§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2808201311115800
DOI 10.6846/TKU.2013.01193
論文名稱(中文) 鉑-二氧化鋯/碳甲醇氧化電催化劑的製備與性質分析
論文名稱(英文) Preparation and Characterization of Pt-ZrO2/C Electrocatalysts for Methanol Oxidation Reaction
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 葉祐齊
研究生(英文) Yu-Chi Yeh
學號 600400617
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-07-23
論文頁數 131頁
口試委員 指導教授 - 張正良(chlchang@mail.tku.edu.tw)
共同指導教授 - 林正嵐(cllin@mail.tku.edu.tw)
委員 - 許世杰(roysos@mail.tku.edu.tw)
委員 - 陳林祈(chenlinchi@ntu.edu.tw)
關鍵字(中) 直接甲醇燃料電池
電催化劑
甲醇氧化反應
二氧化鋯
關鍵字(英) Direct methanol fuel cell
Electrocatalyst
Methanol oxidation reaction
Zirconia
第三語言關鍵字
學科別分類
中文摘要
本篇以研究直接甲醇燃料電池 (Direct Methanol Fuel Cell, 簡稱 DMFC) 陽極電催化劑為目的,對 Pt-ZrO2/C 電催化劑進行製備與性質分析,進而開發出能夠改善或增進甲醇燃料電池之效能的電催化劑。
在此分成兩個步驟來製備 Pt-ZrO2/C 電催化劑,第一步,以 ZrO(NO3)2.2H2O 為前驅物,Vulcan XC-72 為碳載體,以共沉澱法先行合成出 ZrO2/C 奈米複合材料;第二步,利用多元醇還原法,以乙二醇作為還原劑,將 Pt 奈米顆粒還原在 ZrO2/C 奈米複合材料上。並嘗試以不同重量比的 Zr 與 C、不同的熱處理溫度以及經過酸或鹼修飾過的碳等參數來製備 Pt-ZrO2/C 電催化劑。本研究使用掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)、穿透式電子顯微鏡 (Transmission Electron Microscope, TEM)、X 光繞射分析儀 (X-ray Diffractometer, XRD) 對電催化劑的表面性質進行分析,再以循環伏安法 (Cyclic Votammetry, CV)、計時安培法 (Chronoamperometry, CA) 進行電化學特性分析。
Pt-ZrO2/C 電催化劑在 300 °C 熱處理溫度下,有著最佳的 MOR 效能表現。而 PZxCy-300 系列電催化劑中,Zr 與 C 重量比為 2 比 78 的這組,Pt 奈米顆粒最小 (2.65 ± 1 nm),ECSA 為 76 ± 6 m2/g Pt,MOR 效能為 648 ± 35 A/g Pt,也比商業用電催化劑 E-TEK Pt(20 wt%)/C 高。加了酸與鹼修飾過的碳之 PZxCay-300 系列與 PZxCby-300 系列電催化劑,對 MOR 效能雖然沒有明顯的提升,但在整體的表現上是呈現向上的趨勢,且抗 CO 毒化能力與穩定性方面,都有顯著的增強。
英文摘要
This study were prepared the direct methanol fuel cell (Direct Methanol Fuel Cell, referred DMFC) anode catalysts Pt-ZrO2/C. Preparation and characterization of Pt-ZrO2/C eletrocatalysts for the purpose of improving DMFC performance.
Here two-step process to prepare Pt-ZrO2/C electrocatalyst. The first step to synthesized ZrO2/C nanocomposite by co-precipitation method use ZrO(NO3)2.2H2O as precursor, Vulcan XC-72 as carbon support. Second, use the polyol reduction method with ethylene glycol as a reducing agent to reduce the Pt nanoparticles dispersed on ZrO2/C nanocomposite. And try to change different weight ratio of Zr and C, different heat treatment temperatures and carbon support modified by acid or base. In this study, using a scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction analyzer (XRD) to analyze the electrical properties on the surface of the electrocatalyst. The electrochemical characterization was examined by cyclic voltammetry (CV) and chronoamperometry (CA) in acidic solutions.
The Pt-ZrO2/C electrocatalyst has the best MOR performance at 300 ° C. When the PZxCy-300 series of electrocatalyst weight ratio of Zr and C was 2 to 78, it was have the smallest Pt nanoparticles Pt (2.65 ± 1 nm). Meanwhile, both the ECSA (76 ± 6 m2/g Pt) and MOR efficacy (648 ± 35 A / g Pt) were high than commercial electrocatalyst E-TEK Pt(20 wt%)/C. Although the PZxCay-300 and the PZxCby-300 series electrocatalyst used carbon support modified by acid or base didn’t have much more improvements MOR efficacy. But for CO tolerance ability and stability, it were significantly enhance.
