燈絲系統製UNCD薄膜特性之研究...........96
6.1 實驗步驟與參數..................................96
6.2 樣品分析.......................................96
6.2.1 電漿光發射光譜分析.........................96
6.2.2 偏壓電流分析...............................97
6.2.3 拉曼光譜分析...............................97
6.2.4 掃描式電子顯微結構分析......................97
6.2.5 穿透式電子顯微結構分析......................98
6.2.6 電子能量損失譜分析..........................99
6.2.7 電子場發射分析.............................99
6.2.8 霍爾量測分析...............................99
6.3 結果..........................................100
第7章 結論...........................................112
參考文獻.............................................113

圖目錄
圖 2-1 鑽石的結晶構造.................................25
圖 2-2 石墨的結晶構造.................................25
圖 2-3 鑽石的熱傳導係數................................26
圖 2-4 微米晶至超奈米晶鑽石表面型態.....................28
圖 2-5 以HRTEM分析超奈米晶鑽石晶粒及晶界[29]............29
圖 2-6 超奈米晶鑽石晶粒間距及繞射圖[29].................29
圖 2-7 不同波長之超奈米晶鑽石薄膜拉曼光譜[33]...........30
圖 2-8 C-H-O三相圖[36]...............................30
圖 2-9 微波電漿CVD設備[40]............................31
圖 2-10 熱燈絲法設備[41]..............................31
圖 2-11 微波電漿放電系統設備[42].......................32
圖 2-12 高週波電漿放電系統設備[43]......................32
圖 2-13 電子迴旋共振設備[44]...........................33
圖 2-14 鑽石之椅狀堆積構造.............................33
圖 2-15 石墨及鑽石的活化能相對圖........................34
圖 2-16 薄膜與基材之早期成核方式[55]....................34
圖 2-17 與基材不反應者之孕核及成長機制[2]................35
圖 2-18 與基材形成碳化物之孕核及成長機制[2]..............35
圖 2-19 偏壓輔助孕核法的反應機制[63]....................36
圖 2-20 偏壓輔助成核示意圖[66].........................36
圖 2-21 超音波震盪法[72]..............................37
圖 2-22 偏壓輔助孕核超音波震盪法[72]....................38
圖 3-1 IPLAS CRYMMUS I MPECVD系統....................57
圖 3-2 IPLAS系統示意圖................................57
圖 3-3 水冷分流閥.....................................58
圖 3-4 電源控制箱.....................................58
圖 3-5 氣體壓力控制器.................................58
圖 3-6 MFC氣體流量控制器..............................59
圖 3-7 掃描式電子顯微鏡...............................59
圖 3-8 穿透式電子顯微鏡...............................59
圖 3-9 拉曼系統及示意圖...............................60
圖 3-10 場發射量測系統................................60
圖 4-1 UNCDTKU系列薄膜流程............................67
圖 4-2 UNCDTKU系列薄膜參數............................67
圖 4-3成長UNCDTKU及兩種電漿處理之電漿發射光譜...........68
圖 4-4 UNCDTKU薄膜進行電漿處理之輔助偏壓電流............68
圖 4-5 UNCDTKU系列薄膜之拉曼光譜.......................69
圖 4-6 UNCDTKU薄膜之掃描式電子顯微結構..................69
圖 4-7 HiDTKU薄膜之掃描式電子顯微結構..................70
圖 4-8 N2-UNCDTKU薄膜之掃描式電子顯微結構...............70
圖 4-9 UNCDTKU薄膜之穿透式電子顯微結構明場像及暗場像.....71
圖 4-10 HiDTKU薄膜之穿透式電子顯微結構明場像及暗場像.....71
圖 4-11 N2-UNCDTKU薄膜之穿透式電子顯微結構明場像及暗場像.71
圖 4-12 UNCDTKU薄膜之高解析度影像......................72
圖 4-13 HiDTKU薄膜之高解析度影像.......................73
圖 4-14 N2-UNCDTKU薄膜之高解析度影像....................74
