§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2808201311361600
DOI 10.6846/TKU.2013.01194
論文名稱(中文) 膠體化學法製備三氧化鎢奈米粒子及其光催化性質研究
論文名稱(英文) Photocatalytic activity of tungsten oxide nanoparticles prepared via colloid chemistry method
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 郭哲銘
研究生(英文) Che-Ming Kuo
學號 600400419
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-07-25
論文頁數 71頁
口試委員 指導教授 - 張朝欽(ccchang@mail.tku.edu.tw)
委員 - 陳慶鐘(047927@mail.tku.edu.tw)
委員 - 張正良(chlchang@mail.tku.edu.tw)
關鍵字(中) 三氧化鎢奈米粒子
聚乙烯醇
膠體化學法
光催化
靛胭脂
關鍵字(英) tungsten oxide nanoparticles
poly(vinyl alcohol)
colloid chemistry method
photocatalyst
indigo carmine
第三語言關鍵字
學科別分類
中文摘要
本研究使用聚乙烯醇透過膠體化學法來製備三氧化鎢溶膠,經由非溶劑沉澱析出後,以高溫煆燒形成三氧化鎢奈米粒子。其粒子的型態、結構、晶粒大小與結晶度,透過UV-visible、TEM和XRD進行檢測與鑑定。
鎢氧化物以奈米級粒子分散於PVA水溶液中,尺寸大小範圍為10~25 nm,將三氧化鎢溶膠於室溫下熟化九天,其型態會由水合物漸漸轉變成結晶的三氧化鎢,而粒子尺寸會逐漸增加。
實驗結果顯示,WO3溶膠擁有較好的光降解速率。聚乙烯醇/三氧化鎢複合粉體用非溶劑析出法將溶膠乾燥成粉體,去量測其光降解效果。從煆燒不同溫度與時間,去找尋一個最適化的煆燒條件。而以450˚C煆燒2小時所得到的三氧化鎢粉體,對染料的光催化降解效果最好。
英文摘要
A tungsten oxide (WO3) sol was synthesized via colloidal chemistry method in presence of poly(vinyl alcohol) (PVA) in this study. WO3 nanoparticles were prepared via non-solvent precipitation and calcination after, the morphology, structure, grain size and degree of crystalline were investigated by UV-visible, TEM and XRD.  WO3 nanoparticles with sizes ranging from 10 to 25 nm were synthesized and dispersed in the PVA aqueous solution. The structure was from WO3 hydrate to crystal WO3 and the size were increased after aging 9 days at room temperature.
The result showed that WO3 synthesized sol has good photogegradation ability.  The PVA/WO3 nanocomposite powder precipitated via non-solvent(acetone)showed the photodegradation ability. To find an optimization of calcination condition, different calcination temperature and time were used. The best calcination condition at 450 ˚C for 2h.