第三語言摘要
論文目次
中文摘要 І
英文摘要 ІІ
目錄 III
圖目錄 VI
表目錄 XII
 第一章 緒論 1
1.1 前言	1
1.2 介紹燃料電池 2
1.2.1 燃料電池的發展與演進 2
1.2.2 燃料電池的種類 3
1.3 直接甲醇燃料電池 5
1.3.1 工作原理 5
1.3.2 甲醇氧化反應機制與尚待克服的問題 7
1.4 直接甲醇燃料電池陽極電催化劑的探討 9
1.4.1 合金電催化劑 9
1.4.2 金屬氧化物電催化劑 10
1.5 研究動機及方向 11
 第二章 文獻回顧 12
2.1 不同Pt-金屬氧化物電催化劑 12
2.2 以 ZrO2 為金屬氧化物之甲醇陽極電催化劑 27
 第三章 實驗部分 33
3.1 實驗藥品與材料 33
3.2 實驗儀器與設備 35
3.3 電催化劑的製備 36
3.3.1 Pt-ZrO2/C 電催化劑的製備 36
3.3.3 碳黑的修飾 40
3.4 電催化劑的表面型態與性質分析 41
3.4.1 X 光繞射分析儀 41
3.4.2 表面能量散射 X 光光譜儀 41
3.4.3 穿透式電子顯微鏡 41
3.4.4 電子能譜化學分析 41
3.5 電催化劑的電化學分析 43
3.5.1 電化學分析的前置動作 43
3.5.2 循環伏安法 (Cyclic Votammetry, CV) 45
3.5.3 計時安培法 (Chronoamperometry, CA) 49
 第四章 結果與討論 50
 4.1 鋯與碳在不同重量比下對電催化劑的影響 50
4.1.1 表面型態與性質分析 51
4.1.2 電化學分析 68
4.2 碳載體熱處理溫度對電催化劑的影響 74
4.2.1 表面型態與性質分析 74
4.2.2 電化學分析 81
4.3. 碳載體經修飾過後對電催化劑的影響 87
4.3.1 表面型態與性質分析 87
4.3.2 電化學分析 93
4.4 電催化劑甲醇氧化反應效能的比較 100
 第五章 結論 104
 參考文獻 105
附錄A 114
附錄B 117
附錄C 120
附錄D 123
附錄E 128
圖目錄
圖 1-1、直接甲醇燃料電池示意圖 6
圖 1-2、新型電催化劑 Pt/(CNT@SnO2) 結構示意圖 [6] 8
圖 2-1、Cyclic voltammetries for the whole set of investigated Pt-RuO2/C composites having different percentages of catalyst (1-13%) carried out in 1.0 mol/dm3 CH3OH and 0.5 mol/dm3 H2SO4 solution. Scan rate = 10 mV/s. (The response of the commercial one is marked with *.) [71] 12
圖 2-2、Cyclic voltammograms of the Pt/C and LnOx modified Pt/C electrocatalysts in the 0.5 M H2SO4 + 0.5 M CH3OH solutions at a sweep rate of 50 mV/s. (a) Pt/C; (b), Pt3-(ScOx)1/C; (c) Pt3-(YOx)1/C; (d) Pt3-(LaOx)1/C; (e) Pt3-(CeOx)1/C; (f) Pt3-(PrOx)1/C; (g) Pt3-(NdOx)1/C. [72] 14
圖 2-3、Current density values at 1000 s during chronoamperometry experiments for the Pt/C and Pt-LnOx/C catalysts. [72] 15
圖 2-4、Cyclic voltammograms of various electrodes at 50 mV/s in 1.0 mol/L CH3CH2OH and 1.0 mol/L KOH aqueous solution: (curve I) Pt/MgO/CNT/graphite electrode (loading mass of Pt, 30 μg/cm2; MgO, 7.5 μg/cm2), (curve II) Pt/CNT/graphite electrode (loading mass of Pt, 30 μg/cm2), and (curve III) CNT/graphite electrode. [65] 16
圖 2-5、Chronopotentiometric curves of (curve I) Pt/MgO/CNT/graphite and (curve II) Pt/CNT/graphite electrodes in 1.0 mol/L CH3CH2OH and 1.0 mol/L KOH aqueous solution. The value of the applied current is obtained at -0.5 V from the forward scan of the corresponding cyclic voltammogram. The loading mass of Pt is 30 μg/cm2, and that of MgO is 7.5 μg/cm2. [65] 17
圖 2-6、Cyclic voltammograms in 1 M HClO4 solution for CNTs (a) and MnO2/CNTs (b); 5th cycle (c) and 1000th cycle (d) for MnO2/CNTs in 1 M CH3OH + 1 M HClO4 solution. [73] 18
圖 2-7、Cyclic voltammograms of Pt/MnO2/CNTs (a) and Pt/CNTs (b) in 1 M CH3OH with 1 M HClO4. [73] 19
圖 2-8、Pt 4f and Nb 3d XPS spectra of PN/C (a and c) and PN/C-400 (b and d) catalysts. [62] 20
圖 2-9、Comparison of binding energy of Pt 4f XPS spectra in the PN/C, PN/C-400, and Pt/C(H) catalysts. [62] 21
圖 2-10、The mechanism of Nb2O5-promoted Pt/C catalyst for enhancing CO electrooxidation. [62] 21
