§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2808201314504700
DOI 10.6846/TKU.2013.01198
論文名稱(中文) 在WiFi與Zigbee共存網路中提昇Zigbee傳輸機會之共存媒介傳輸協定
論文名稱(英文) A WiFi and ZigBee Coexistence MAC Protocol for Exploiting ZigBee Transmission Opportunities
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系碩士班
系所名稱(英文) Department of Computer Science and Information Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 許智舜
研究生(英文) Chih-Shun Hsu
學號 600410095
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2013-05-31
論文頁數 66頁
口試委員 指導教授 - 張志勇
委員 - 陳裕賢
委員 - 陳宗禧
委員 - 張志勇
關鍵字(中) 共存網路
ZigBee
WiFi
點對點傳輸延遲
干擾
關鍵字(英) Coexistence Network
ZigBee
WiFi
End-to-end delay
Interference
第三語言關鍵字
學科別分類
中文摘要
近年來,由於物聯網應用之興起,異質網路的問題越來越受到重視,其中,又以WiFi與ZigBee網路受到最多的關注。在這兩個網路共存的環境中,ZigBee網路處於傳輸弱勢,將會難以傳送資料,這將使緊急事件無法透過ZigBee即時回傳並處理,而耽誤救援的行動。本論文提出一運行於ZigBee與WiFi網路之共存媒介傳輸協定,除了能有效解決兩個網路間的干擾問題外,還針對緊急事件的發生做出應對,以加快緊急資料的傳遞速度。實驗模擬顯示,本論文所提出的協定可有效減少ZigBee與WiFi網路間的干擾行為,並降低ZigBee網路的傳輸延遲。
英文摘要
The network lifetime of Wireless Sensor Networks (WSNs) highly depends on the remaining energy of each sensor. However, the irregular location and frequency of the event detection leads to different remaining energy of each sensor when all the sensors execute their task for a long time. As a result, some sensor may exhaust its energy, resulting in coverage hole. Therefore, to fully cover the hole, each sensor should move to cover the hole for achieving the purpose of full coverage. Nevertheless, the sensor which has the least energy may exhaust its energy earliest and hence the coverage hole will be created. This paper takes into consideration the remaining energy of each sensor. Then, the proposed Weighted Voronoi Diagram will be constructed for determining each sensor’s monitoring area based on the remaining energy of each sensor to achieve the energy-balancing and full coverage.
第三語言摘要
論文目次
目錄
圖目錄	VI
表目錄	VIII
第一章、	簡介	1
第二章、	背景知識:IEEE 802.11和IEEE 802.15.4標準	5
2.1	IEEE 802.11/WiFi	5
2.2	IEEE 802.15.4/ZigBee	9
第三章、	網路環境與問題描述	14
3.1	網路環境	14
3.2	問題描述	15
第四章、	針對緊急訊息之共存網路協定	22
4.1	ZigBee網路初始化	22
4.2	ZigBee與WiFi異質網路共存之傳輸架構	26
4.3	ZigBee網路緊急訊息傳輸機制(ETM)	28
4.3.1 計算最短的Superframe長度	30
4.3.2 一般模式 ETM-N運行機制	34
4.3.3 緊急模式ETM-E運行機制	38
第五章、	模擬分析	43
5.1	網路環境	43
5.2	網路平均吞吐量	45
5.3	平均網路點對點傳輸延遲	50
5.4	平均網路電量消耗	52
5.5	平均網路封包遺失率	54
第六章、	結論	57
參考文獻	58
附錄-英文論文	62

圖目錄
圖 一、WiFi的超級訊框架構	6
圖 二、WiFi的PCF傳輸模式	7
圖 三、WiFi的DCF傳輸模式	8
圖 四、ZigBee的多跳傳輸模式示意圖	11
圖 五、ZigBee的超級訊框架構	13
圖 六、網路場景圖	15
圖 七、ZigBee網路中的一個Superframe會被切分成c個等長的Active windows	23
圖 八、兩相異ZigBee網路初始化方法完成後之傳輸效能比較	25
圖 九、ZigBee與WiFi異質網路共存之傳輸架構	28
圖 十、IEEE 802.15.4中Superframe與Active window之關係圖	31
圖 十一、ZigBee網路的多跳傳輸	35
圖 十二、ETM-N運作機制	36
圖 十三、WiFi與ZigBee在ETM-N中之對應排程	38
圖 十四、ETM-E運作機制	39
圖 十五、ETM-N與ETM-E之頻寬資源分配	41
圖 十六、不同場景中閘道器與ZigBee位置的分佈方式	45
圖 十七、不同場景中ZigBee裝置個數與網路平均吞吐量關係	48
圖 十八、不同場景中緊急封包生成速率與網路平均吞吐量關係	50
圖 十九、不同場景中ZigBee裝置個數與網路平均hop數對網路平均點對點傳輸延遲之影響	52
圖 二十、緊急事件區間與ZigBee裝置個數對網路平均電量消耗的影響	54
圖 二十一、不同ZigBee裝置個數時,封包存活時效與緊急封包生成速率對平均網路封包遺失率的影響。	56

表目錄
表 一、符號表	16
表 二、ETM-N與ETM-E之特性比較表	41
表 三、ZigBee與WiFi相關參數	43
參考文獻
[1]	IEEE Std 802.11b-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer Extension in the 2.4 GHz Band, 1999.