圖 4-15 UNCDTKU系列薄膜之Low Loss電子能量損失譜.........75
圖 4-16 UNCDTKU系列薄膜之Core Loss電子能量損失譜........75
圖 4-17 UNCDTKU系列薄膜之電子場發射圖...................76
圖 4-18 UNCDTKU系列薄膜之霍爾量測.......................77
圖 4-19 UNCDTKU薄膜示意圖..............................77
圖 4-20 HiDTKU薄膜示意圖...............................77
圖 4-21 N2-UNCDTKU薄膜示意圖...........................78
圖 5-1 NCDNTUT薄膜進行電漿處理流程......................84
圖 5-2 NCDNTUT薄膜進行電漿處理之參數....................84
圖 5-3 NCDNTUT薄膜進行電漿處理之電漿光譜................85
圖 5-4 NCDNTUT薄膜進行電漿處理之輔助偏壓電流.............85
圖 5-5 NCDNTUT系列薄膜之拉曼光譜........................86
圖 5-6 NCDNTUT薄膜之掃描式電子顯微結構..................86
圖 5-7 HiDNTUT薄膜之掃描式電子顯微結構..................87
圖 5-8 N2-NCDNTUT薄膜之掃描式電子顯微結構...............87
圖 5-9 NCDNTUT薄膜之穿透式電子顯微結構明場像及暗場像......88
圖 5-10 HiDNTUT薄膜之穿透式電子顯微結構明場像及暗場像.....88
圖 5-11 N2-NCDNTUT薄膜之穿透式電子顯微結構明場像及暗場像..88
圖 5-12 NCDNTUT薄膜之高解析度影像.......................89
圖 5-13 HiDNTUT薄膜之高解析度影像.......................90
圖 5-14 N2-NCDNTUT薄膜之高解析度影像....................91
圖 5-15 NCDNTUT系列薄膜之Low Loss電子能量損失譜.........92
圖 5-16 NCDNTUT系列薄膜之Core Loss電子能量損失譜........92
圖 5-17 NCDNTUT系列薄膜之電子場發射圖...................93
圖 5-18 NCDNTUT系列薄膜之霍爾量測.......................94
圖 5-19 NCDNTUT薄膜示意圖..............................94
圖 5-20 HiDNTUT薄膜示意圖..............................94
圖 5-21 N2-NCDNTUT薄膜示意圖...........................95
圖 6-1 UNCDZUT薄膜進行電漿處理流程.....................101
圖 6-2 UNCDZUT薄膜進行電漿處理之參數...................101
圖 6-3 UNCDZUT薄膜進行電漿處理之電漿光譜................102
圖 6-4 UNCDZUT薄膜進行電漿處理之輔助偏壓電流.............102
圖 6-5 UNCDZUT系列薄膜之拉曼光譜.......................103
圖 6-6 UNCDZUT薄膜之掃描式電子顯微結構.................103
圖 6-7 HiDZUT薄膜之掃描式電子顯微結構..................104
圖 6-8 N2-UNCDZUT薄膜之掃描式電子顯微結構..............104
圖 6-9 UNCDZUT薄膜之穿透式電子顯微結構明場像及暗場像.....105
圖 6-10 HiDZUT薄膜之穿透式電子顯微結構明場像及暗場像.....105
圖 6-11 N2-UNCDZUT薄膜之穿透式電子顯微結構明場像及暗場像.105
圖 6-12 UNCDZUT薄膜之高解析度影像......................106
圖 6-13 HiDZUT薄膜之高解析度影像.......................107
圖 6-14 N2-UNCDZUT薄膜之高解析度影像...................108
圖 6-15 UNCDZUT系列薄膜之Low Loss電子能量損失譜.........109
圖 6-16 UNCDZUT系列薄膜之Core Loss電子能量損失譜........109
圖 6-17 UNCDZUT系列薄膜之電子場發射圖...................110
圖 6-18 UNCDZUT系列薄膜之霍爾量測......................111

表目錄
表 2-1 鑽石的各種性質[1]...............................23
表 2-2 鑽石的各種應用[13]..............................24
表 2-3 鑽石之耐熱衝擊指數比較...........................26
表 2-4 天然鑽石、鑽石膜及類鑽石膜性質比較................27
表 2-5 微米晶鑽石與超奈米晶鑽石的特性比較[28]............28
表 3-1 結構對應拉曼峰值................................56
參考文獻 [1]. J. E. Field, “The Properties of Diamonds, (Academic, London, 1979).
[2]. H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early    Growth Stages, Noyes (1995).
[3]. P. Kulkarni, L. M. Porter, F. A. M. Koeck, Y.-J. Tang, and R. J. Nemanich, “Electrical and photoelectrical characterization of undoped and S-doped nanocrystalline diamond films, J. Appl. Phys. 103 084905 (2008).