圖 2-11、CO stripping tests of PN/C, PN/C-400, PN/C-500, and Pt/C(H) in 0.5 M H2SO4 aqueous electrolyte solution with a scan rate of 50 mV/s at 25 °C . [62] 22
圖 2-12、TEM images of (a) Pt/C, (b) Pt-NiO/C, and (c) Pt-NiO/C (high magnification). [57] 23
圖 2-13、TEM images of (a) Pt-CuO/C-1 and (b) Pt-CuO/C-2 electrocatalysts. [64] 24
圖 2-14、Cyclic voltammograms of Pt/C, Pt-CuO/C-1 and Pt-CuO/C-2 electrocatalysts in (0.3 M MeOH + 0.5 M H2SO4) solution at a scan rate of 10 mV/s. [64] 25
圖 2-15、Linear sweep curve of the Pt/C and Pt-ZrO2/C electrode in 1 M KOH + 1 M C2H5OH solutions at scan rate of 1 mV/s. [42] 27
圖 2-16、Peak potential and peak current density on the Pt-ZrO2/C electrode with different ZrO2:Pt molar ratios for ethanol electrooxidation in 1 M KOH + 1 M C2H5OH solutions. [42] 28
圖 2-17、TEM and HRTEM images of Pt-S-ZrO2/MWCNT composites. [44] 29
圖 2-18、Nyquist plots of EIS for methanol electro-oxidation on Pt-S-ZrO2/MWCNT, Pt-ZrO2/MWCNT and Pt/C electrode in 1.0 M HClO4 + 1.0 M CH3OH solution at 0.5 V. [44] 29
圖 2-19、Potentiostatic polarization curves (recorded for 60 min at each potential point) for methanol (a) and ethanol (b) electro-oxidation at Pt-ZrO2/CNT and Pt/CNT electrodes in 1 M CH3OH (or 1 M C2H5OH) + 1 M HClO4 solutions. [43] 31
圖 3-1、Pt-ZrO2/C 電催化劑不同製程的示意圖 36
圖 3-2、三極式電化學系統示意圖 44
圖 3-3、ink 滴上玻碳電極表面示意圖 44
圖 3-4、Cyclic voltammogram curves in 1M HClO4 solutions with a scan rate 46
圖 3-5、Pt/C-EGR 電催化劑於於 0.5 M H2SO4 + 1 M CH3OH 水溶液中的MOR 效能圖 47
圖 3-6、PZ2C78-300 電催化劑在飽和一氧化碳的 0.5 M 硫酸水溶液中的一氧化碳脫附曲線 48
圖 3-7、PZ2C78-300 電催化劑的計時安培法曲線圖。0.5 M H2SO4 + 1 M CH3OH 水溶液中,以 0.3 V vs. Ag/AgCl 進行一個小時的掃瞄 49
圖 4-1、PZxCy-300 系列電催化劑之 XRD 分析圖譜 54
圖 4-2、PZ2C78-300 電催化劑之不同倍率的 TEM 圖 (a) 25 K,(b) 100 K 與 (c) Pt 奈米顆粒粒徑分布分析圖 56
圖 4-3、PZ4C76-300 電催化劑之不同倍率的 TEM 圖 (a) 25 K,(b) 100 K 與 (c) Pt 奈米顆粒粒徑分布分析圖 57
圖 4-4、PZ6C74-300 電催化劑之不同倍率的 TEM 圖 (a) 25 K,(b) 100 K 與 (c) Pt 奈米顆粒粒徑分布分析圖 58
圖 4-5、PZ8C72-300 電催化劑之不同倍率的 TEM 圖 (a) 25 K,(b) 100 K 與 (c) Pt 奈米顆粒粒徑分布分析圖 59
圖 4-6、PZ10C70-300 電催化劑之不同倍率的 TEM 圖 (a) 25 K,(b) 100 K 與 (c) Pt 奈米顆粒粒徑分布分析圖 60
圖 4-7、PZ2C78-300 電催化劑於放大倍率 500 K 下之 TEM 圖 61
圖 4-8、Pt/C-EGR 與 PZ2C78-300 電催化劑之 O 1s 的 ESCA 能譜圖 64
圖 4-9、Pt/C-EGR 與 PZ2C78-300 電催化劑之 Pt 4f 的 ESCA 能譜圖 65
圖 4-10、PZ2C78-300 電催化劑之 Zr 3d 的 ESCA 能譜圖 66
圖 4-11、Pt/C-EGR 與 PZ2C78-300 電催化劑之 Pt 4f 的 ESCA 能譜圖之比較 66
圖 4-12、PZxCy-300 系列電催化劑的 ECSA 計算比較 69
圖 4-13、PZxCy-300 系列電催化劑於 0.5 M H2SO4 + 1 M CH3OH 水溶液中的 CV 圖,掃描速率為 50 mV/s。 70
圖 4-14、PZxCy-300 系列電催化劑及商業用電催化劑 E-TEK Pt(20 wt%)/C 的 CO 脫附比較圖 72
圖 4-15、PZxCy-300 系列電催化劑與商業用電催化劑之穩定性比較 73
圖 4-16、PZ2C78-T 系列電催化劑之 XRD 分析圖譜 75
圖 4-17、PZ2C78-100 電催化劑之不同倍率的 TEM 圖 (a) 25 K,(b) 100 K 與 (c) Pt 奈米顆粒粒徑分布分析圖 77
圖 4-18、PZ2C78-200 電催化劑之不同倍率的 TEM 圖 (a) 25 K,(b) 100 K 與 (c) Pt 奈米顆粒粒徑分布分析圖 78
圖 4-19、PZ2C78-400 電催化劑之不同倍率的 TEM 圖 (a) 25 K,(b) 100 K 與 (c) Pt 奈米顆粒粒徑分布分析圖 79
圖 4-20、PZ2C78-500 電催化劑之不同倍率的 TEM 圖 (a) 25 K,(b) 100 K 與 (c) Pt 奈米顆粒粒徑分布分析圖 80
圖 4-21、PZ2C78-T 系列電催化劑的 ECSA 計算比較 82
圖 4-22、PZ2C78-T 系列電催化劑於 0.5 M H2SO4 + 1 M CH3OH 水溶液中的 CV 圖,掃描速率為 50 mV/s。 82
圖 4-23、PZ2C78-T 系列電催化劑及商業用電催化劑 E-TEK Pt(20 wt%)/C 的 CO 脫附比較圖 85