第三語言摘要
論文目次
目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
圖目錄 Ⅴ  
表目錄 Ⅷ
第一章	序論 1
1.1前言 1
1.2研究動機 3
第二章 文獻回顧 4
2.1膠體化學法製備三氧化鎢奈米粒子 4
2.2三氧化鎢光催化性質 8
第三章 實驗藥品與儀器 16
3.1實驗藥品 16
3.2實驗步驟 18
3.2.1-1 WO3溶膠製作 18
3.2.1-2 WO3/PVA複合粉體製作 19
3.2.1-3 WO3粉體製作 20
3.2.2靛胭脂藍光降解實驗 21
3.3實驗檢測儀器 23
第四章 結果與討論 26
4.1三氧化鎢溶膠分析 26
4.1.1結構分析 26
4.1.2 粒子形態分析	30
4.1.3三氧化鎢溶膠在光催化活性上的表現	32
4.2 PVA/WO3粉末性質分析 34
4.2.1粉末形態分析	34
4.2.2 TGA分析 35
4.2.3光催化活性上的表現 36
4.3煆燒後粉體的性質分析 37
4.3.1煆燒粉體之ATR分析 37
4.3.2煆燒粉體之XRD分析 38
4.3.3煆燒後粉體形態分析 40
4.3.4 煆燒後粉體在光催化活性上的表現 45
第五章 結論 48
第六章 參考文獻 49
附錄 A 54
附錄 B 56
附錄 C 57
附錄 D 59
附錄 E 61
附錄 F 64
附錄 G 65
附錄 H 68
附錄 I 71

圖目錄
圖2-1	PVA 的TGA /MASS 圖 4
圖2-2	PVA/WO3的 TGA/MASS 圖 4
圖2-3	不同pH值下製備的WO3薄膜TEM圖 5
圖2-4	WO3粉體與奈米平板煆燒400°C 2小時之SEM圖 6
圖2-5	添加不同濃度HCl(aq)製備WO3 XRD圖 7
圖2-6	光催化的催化機制圖	8
圖2-7	三氧化鎢中空微球SEM圖 10
圖2-8	三氧化鎢中空微球光催化活性比較 10
圖2-9	不同樣品對靛胭脂染料(30mg/L)之光降解效率[30]	11
圖2-10	靛胭脂染料以不同樣品在10,000K Xe光下降解效率	12
圖2-11	WO3/H2WO4異質成分光催化的反應機制圖	13
圖2-12	莧菜紅在太陽光模擬器下之降解率 14
圖2-13	實驗設計	15
圖3-1	WO3溶膠製備流程圖	18
圖3-2	PVA/WO3複合粉末製作流程 19
圖3-3	光降解之實驗步驟流程 22
圖3-4	光降解設備圖 22
圖4-1	不同天數熟化的三氧化鎢溶膠之UV-visible光譜圖 27
圖4-2	不同天數熟化的三氧化鎢溶膠照射UV光之UV-visible光譜圖 28
圖4-3	溶膠剛合成及熟化9天後塗膜之XRD圖 29
圖4-4	WO3溶膠TEM 30
圖4-5	光降解效率 33
圖4-6	WO3/PVA複合粉末回溶之TEM 34
圖4-7	聚乙烯醇與三氧化鎢熟化9天混成粉末450°C等溫3小時TGA圖 35
圖4-8	光降解效率比較圖 36
圖4-9	PVA/鎢氧化物在不同溫度下煆燒兩小時的ATR圖 37
圖4-10	B9粉末在不同溫度下煆燒2h之XRD繞射圖 39
圖4-11	B9粉末在450˚C以不同煆燒時間之XRD圖 39
圖4-12	熟化不同天數煆燒450 ˚C 2小時TEM 43
圖4-13	B9粉末以不同溫度煆燒2小時之粉體TEM圖	44
圖4-14	WO3粉體之光催化活性 47
圖B-1	薄膜照射紫外光線前後之UV-vissible穿透圖 56
圖C-1	A3之WO3溶膠之SEM	57
圖C-2	A5之WO3溶膠之SEM	57
圖C-3	A7之WO3溶膠之SEM	58
圖C-4	A9之WO3溶膠之SEM	58
圖D-1	不同樣品對靛胭脂染料之光降解效率 59
圖D-2	靛胭脂染料之光降解效率 60
圖E-1	聚乙烯醇之TGA圖 61
圖E-2	PVA/WO3混成粉末之TGA圖 61
圖E-3	PVA FTIR圖 61
圖E-4	PVA裂解可能的機制	63
圖F-1	IC染料之光降解效率	64
圖G-1	WO3之XRD標準圖譜(1) 67
圖G-2	WO3之XRD標準圖譜(2) 67
圖H-1	不同煆燒粉體樣品靛胭脂染料之光降解效率	69
圖H-2	不同燈管之光譜圖	70
圖H-3	B9粉末(a)450˚C, 2.5h, (b)450, 2h在16支6,500K下之光降解實驗	70
圖H-4	B9粉末(a)450˚C, 2.5h, (b)450, 2h在16支2,700K下之光降解實驗	70
圖I-1   B9粉末煆燒450°C ,2h之XPS 71