[2]	IEEE Std 802.11a-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer Extension in the 5 GHz Band, 1999.
[3]	IEEE Std 802.11n-2009, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Enhancements for Higher Throughput, 2009.
[4]	IEEE Std 802.11-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE, Aug. 1999.
[5]	IEEE. Wireless MAC and PHY Specifications for LowRate WPAN. IEEE Std 802.15.4. IEEE: New York, NY, 2006.
[6]	S.C.Ergen, ZigBee/IEEE 802.15.4 Summary,www.eecs.berkeley.edu/csinem/academic/publications/zigbee.pdf
[7]	IEEE 802.15.4 Specification, Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs) Oct. 2003.
[8]	I. Howitt and J. A. Gutierrez, “Low-Rate Wireless Personal Area Networks - Enabling Wireless Sensors with IEEE 802.15.4,” Wireless Communications and Networking Conference(WCNC), 2003.
[9]	N.C. Tas, C. Sastry and Z. Song, “IEEE 802.15.4 Throughput Analysis under IEEE 802.11 Interference,” International Symposium on Innovations and Real Time Applications of Distributed Sensor Networks(IRA-DSN), 2007
[10]	Guang Yang and Yu Yu, “ZigBee Networks Performance under WLAN 802.11b/g Interference,” Wireless Pervasive Computing, (ISWPC), 2009. 
[11]	Dae Gil Yoon, Soo Young Shin, Wook Hyun Kwon and Hong Seong Park, “Packet Error Rate Analysis of IEEE 802.11b under IEEE 802.15.4 Interference,” Vehicular Technology Conference(VTC), 2006.
[12]	Xinyu Zhang and Kang G. Shin, “Enabling Coexistence of Heterogeneous Wireless Systems: Case for ZigBee and WiFi,” Mobile Ad Hoc Networking and Computing(MobiHoc), 2011.
[13]	Xinyu Zhang and Kang G. Shin, “Cooperative Carrier Signaling: Harmonizing Coexisting WPAN and WLAN Devices,” IEEE/ACM Transactions On Networking, 2012.
[14]	Wei Min, Keecheon Kim and Wang Ping, “A Traffic Management Scheme Using Multi-channel Sniffer for Secure Wireless Networks,” International Conference on Ubiquitous Information Management and Communication(ICUIMC), 2012.
[15]	G.M.Tamilselvan and Dr.A.Shanmugam, “Cluster Reformation and Scheduling for Interference Mitigation in Coexistence Heterogeneous Wireless Packet Networks,” Global Journal of Computer Science and Technology, Vol 10, No 13, 2010.
[16]	Haleh Khojasteh, Jelena Miši ’c and Vojislav B. Miši ’c, “Integration of an IEEE 802.15.4 RFID Network with Mobile Readers with a 802.11 WLAN,” Wireless Communications and Mobile Computing(WCMC), 2012.
[17]	Haleh Khojasteh, Jelena Miˇsi’c and Vojislav B. Miˇsi’, “A Two-Tier Integrated RFID/Sensor Network with a WiFi WLAN,” Wireless Communications and Mobile Computing Conference (IWCMC), 2012.
[18]	Wei-Ho Chung, Pi-Cheng Hsiu, Yuan-Yao Shih, Ai-Chun Pang, Yu-Kai Huang and Kuan-Chang Hung, "Mobility-Robust Tree Construction in Zigbee Wireless Networks," IEEE International Conference on Communication(ICC), 2011.
[19]	Kuo-Hui Tsai, Weimin Hung and Shih-Jung Sun, "On the Tree Formation of Wireless Sensor Networks," International Conference on Systems and Informatics (ICSAI), 2012.
[20]	A. Kouba'a, A. Cunha, M. Alves, and E. Tovar, “TDBS: A Time Division Beacon Scheduling Mechanism for Zigbee Cluster-Tree Wireless Sensor Networks,” Real-Time Systems J., vol. 40, no. 3, pp. 321-354, 2008.
[21]	L.-W. Yeh and M.-S. Pan, “Two-Way Beacon Scheduling in ZigBee Tree-Based Wireless Sensor Networks,” IEEE International Conference Sensor Networks, Ubiquitous, and Trustworthy Computing, 2008.
[22]	L.-H. Yen, Y.W. Law, and M. Palaniswami, “Risk-Aware Beacon Sheduling for Tree-Based ZigBee/IEEE 802.15.4 Wireless Networks,” International Wireless Internet Conference (WICON), 2008.
[23]	L.-H. Yen, Y.W. Law, and M. Palaniswami, “Risk-Aware Distributed Beacon Sheduling for Tree-Based ZigBee Wireless Networks,” IEEE Transactions on Mobile Computing(TMC), vol. 11, no. 4, 2012.
[24]	ZigBee Alliance, “ZigBee-2007 Specification,” Document 053474r17, http://www.zigbee.org, 2008.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信