圖 4-24、PZxCy-T 系列電催化劑與商業用電催化劑之穩定性比較 86
圖 4-25、PZxCay-300 系列電催化劑之 XRD 分析圖譜 88
圖 4-26、PZxCby-300 系列電催化劑之 XRD 分析圖譜 88
圖 4-27、PZxCay-300 系列電催化劑之 TEM 分析圖 (a) PZ2Ca78-300、(b) PZ4Ca76-300、(c) PZ6Ca74-300、(d) PZ8Ca72-300 與 (e) PZ10Ca70-300 89
圖 4-28、PZxCby-300 系列電催化劑之 TEM 分析圖 (a) PZ2Cb78-300、(b) PZ4Cb76-300、(c) PZ6Cb74-300、(d) PZ8Cb72-300 與 (e) PZ10Cb70-300 90
圖 4-29、PZxCay-300 系列電催化劑之 Pt 奈米顆粒粒徑分布分析圖 91
圖 4-30、PZxCby-300 系列電催化劑之 Pt 奈米顆粒粒徑分布分析圖 92
圖 4-31、PZxCay-300 系列電催化劑的 ECSA 計算比較 94
圖 4-32、PZxCby-300 系列電催化劑的 ECSA 計算比較 94
圖 4-33、PZxCay-300 系列電催化劑於 0.5 M H2SO4 + 1 M CH3OH 水溶液中的 CV 圖,掃描速率為 50 mV/s。 95
圖 4-34、PZxCby-300 系列電催化劑於 0.5 M H2SO4 + 1 M CH3OH 水溶液中的 CV 圖,掃描速率為 50 mV/s。 95
圖 4-35、PZxCay-300 系列電催化劑及商業用電催化劑 E-TEK Pt(20 wt%)/C 的 CO 脫附比較圖 98
圖 4-36、PZxCby-300 系列電催化劑及商業用電催化劑 E-TEK Pt(20 wt%)/C 的 CO 脫附比較圖 99
圖 4-37、三系列電催化劑之綜合比較趨勢圖 101
圖 4-38、E-TEK PtRu(20 wt%)/C、PZ2C78-300、PZ4Ca76-300 與 PZ4Cb76-300 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之計時安培法曲線圖,施加的電位為 0.3 V vs. Ag/AgCl,掃描時間為一個小時	103
圖 A-1、PW(X)C-200 系列電催化劑於 0.5 M H2SO4 + 1 M CH3OH 水溶液中的 CV 圖,掃描速率為 50 mV/s 116 
圖 B-1、PxZyC 系列電催化劑於 0.5 M H2SO4 + 1 M CH3OH 水溶液中的 CV 圖,掃描速率為 50 mV/s 118
圖 C-1、PCexCy-T 系列電催化劑於 0.5 M H2SO4 + 1 M CH3OH 水溶液中的 CV 圖,掃描速率為 50 mV/s 122
圖 D-1、PWxCy-100 系列電催化劑於 0.5 M H2SO4 + 1 M CH3OH 水溶液中的 CV 圖,掃描速率為 50 mV/s 125
圖 D-2、PWxCy-300 系列電催化劑於 0.5 M H2SO4 + 1 M CH3OH 水溶液中的 CV 圖,掃描速率為 50 mV/s 125
圖 D-3、PWxCy-500 系列電催化劑於 0.5 M H2SO4 + 1 M CH3OH 水溶液中的 CV 圖,掃描速率為 50 mV/s 126
圖 E-1、PZ5W5C70-100、PZ5W5C70-300 與 PZ5W5C70-500 電催化劑於 0.5 M H2SO4 + 1 M CH3OH 水溶液中的 CV 圖,掃描速率為 50 mV/s 130
表目錄
表 2-1、不同金屬氧化物之電催化劑的整理 26
表 2-2、Comparison of the catalytic activity for the as-prepared catalysts at various molar ratios of Pt/ZrO2 in terms of specific surface area, methanol and ethanol oxidation. [43] 30
表 2-3、ZrO2 之電催化劑的整理 32
表 3-1、不同重量比的 Zr 與 C 所對應的 ZrO(NO3)2.2H2O 與 XC-72 之實際克數 38
表 4-1、ZrO2/C-300 不同重量比的 EDS 元素分析 51
表 4-2、ZrO2/C-300 碳與鋯實際與理論之重量的相對比例 52
表 4-3、PZxCy-300 系列電催化劑由 Schereer equation 估算之 Pt 顆粒平均粒徑 54
表 4-4、PZxCy-300 系列電催化劑之 Pt 奈米顆粒 XRD 與 TEM 的比較 61
表 4-5、Pt/C-EGR 與 PZ2C78-300 之 ESCA 能譜數據的比較 67
表 4-6、PZxCy-300 系列電催化劑及商業用電催化劑 MOR 效能與其他性質之比較 70
表 4-7、PZxCy-300 系列電催化劑及商業用電催化劑 E-TEK Pt(20 wt%)/C 之 CO 脫附比較 71
表 4-8、ZrO2/C 經不同溫度熱處理後,碳與鋯實際與理論之重量的相對比例 74
表 4-9、PZ2C78-T 系列電催化劑 MOR 效能與其他性質之比較 83
表 4-10、PZ2C78-T 系列電催化劑及商業用電催化劑 E-TEK Pt(20 wt%)/C 之 CO 脫附比較 84
表 4-11、PZxCay-300 系列電催化劑與 PZxCby-300 系列電催化劑 MOR 效能與其他性質之比較 96
表 4-12、PZxCay-300 系列電催化劑 PZxCby-300 系列電催化劑及商業用電催化劑 E-TEK Pt(20 wt%)/C 之 CO 脫附比較 97
表 4-13、三系列電催化劑之性質參數 102
表 A-1、PW(X)C-200 系列電催化劑 之 ECSA 與 MOR 效能之比較 116
表 B-1、PxZyC 系列電催化劑 之 ECSA 與 MOR 效能之比較 119
表 C-1、PCexCy-T 系列電催化劑 之 ECSA 與 MOR 效能之比較 122
表 D-1、PWxCy-T 系列電催化劑之 ECSA 與 MOR 效能之比較 127
表 E-1、雙金屬氧化物系列電催化劑與單金屬氧化物系列電催化劑之 ECSA 與 MOR 效能之比較 131
參考文獻
[1] Amin, R. S.; Abdel Hameed, R. M.; El-Khatib, K. M.; Elsayed Youssef, M.; Elzatahry, A. A., “Pt-NiO/C anode electrocatalysts for direct methanol fuel cells”, Electrochim. Acta 2012, 59, 499-508.