表目錄
表A-1	B9粉體之元素分析 54
表A-2	B9煆燒不同溫度兩小時之物理性質 65
表A-3	B9粉體煆燒450˚C不同時間之物理性質 66
參考文獻
1.	M.A. Rauf, S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 2009, 151, 10–18.
2.	S. Malato, P. Ferna Ndez-Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 2009, 147, 1–59.
3.	A.R. Khataee, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of Molecular Catalysis A: Chemical, 2010, 328, 8–26.
4.	M.R. Hoffmann,S.T. Martin, W. Choi, D.W. Bahnemannt, Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95, 69–96.
5.	V. K. Prashant, R. Huehn, R. Nicolaescu, A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. Journal of Physical Chemistry B, 2002, 106, 788–794.
6.	J. Yu, L. Zhang, B. Cheng,Y. Su, Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro/mesoporous titania. Journal of Physical Chemistry C, 2007, 111, 10582–10589.
7.	T. Sano, Nobuaki Mera, Yusuke Kanai, Chifumi Nishimoto, Sakiko Tsutsui, T. Hirakawa, N. Negishi, Origin of visible-light activity of N-doped TiO2 photocatalyst: Behaviors of N and S atoms in a wet N-doping process. Applied Catalysis B: Environmental, 2012, 128, 77–83.
8.	V. Iliev, D. Tomova, S. Rakovsky, Nanosized N-doped TiO2 and gold modified semiconductors photocatalysts for combined UV–visible light destruction of oxalic acid in aqueous solution. Desalination, 2010, 260, 101–106
9.   W. L. Kehl, R. G. Hay, D. Wahl. The Structure of tetragonal tungsten trioxide. Journal of Applied Physics, 1952, 23, 212–215
10.  E. Salje, K. Viswanathan, Physical properties and phase transitions in WO3. Acta Cryst, 1975, A31, 356–359.
11.	M. A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO2. Journal of Applied Physics, 1977, 48, 1914–1920.
12.	P. M. Woodward, A. W. S., Ferroelectric tungsten trioxide. Journal of solid state chemistry, 1997, 131, 9–17.
13.	C.Y. Lee, S.J. Kim, I.S. Hwang, J.H. Lee, Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO3 hollow microspheres. Sensors and Actuators B: Chemical 2009, 142, 236–242.
14.	D.S. Lee, S.D. Han, J.S. Huh, D.D. Lee, Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor. Sensors and Actuators B: Chemical 1999, 60, 57–63.
15.	Y. Koltypin, S. I. Nikitenko, A. Gedanken, The sonochemical preparation of tungsten oxide nanoparticles. Journal of Materials Chemistry, 2002, 12, 1107–1110.
16.	E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernandez-Ramirez, F. Peiro, A. Cornet, J.R. Morante, L.A. Solovyov, B. Tian, T. Bo, D. Zhao, Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas sensing applications. Advanced Functional Materials. 2007, 17, 1801–1806
17.	Y. G. Choi, G. Sakai, K. Shimanoe, N. Miura, N. Yamazoe, Preparation of aqueous sols of tungsten oxide dihydrate from sodium tungstate by an ion-exchange method. Sensors and Actuators B: Chemical, 2002, 87, 63–72.
18.	H. Kominami, K. Yabutani, T. Yamamoto, Y. Kera, B. Ohtani, Synthesis of highly active tungsten(VI) oxide photocatalyst for oxygen evolution by hydrothermal treatment of aqueous tungstic acid solutions. Journal of Materials Chemistry, 2001, 11, 3222–3227.
19.	A.P. Baker, S.N.B. Hodgson, M.J. Edirisingh, Production of tungsten oxide coatings, via sol–gel processing of tungsten anion solutions. Surface and Coatings Technology, 2002, 153, 184–193.