[4]. M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, and A. A. Balandin, “Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon, J. Appl. Phys. 103 083538 (2008).
[5]. X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “ Low temperature growth of ultrananocrystalline diamond, J. Appl.Phys. 96 2232 (2004).
[6]. Li-Ju Chen, Nyan-Hwa Tai, Chi-Young Lee, and I-Nan. Lin, “ Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond, J. Appl. Phys. 101 064308 (2007).
[7]. K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, “ Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films, J. Appl. Phys. 88 2967 (2000).
[8]. Maki A. Angadi, Taku Watanabe, Arun Bodapati, Xingcheng Xiao, and Simon R. Phillpot, “Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films, J. Appl. Phys. 99 114301 (2006).
[9]. D.M. Gruen, “Nanocrystalline diamond films, Annu. Rev. Mater. Sci. 29 211 (1999).
[10]. J. A. Carlisle, O. Auciello; Electrochem. Soc. Interface (2003) (Spring).
[11]. F. Mubarok, J. M. Carrapichano, F. A. Almeida, A. J. S. Fernandes, R. F.Silva, “ Enhanced sealing performance with CVD nanocrystalline diamond films in self-mated mechanical seals, Diamond Relat. Mater., 17 1132 (2008).
[12]. A. Lavoisier, “Elements of Chemistry, Dover Publications (1772).
[13]. Y. Tzeng, M. Yoshikawa, M. Murakawa and Feldman, “The Applications of Diamond Films and Related Materials, eds, Elsevier, New York, (1991).
[14]. P. W. Bridgman, “Synthetic diamonds, Scient. Am., 193 42 (1955).
[15]. W. G. Eversole, U.S. Patent No. 3, 030 188 (1962).
[16]. J. C. Angus, H. A. Will and W. S. Stanko, “Growth of Diamond Seed Crystals by Vapor Deposition, J. Appl. Phys., 39 2915 (1968).
[17]. B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces, J. Cryst. Growth, 52 219 (1981).
[18]. C. Y. Wang, F. L. Zhang, T. C. Kuang, C. L. Chen,“ Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO and KNO33, Thin Solid Films, 496 698 (2006).
[19]. Nevin N. Naguib, Jeffrey W. Elam, James Birrell, Jian Wang, David S. Grierson, Bernd Kabius, “Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers, Chemical Phys. Lett. 430 345 (2006).
[20]. L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, Y. Chen, “Nanocrystalline diamond from carbon nanotubes, Applied Physics Letters, 84 (15), 2901 (2004).
[21]. P. W. May and Yu. A. Mankelevich, “Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth, J. Appl. Phys. 100 024301 (2006).
[22]. L. Kreines, G. Halperin, I. Etsion, M. Varenberg, A. Hoffman, R. Akhvlediani, “Fretting wear of thin diamond films deposited on steel substrates, Diamond and Related Materials, 13 1731 (2004).
[23]. C.K. Lee, “Wear-corrosion behavior of ultra-thin diamond-like carbon nitride films on aluminum alloy, Diamond and Related Materials, 17 306 (2008).
[24]. J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson,“ Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond, Applied Physics Letters, 81 (12), 2235 (2002).
[25]. M. Nesladek, D. Tromson, Bergonzo, P. Hubik, P. Mares, J.J. Kristofik, J. Kindl, Gruen, D., “Low-temperature magnetoresistance study of electrical transport in N- and B-doped ultrananocrystalline and nanocrystalline diamond films, Diamond & Related Materials, 15 (4) 607 (2006).
[26]. Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires, Diamond and Related Materials, 17 753 (2008).
[27]. P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “ Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films, J. Appl. Phys. 103,043720 (2008).
[28]. T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond, Encyclopedia of Nanoscience and Nanotechnology, X, I (2003).
[29]. S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2, Journal of Applied Physics, 90,118 (2001).
[30]. Ferrari, Andrea Carlo / Robertson, John, “ Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362 2477 (2004).
[31]. M. Veres, S. Tóth, and M. Koós, “Grain boundary fine structure of ultranano crystalline diamond thin films measured by Raman scattering,Appl. Phys. Lett. 91 031913 (2007).
[32]. M. Veres, S. Tóth, E. Perevedentseva, A.Karmenyan, M. Koós, “Raman Spectroscopy Of UNCD Grain Boundaries,Volume . ISBN 978-1-4020-9915-1.