[2] Choudhury, A.; Chandra, H.; Arora, A., “Application of solid oxide fuel cell technology for power generation—A review”, Renew. Sust. Energ. Rev. 2013, 20, 430-442.
[3] Mekhilef, S.; Saidurb, R.; Safari, A., “Comparative study of differentfuel celltechnologies”, Renew. Sust. Energ. Rev. 2012, 16, 981-989.
[4] Arico, A.S.; Srinivasan, S.; Antonucci, V., “DMFCs: From Fundamental Aspects to Technology Development”, Fuel Cells 2001, 1, 133-161.
[5] Freelink, T.; Visscher, W., “On the role of Ru and Sn as promoters of methanol electro-oxidation over Pt”, Surf. Sci. 1995, 335, 353-360.
[6] Zhang, X. W.; Zhu, H.; Guo, Z. J.; Wei, Y. S.; Wang, F. H., “Design and preparation of CNT@SnO2 core-shell composites with thin shell and its application for ethanol oxidation”, Int. J. Hydrogen Energ. 2010, 35, 8841-8847.
[7] Hsieh, C. T.; Lin, J. Y., “Fabrication of bimetallic Pt-M (M= Fe, Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells”, J. Power Sources 2009, 188, 347-352.
[8] Yen, C. H.; Shimizu, K.; Lin, Y. Y.; Bailey, F.; Cheng, I. F.; Wai, C. M., “Chemical Fluid Deposition of Pt-Based Bimetallic Nanoparticles on Multiwalled Carbon Nanotubes for Direct Methanol Fuel Cell Application”, Energy Fuels 2007, 21, 2268-2271.
[9] Gurau, B.; Viswanathan, R.; Liu, R. X.; Lafrenz, T. J.; Ley, K. L.; Smotkin, E. S.,  “Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation”, J. Phys. Chem. B 1998, 102, 9997-10003.
[10] Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.; Lukehart, C. M., “A Pt-Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative”, J. Phys. Chem. B 2001, 105, 8097-8101.
[11] Liu, Z. F.; Ada, E. T.; Shamsuzzoha, Mohammad; Thompson, G. B.; Nikles, D. E.,  “Synthesis and activation of PtRu alloyed nanoparticles with controlled size and composition”, Chem. Mater. 2006, 18, 4946-4951.
[12] Yang, B.; Lu, Q. Y.; Wang, Y.; Zhuang, L.; Lu, J. T.; Liu, P. F.; Wang, J. B.; Wang, R. H., “Simple and Low-Cost Preparation Method for Highly Dispersed PtRu/C Catalysts”, Chem. Mater. 2003, 15, 3552-3557.
[13] Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y., “Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell”, J. Phys. Chem. B 2004, 108, 8234-8240.
[14] Spinace, E. V.; Neto, A. O.; Linardi, M., “Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles ”, J. Power Sources 2004, 129, 121-126.
[15] Li, L.; Xing, Y. C., “Pt-Ru Nanoparticles Supported on Carbon Nanotubes as Methanol Fuel Cell Catalysts”, J. Phys. Chem. C 2007, 111, 2803-2808.
[16] Li, W. Z.; Wang, X.; Chen, Z. W.; Waje, M.; Yan, Y. S., “Pt-Ru Supported on Double-Walled Carbon Nanotubes as High-Performance Anode Catalysts for Direct Methanol Fuel Cells”, J. Phys. Chem. B 2006, 110, 15353-15358.
[17] Liu, Z. L.; Ling, X. Y.; Guoa, B.; Hong, L.; Lee, J. Y., “Pt and PtRu nanoparticles deposited on single-wall carbon nanotubes for methanol electro-oxidation”, J. Power Sources 2007, 167, 272-280.
[18] Guo, J. S.; Sun, G. Q.; Sun, S. G.; Yan, S. Y.; Yang, W. Q.; Qi, J.; Yan, Y. S.; Xin, Q., “Polyol-synthesized PtRu/C and PtRu black for direct methanol fuel cells”, J. Power Sources 2007, 168, 299-306.
[19] Rigsby, M. A.; Zhou, W. P.; Lewera, A.; Duong, H. T.; Bagus, P. S.; Jaegermann, W.; Hunger, R.; Wieckowski, A., “Experiment and Theory of Fuel Cell Catalysis: Methanol and Formic Acid Decomposition on Nanoparticle Pt/Ru”, J. Phys. Chem. C 2008, 112, 15595-15601.
[20] Rolison, D. R.; Hagans, P. L.; Swider, K. E.; Long, J. W., “Role of Hydrous Ruthenium Oxide in Pt-Ru Direct Methanol Fuel Cell Anode Electrocatalysts: The Importance of Mixed Electron/Proton Conductivity”, Langmuir 1999, 15, 774-779.
[21] Kang, Y. J.; Murray, C. B., “Synthesis and Electrocatalytic Properties of Cubic Mn-Pt Nanocrystals (Nanocubes)”, J. Am. Chem. Soc. 2010, 132, 7568-7569.
[22] Lee, K. S.; Yoo, S. J.; Ahn, D. C.; Jeon, T. Y.; Choi, K. H.; Park, I. S.; Sung, Y. E., “Surface Structures and Electrochemical Activities of Pt Overlayers on Ir Nanoparticles”, Langmuir 2011, 27, 3128-3137.