20.	M. Sun, N. Xu, Y.W. Cao, J.N. Yao, E.G. Wang, Nanocrystalline tungsten oxide thin film: Preparation, microstructure, and photochromic behavior. Materials Research Society, 2011, 15, 927–933.
21.	N. Xu, M. Sun, Y.W. Cao, J.N. Yao, E.G. Wang, Influence of pH on structure and photochromic behavior of nanocrystalline WO3 films. Applied Surface Science, 2000, 157, 81–84.
22.	S. Yanoa, K. Kuritaa, K. Iwataa, T. Furukawab, M. Kodomarib, Structure and properties of poly(vinyl alcohol)/tungsten trioxide hybrids. Polymer, 2003, 44, 3515–3522.
23.	S.J. Kim, I.S. Hwang, J.K. Choi, J.H. Lee, Gas sensing characteristics of WO3 nanoplates prepared by acidification method. Thin Solid Films, 2011, 519, 2020–2024.
24.	X.Z. Guo, Y.F. Kang, T.L. Yang, S.R. Wang, Low-temperature NO2 sensors based on polythiophene/WO3 organic-inorganic hybrids. Transaction Nonferrous of Metals Society of China, 2012, 22, 380385.
25.	S. Songara, V. Gupta, Manoj Kumar Patra, J. Singh, L. Saini, G. Siddaramana Gowd, Sampat Raj Vadera, N. Kumar, Tuning of crystal phase structure in hydrated WO3 nanoparticles under wet chemical conditions and studies on their photochromic properties. Physics and Chemistry of Solids 2012, 73, 851–857.
26.	R. Abe, H. Takami, N. Murakami, B. Ohtani, Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. Journal of the American Chemical Society, 2008, 130, 7780–7781.
27.	K. Bange, Colouration of tungsten oxide films: A model for optically active coatings. Solar Energy Materials and Solar Cells, 1999, 58, 1–131.
28.	J. Yu, L. Qi, B. Cheng, X. Zhao, Effect of calcination temperatures on microstructures and photocatalytic activity of tungsten trioxide hollow microspheres. Journal of Hazardous Materials 2008, 160, 621–628.
29.	A. Martinez-de la Cruz, D. Sanchez Martinez, E. Lopez Cuellar, Synthesis and characterization of WO3 nanoparticles prepared by the precipitation method: Evalution of photocatalytic activity under vis-irradiation. Solid State Sciences, 2010, 12, 88–94
30.  D. Sanchez Martinez, A. Martinez-de la Cruz, E. Lopez Cuellar, Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent. Applied Catalysis A: General 2011, 398, 179–186.
31.	D. Sanchez Martinez, A.Martinez-de la Cruz, E. Lopez Cuellar, Synthesis of WO3 nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties. Materials Research Bulletin, 2013, 48, 691–697. 
32.	J.Cao, B. Luo, H. Lin, B. Xu, S. Chen, Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties. Applied Catalysis B: Environmental, 2012, 111-112, 288–296.
33   A. Purwanto , H. Widiyandari, T. Ogi, K. Okuyama, Role of particle size for platinum-loaded tungsten oxide nanoparticles during dye photodegradation under solar-simulated irradiation, Catalysis Communications, 2011, 12, 525-529.
34   D. Fabbri, A. B. Prevot, E. Pramauro, Effect of surfactant microstructures on photocatalytic degradation of phenol and chlorophenols. Applied Catalysis B: Environmental, 2006, 62, 21-27.
35.	M. Canle L, J.A. Santaballa, E. Vulliet, On the mechanism of TiO2 photocatalysed degradation of aniline derivatives. Journal of Photochemistry and Photobiology A: Chemistry 2005, 175, 192-200.
36.	L. Lhomme, S. Brosillon, D. Wolbert, J. Dussaud, Photocatalytic degradation of a phenylurea, chlortoluron, in water using an industrial titanium dioxide coated media. Applied Catalysis B: Environmental 2005, 61, 227-235. 
37.	D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2005, 6, 186-205.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信