Springer Netherlands, 2009, p. 115.
[33]. A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond, Phys. Rev. B 63 121405(R) (2001).
[34]. James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond, J. Appl. Phys. 93 5606 (2003).
[35]. Peter K. Bachmann, Dieter Leers, Hans Lydtin, “Towards a general concept of diamond chemical vapour deposition, Diamond and Related Materials, 1 1 (1991).
[36]. G. Balestrino, M. Marinelli, E. Milani, A. Paoletti, I. Pinter, and A. Tebano, “Growth of diamond films: General correlation between film morphology and plasma emission spectra, Appl. Phys. Lett. 62, 879 (1993).
[37]. Y. Mitsuda, K. Tanaka, and T. Yoshida, Journal of Applied Physics, “In situ emission and mass spectroscopic measurement of chemical species responsible for diamond growth in a microwave plasma jet, J. Appl. Phys. 67 3604 (1990).
[38]. C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D'Evelyn, “Growth kinetics of (100), (110), and (111) homoepitaxial diamond films, Appl. Phys. Lett. 61 1393 (1992).
[39]. Stephen J. Harris, “Gas-phase kinetics during diamond growth: CH4 as-growth species, J. Appl. Phys. 65 3044 (1989).
[40]. Chao Liu, Xingcheng Xiao, Hsien-Hau Wang, Orlando Auciello, and John A. Carlisle , “Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films, J. Appl. Phys. 101 123924 (2007).
[41]. M. Wiora, K. Bruhne, A. Floter, P. Gluche, T. M. Willey, S. O. Kucheyev, A. W. Van Buuren, H. J. Fecht, “Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD, Diamond & Related Materials, 18 927 (2009).
[42]. S. J. Ray, G. M. Hieftje, “ Microwave plasma torch — atmospheric-sampling glow discharge modulated tandem source for the sequential acquisition of molecular fragmentation and atomic mass spectra , Analytica Chimica Acta, 445 (1) 35 (2001).
[43]. A. T. Sowers, B. L. Ward, S. L. Englih and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films, J. Appl. Phys., 86 3973 (1999).
[44]. K. H. Chen, D. M. Bhusari, J. R. Yang, S. T. Lin, T. Y. Wang, L. C. Chen,“Highly transparent nano-crystalline diamond films via substrate pretreament and methane fraction optimization, Thin Solid Films, 332 34 (1998).
[45]. D. A. Homer, L. A. Curtiss, and D. M. Gruen, “ A theoretical study of the energetics of insertion of dicarbon (C) and vinylidene into methane C-H bonds2, Chemical Physics Letters, 233 243 (1995).
[46]. K. Subramaniana, W. P. Kanga, J. L. Davidsona, R. S. Takalkara, B. K. Choia, M. Howella and D.V. Kerns, “ Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH/H/N plasma-deposited nanodiamond422, Diamond and Related Materials, 15 1126 (2006).
[47]. T. K. Ku, C.D. Yang, F.G. Tarntair, C.C. Wang, H.C. Cheng, S.H. Chen, N.J. She, I. J. Hsieh, “Enhanced electron emission from phosphorus- and boron-doped diamond-clad Si field emitter arrays, Thin Solid Films, 290 176 (1996).
[48]. Yongde Xia, Gavin S. Walker, David M. Grant, Mokaya, Robert , “Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping, Journal of the American Chemical Society, 131 16493 (2009).
[49]. H. Yoshikawa, C. Morel, and Y. Koga, “Synthesis of nanocrystalline diamond films using microwave plasma CVD, Diamond and Related Materials, 10 1588 (2001).
[50]. J. Lee, R. W. Collins, R. Messier, and Y. E. Strausser, “Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition, Applied Physics Letters, 70 1527 (1997).
[51]. N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films, Journal of Crystal Growth, 242,362 (2002).
[52]. T. Sharda, M. Vmeno, T. Soga, and T. Jimbo, “CJrowth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth, Applied Physics Letters, 77 26) 4304 (2000).
[53]. W. Zhu, G P. Kochanski, and S. Jin, “Low-field emission from undopednanostructured diamond, Science, 282,1471 (1998).
[54]. A. Göhl, A. N. Alimova, T. Habennann, A. L. Mescheryakova, and G Huller,“Integral and local field emission analyses of nanodiamond coating for power applications, J. Vac. Sci. Technol. B, 17 670 (1999).