[23] Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L. Y.; Zhong, C. J.,  “Characterization of Carbon-Supported AuPt Nanoparticles for Electrocatalytic Methanol Oxidation Reaction”, Langmuir 2006, 22, 2892-2898.
[24] Antolini, E.; Salgado, J. R. C.; Santos, A. M. D.; Gonzalez, E. R., “Carbon-Supported Pt-Ni Alloys Prepared by the Borohydride Method as Electrocatalysts for DMFCs”, Electrochem. Solid-State Lett. 2005, 8, 226-230.
[25] Ding, L. X.; Wang, A. L.; Li, G. R.; Liu, Z. Q.; Zhao, W. X.; Su, C. Y.; Tong, Y. X., “Porous Pt-Ni-P Composite Nanotube Arrays: Highly Electroactive and Durable Catalysts for Methanol Electrooxidation”, J. Am. Chem. Soc. 2012, 134, 5730-5733.
[26] Ahmadi, R.; Amini, M. K.; Bennett, J. C., “Pt-Co alloy nanoparticles synthesized on sulfur-modified carbon nanotubes as electrocatalysts for methanol electrooxidation reaction”, J. Catal. 2012, 292, 81-89.
[27] Zhang, X.; Chan, K. Y., “Microemulsion synthesis and electrocatalytic properties of platinum-cobalt nanoparticles”, J. Mater. Chem. 2002, 12, 1203-1206.
[28] Jiang, L. H.; Zhou, Z. H.; Li, W. Z.; Zhou, W. J.; Song, S. Q.; Li, H. Q.; Sun, G. Q.; Xin, Q., “Effects of Treatment in Different Atmosphere on Pt3Sn/C Electrocatalysts for Ethanol Electro-oxidation”, Energy Fuels 2004, 18, 866-871.
[29] Liu, Z. L.; Guo, B.; Hong, L.; Lim, T. H., “Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation”, Chem. Commun. 2006, 8, 83-90.
[30] Wang, Z. B.; Zuo, P. J.; Yin, G. P., “Effect of W on activity of Pt-Ru/C catalyst for methanol electrooxidation in acidic medium”, J. Alloys Compd. 2009, 479, 395-400.
[31] Neburchilov, V.; Wang, H. J.; Zhang, J. J., “Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC”, Electrochem. Commun. 2007, 9, 1788-1792.
[32] Lim, D. H.; Choi, D. H.; Lee, W. D.; Lee, H. I., “A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability”, Appl. Catal. B: Environ. 2009, 89, 484-493.
[33] Takahashi, M.; Mori, T.; Ye, F.; Vinu, A.; Kobayashi, H.; John, D., “Design of High-Quality Pt-CeO2 Composite Anodes Supported by Carbon Black for Direct Methanol Fuel Cell Application”, J. Am. Ceram. Soc. 2007, 90, 1291-1294.
[34] Xu, C. W.; Shen, P. K., “Electrochamical oxidation of ethanol on Pt-CeO2/C catalysts”, J. Power Sources 2005, 142, 27-29.
[35] Lee, E.; Manthiram, A., “One-Step Reverse Microemulsion Synthesis of Pt-CeO2/C Catalysts with Improved Nanomorphology and Their Effect on Methanol Electrooxidation Reaction”, J. Phys. Chem. C 2010, 114, 21833-21839.
[36] Scibioh, M. A.; Kim, S. K.; Cho, E. A.; Lim, T. H.; Hong, S. A.; Ha, H. Y., “Pt-CeO2/C anode catalyst for direct methanol fuel cells”, Appl. Catal. B: Environ. 2008, 84, 773-782.
[37] Wang, X. G.; Xu, W. L.; Zhou, X. C.; Lu, T. H.; Xing, W.; Liu, C. P.; Liao, J. H., “PtCeOx/C as a novel methanol-tolerant electrocatalyst of oxygen reduction for direct methanol fuel cells”, J. Solid State Electrochem. 2009, 13, 1449-1453.
[38] Wang, J. S.; Xi, J. Y.; Bai, Y. X.; Shen, Y.; Sun, J.; Chen, L. Q.; Zhua, W. T.; Qiu, X. P., “Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation”, J. Power Sources 2007, 164, 555-560.
[39] Zhou, H. P.; Wu, Ha. S.; Shen, J.; Yin, A. X.; Sun, L. D.; Yan, C. H., “Thermally Stable Pt/CeO2 Hetero-Nanocomposites with High Catalytic Activity”, J. Am. Ceram. Soc. 2010, 132, 4998-4999.
[40] Bai, Y. X.; Wu, J. J.; Qiu, X. P.; Xi, J. Y.; Wang, J. S.; Li, J. F.; Zhu, W. T.; Chen, L. Q., “Electrochemical characterization of Pt-CeO2/C and Pt-CexZr1-xO2/C catalysts for ethanol electro-oxidation”, Appl. Catal. B: Environ. 2007, 73, 144-149.
[41] He, Q.; Mukerjee, S.; Zeis, R.; Parres-Esclapez, S.; Illan-Gomez, M. J.; Bueno-Lopez, A., “Enhanced Pt stability in MO2 (M= Ce, Zr or Ce0.9Zr0.1)-promoted Pt/C electrocatalysts for oxygen reduction reaction in PAFCs”, Appl. Catal. A: Gen. 2010, 381, 54-65.
[42] Bai, Y. X.; Wu, J. J.; Xi, J. Y.; Wang, J. S.; Zhu, W. T.; Chen, L. Q.; Qiu, X. P., “Electrochemical oxidation of ethanol on Pt-ZrO2/C catalyst”, Electrochem. Commun. 2005, 7, 1087-1090.