[55]. J. E. Green, S. A. Barnett, J. E. Sundgren, and A. Rockett, “Plasma-surface Interactions And Processing Of Materials, 28-31(1990).
[56]. X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, “Epitaxial diamond thin films on (001) silicon substrate, Appl. Phys. Lett., 62,3438 (1993).
[57]. S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films, Applied Physics Letters, 57 (25) 2646 (1990).
[58]. Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz, “Orientation relationship between chemical vapor deposited diamond and graphite substrates, Journal of Applied Physics, 73(2) 711 (1993).
[59]. D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth, Applied Physics Letters, 54 (5) 416 (1989).
[60]. N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate, Journal of Materials Research, 9 (10) 2695 (1994).
[61]. W. L. Wang, K. J. Liao, L. Fang, J. Esteve, M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition, Diamond and Related Materials, 10 383 (2001).
[62]. S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition, Applied Physics Letters, 58 (10) 1036 (1991).
[63]. B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass,“ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy, Phys. Rev. B, 45 11067 (1991).
[64]. J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on ilicon, Journal of Applied Physics, 79 (8) 4388 (1996).
[65]. P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films, Physical Review B, 56 (4) 2183 (1997).
[66]. R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films, Journal of Applied Physics, 79 768 (1996).
[67]. R. Stöckel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions, J. Appl. Phys. 83 531 (1998).
[68]. J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si, Applied Physics Letters, 66 (24) 3287 (1995).
[69]. S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond, Applied Physics Letters, 66 (23) 3117 (1995).
[70]. L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100) , Journal of Applied Physics 76 (11) 7483 (1994).
[71]. S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step. Journal of Applied Physics 84 (4) 1870 (1998).
[72]. Debabrata Pradhan, Li-Ju Chen, Yen-Chih Lee, Chi-Young Lee, Nyan-Hwa Tai, I-Nan Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature, Diamond and Related Materials, 15 1779 (2006).
[73]. J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor- deposition, Journal of Materials Science, 27 (23) 6324 (1992).
[74]. W. Zhu, “Vacuum microelectronics, John Wiley & Sons (2001).
[75]. I. Han, N. Lee, S. W. Lee, S. H. Kim, “Field emission of nitrogen-doped diamond films, J. Vac. Sci. Technol. B, 16(4), 2052 (1998).
[76]. W. Zhu, G. P. Kochanski, S. Jin, “Low-Field Electron Emission from Undoped Nanostructured Diamond, SCIENCE, 282, 1471 (1998).
[77]. Chiharu Kimura, Satoshi Koizumi, Mutsukazu Kamo, Takashi Sugino, “Behavior of electron emission from phosphorus-doped epitaxial diamond films, Diamond and Related Materials, 8, 759 (1999).
[78]. You, Min-Sheng, et al. "Low temperature growth of highly transparent nanocrystalline diamond films on quartz glass by hot filament chemical vapor deposition." Diamond and Related Materials 18.2 (2009): 155-159. [79]. Yu-Feng, Zhang, et al. "Synthesis of nano-crystalline diamond film in hot filament chemical vapour deposition by adding Ar." Chinese Physics Letters18.2 (2001): 286.
[80]. Klauser, Frederik, et al. "Raman Studies of Nano-and Ultrananocrystalline Diamond
Films Grown by Hot-Filamemt CVD. "Chemical Vapor Deposition 16.4-6(2010):127-135.
[81]. May, P. W., and Yu A. Mankelevich. "Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH 4/H 2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth." Journal of applied physics 100.2 (2006): 024301-024301.
[82]. Hao, Tianliang, et al. "Nano-crystalline diamond films synthesized at low temperature and low pressure by hot filament chemical vapor deposition."Surface and Coatings Technology 201.3 (2006): 801-806.
[83]. Barbosa, D. C., et al. "Influence of substrate temperature on formation of ultrananocrystalline diamond films deposited by HFCVD argon-rich gas mixture." Diamond and Related Materials 18.10 (2009): 1283-1288.
[84]. Kromka, A., et al. "Investigation of carburisation of tungsten-carbide formation by hot-filament CVD technique." (2001).
[85]. Chen Huang-Chin. "Microstructures and electron field emission properties of ultra nanocrystalline diamond films." (2010).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-09-08公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-09-08起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信