[43] Song, H. Q.; Qiu, X. P.; Li, F. S., “Promotion of carbon nanotube-supported Pt catalyst for methanol and ethanol electro-oxidation by ZrO2 in acidic media”, Appl. Catal. A: Gen. 2009, 364, 1-7.
[44] Guo, D. J.; Qiu, X. P.; Zhu, W. T.; Chen, L. Q., “Synthesis of sulfated ZrO2/MWCNT composites as new supports of Pt catalysts for direct methanol fuel cell application”, Appl. Catal. B: Environ. 2009, 89, 597-601.
[45] Huang, S. Y.; Ganesan, P.; Park, S. K.; Popov, B. N., “Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications”, J. Am. Chem. Soc. 2009, 131, 13898-13899.
[46] Song, H. Q.; Qiu, X. P.; Li, F. S, “Effect of heat treatment on the performance of TiO2-Pt/CNT catalysts for methanol electro-oxidation”, Electrochim. Acta 2008, 53, 3708-3713.
[47] He, D. M.; Yang, L. X.; Kuang, S. Y.; Cai, Q. Y., “Fabrication and catalytic properties of Pt and Ru decorated TiO2/CNTs catalyst for methanol electrooxidation”, Chem. Commun. 2007, 9, 2467-2472.
[48] Yang, L. X.; Xiao, Y.; Zeng, G. M.; Luo, S. L.; Kuang, S. Y.; Cai, Q. Y.,  “Fabrication and Characterization of Pt/C-TiO2 Nanotube Arrays as Anode Materials for Methanol Electrocatalytic Oxidation”, Energy Fuels 2009, 23, 3134-3138.
[49] Yu, L. H.; Xi, J. Y., “TiO2 nanoparticles promoted Pt/C catalyst for ethanol electro-oxidation”, Electrochim. Acta 2012, 67, 166-171.
[50] Tian, M.; Wu, G. S.; Chen, A. C., “Unique Electrochemical Catalytic Behavior of Pt Nanoparticles Deposited on TiO2 Nanotubes”, ACS Catal. 2012, 2, 425-432.
[51] Wang, D. L.; Subban, C. V.; Wang, H. S.; Rus, E.; DiSalvo, F. J.; Abrun˜a, H. D.,  “Highly Stable and CO-Tolerant Pt/Ti0.7W0.3O2 Electrocatalyst for Proton-Exchange Membrane Fuel Cells”, J. Am. Chem. Soc. 2010, 132, 10218-10220.
[52] Zeng, J.; Francia, C.; Gerbaldi, C.; Baglio, V.; Specchia, S.; Arico, A.S.; Spinelli, P., “Hybrid ordered mesoporous carbons doped with tungsten trioxide as supports for Pt electrocatalysts for methanol oxidation reaction”, Electrochim. Acta 2013, 94 80-91.
[53] Ye, J. L.; Liu, J. G.; Zou, Z. G.; Gu, J.; Yu, T., “Preparation of Pt supported on WO3-C with enhanced catalytic activity by microwave-pyrolysis method”, J. Power Sources 2010, 195, 2633-2637.
[54] Takenaka, S.; Matsumori, H.; Nakagawa, K.; Matsune, H.; Tanabe, E.; Kishida, M., “Improvement in the Durability of Pt Electrocatalysts by Coverage with Silica Layers”, J. Phys. Chem. C 2007, 111, 15133-15136.
[55] Zhu, T.; Du, C. Y.; Liu, C. T.; Yin, G. P.; Shi, P. F., “SiO2 stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells”, Appl. Surf. Sci. 2011, 257, 2371-2376.
[56] Yi, S. C.; Kim, C. Y.; Jung, C. Y.; Jeong, S. H.; Kim, W. J., “Synthesis of Pt-immobilized on silica and polystyrene-encapsulated silica and their applications as electrocatalysts in the proton exchange membrane fuel cell”, Mater. Res, Bull. 2011, 46, 12-18.
[57] Ma, Y.; Cui, L.; He, J. P.; Wang, T.; Guo, Y. X.; Tang, J.;
 Li, G. X.; Hu, Y.; Xue, H. R.; Liu, M. Z.; Sun, X., “Uniformly dispersed Pt nanoparticles as fuel-cell catalyst supported onto ordered mesoporous carbon-silica composites”,  Electrochim. Acta 2012, 63, 318-322.
[58] Guo, D. J.; You, J. M., “Highly catalytic activity of Pt electrocatalyst supported on sulphated SnO2/multi-walled carbon nanotube composites for methanol electro-oxidation”, J. Power Sources 2012, 198, 127-131.
[59] Pang, H. L.; Lu, J. P.; Chen, J. H.; Huang, C. T.; Liu, B.; Zhang, X. H.,  “Preparation of SnO2-CNTs supported Pt catalysts and their electrocatalytic properties for ethanol oxidation”, Electrochim. Acta 2009, 54, 2610-2615.
[60] Lin, Y.; Zhang, S. C.; Yan, S. H.; Liu, G. R., “The effect of Sn content in Pt-SnO2/CNTs for methanol electro-oxidation”, Electrochim. Acta 2012, 66, 1-6.
[61] Kim, D. B.; Chun, H. J.; Lee, Y. K.; Kwon, H. H.; Lee, H. I., “Preparation of Pt/NiO-C electrocatalyst and heat-treatment effect on its electrocatalytic performance for methanol oxidation”, Int. J. Hydrogen Energ. 2010, 35, 313-320.
[62] Chun, H. J.; Kim, D. B.; Lim, D. H.; Lee, W. D.; Lee, H. I., “A synthesis of CO-tolerant Nb2O5-promoted Pt/Ccatalyst for direct methanol fuel cell; its physical and electrochemical characterization”, Int. J. Hydrogen Energ. 2010, 35, 6399-6408.
[63] Justin, P.; Hari Krishna Charan, P.; Ranga Rao, G., “High performance Pt-Nb2O5/C electrocatalysts for methanol electrooxidation in acidic media”, Appl. Catal. B: Environ. 2010, 100, 510-515.
[64] Amin, R. S.; Abdel Hameed, R. M.; El-Khatib, K. M.; El-Abd, H.; Souaya, R. E., “Effect of preparation conditions on the performance of nano Pt-CuO/C electrocatalysts for methanol electro-oxidation”, Int. J. Hydrogen Energ. 2012, 37, 18870-18881.
[65] Liu, B.; Chen, J. H.; Xiao, C. H.; Cui, K. Z.; Yang, L.; Pang, H. L.; Kuang, Y. F., “Preparation of Pt/MgO/CNT Hybrid Catalysts and Their Electrocatalytic  Properties for Ethanol Electrooxidation”, Energy Fuels 2007, 21, 1365-1369.
[66] Jang, S. E.; Kim, H. S., “Effect of Water Electrolysis Catalysts on Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells”, J. Am. Chem. Soc. 2010, 132, 14700-14701.
[67] Masui, T.; Ozaki, T.; Machida, K. I.; Adachi, G. Y., “Preparation of ceria-zirconia sub-catalysts for automotive exhaust cleaning”, J. Alloys Comp. 2000,303 -304, 49-55.
[68] Masui, T.; Fujiwara, K.; Peng, Y. M.;, Sakata, T.; Machida, K. I.; Mori, H.; Adachi, G. Y., “Characterization and catalytic properties of CeO-ZrO ultrafine particles”, J. Alloys Comp. 1998, 269, 116-122.
[69] Liang, X.; Wang, X.; Zhuang, Y.; Xu, B.; Kuang, S. M.; Li, Y. D., “Formation of CeO2-ZrO2 Solid Solution Nanocages with Controllable Structures via Kirkendall Effect”, J. Am. Chem. Soc. 2008, 130, 2736-2737.
[70] Zhang, X.; Wang, H.; Xu, B. Q., “Remarkable Nanosize Effect of Zirconia in  Au/ZrO2 Catalyst for CO Oxidation”, J. Phys. Chem. B 2005, 109, 9678-9683.
[71] Suffredini, H. B.; Tricoli , V.; Avaca, L. A.; Vatistas, N., “Sol-gel method to     prepare active Pt-RuO2 coatings on carbon powder for methanol oxidation”, Electrochem. Commun. 2004, 6, 1025-1028.
[72] Tang, Z. C.; Lu, G. X., “High performance rare earth oxides LnOx (Ln = Sc, Y,   La, Ce, Pr and Nd) modified Pt/C electrocatalysts for methanol electrooxidation”, J. Power Sources 2006, 162, 1067-1072.
[73] Zhou, C. M.; Wang, H. J.; Peng, F.; Liang, J. H.; Yu, H.; Yang, J., “MnO2/CNT Supported Pt and PtRu Nanocatalysts for Direct Methanol Fuel Cells”,  Langmuir 2009, 25, 7711-7717.
[74] Gao, L. N.; Yue, W. B.; Tao, S. S.; Fan, L. Z., “Novel Strategy for Preparation of Graphene-Pd, Pt Composite, and Its Enhanced Electrocatalytic Activity for Alcohol Oxidation”, Langmuir 2013, 29, 957-964.
[75] Contour, J. P.; Mouvier, G.; Leclere, C., “X-ray photoelectron spectroscopy and electron microscopy of PtRh gauzes used for catalytic oxidation of ammonia”, J.Catal. 1977, 48, 217-228.
[76] Johansson, G.; Hedman, J.; Berndtsson, A.; Klasson, M.; Nilsson, R., “Calibration of electron spectra”, J. Electron Spectrosc. Relat. Phenom. 1973, 2, 295-317.
[77] Hammond, J. S.; Winograd, N., “XPS spectroscopic study of potentiostatic and galvanostatic oxidation of Pt electrodes in H2SO4 and HClO4”, J. Electroanal. Chem. 1977, 78, 55-69.
[78] Kim, K. S.; Winograd, N.; Davis, R. E., “Electron spectroscopy of platinum-oxygen surfaces and application to electrochemical studies”, J. Am. Chem. Soc. 1971,  93, 6296-6297.
[79] Lu, Y. H.; Reddy, R. G., “The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC”, Electrochim. Acta 2007, 52, 2562-2569.
[80] Huang, S. Y.; Chang, C. M.; Yeh, C. T., “Promotion of platinum-ruthenium catalyst for electro-oxidation of methanol by ceria”, J.Catal. 2006, 241, 400-406.
[81] Nyholm, R.; Martensson, N., “Core level binding energies for the elements Zr-Te (Z=40-52)”, J. Phys. C 1980, 13, L279-L284.
[82] Sarma, D. D.; Rao, C. N. R., “XPES studies of oxides of second- and third-row transition metals including rare earths”, J. Electron Spectrosc. Relat. Phenom. 1980, 20, 25-45.
[83] Igarashi, H.; Fujino, T.; Zhu, Y.; Uchida, H., Watanabe, M., “CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism”, Phys. Chem. Chem. Phys. 2001, 3, 306-314.
[84] Park, K. W.; Choi, J. H.; Sung, Y. E., “Structural, chemical, and electronic properties of Pt/Ni thin film electrodes for methanol electrooxidation”, J. Phys. Chem. B 2003, 107, 5851-5856.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信