淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2808201015043200
中文論文名稱 無閥門式微幫浦之研製
英文論文名稱 Fabrication of Valveless Micropump
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 方廷旗
研究生英文姓名 Ting-Chi Fang
學號 697370467
學位類別 碩士
語文別 中文
口試日期 2010-06-23
論文頁數 73頁
口試委員 指導教授-楊龍杰
委員-胡毓忠
委員-戴慶良
中文關鍵字 超音波  聚二甲基矽氧烷  無閥門  微幫浦 
英文關鍵字 Ultrasonic  PDMS  Valveless  Micropump 
學科別分類 學科別應用科學機械工程
中文摘要 本研究中吾人將超音波振盪的概念,與無閥門式微幫浦的概念合而為一,以聚二甲基矽氧烷(PDMS)與玻璃材料作為主要結構,製作出一無閥門式微幫浦。組成可分為玻璃微流道(含有漸縮/漸張管之玻璃腔體)、PDMS進出口接管和SU-8微型轉子等部分。為了精簡PDMS接合之層數,本研究在青光光罩玻璃上加工出微流道,故如何將玻璃蝕刻的底切(undercut)現象降至最小,是首要考量。其次完成元件組裝後,以外加超音波上下激振,觀察不同葉片數之SU-8微型轉子誘導運轉之狀況。
此種微幫浦設計有許多優點,結構簡單、生產成本低、具有良好的生物相容性,且驅動時無需複雜控制器。初步發現:28KHz以上的超音波振盪,即可驅動此無閥門式微幫浦中的微型轉子,轉速至少為4.4RPM。
英文摘要 In this research we the concept that the ultra sound flap to concuss, with have no valve door the concept that become weak pump unite as one to gather two A Ji silicon oxygens alkanes(PDMS) and glass material as main structure and manufacture a have no valve door become weak pump.Constituting can be divided into glass tiny flow way(have to gradually shrink/gradually piece the glass chamber of the tube body) and PDMS the import and export connector and miniatures SU-8s turn son's etc. part of.For simplifying the number of PDMS coalescence, this research only covers glass in the green light up process tiny flow a way, past how slice(undercut) the bottom that the glass eclipse engrave the phenomenon decline to least, is an initial consideration.Up and down arouse to flap by in addition ultra sound after completing a component construction secondly, observe the condition that the miniatures SU-8s of different leaf's number turn a sub- inducement operation.
This kind of tiny pump design contains many advantages, the structure is simple, the production cost is low and have good living creature compatibility, and drive don't need complicated controller.Initial detection:The 28 khzs above ultra sound flaps to concuss, can immediately drive this to become weak miniature within pump to turn son and turn soon at least to 4.4 RPMs without the valve door.
論文目次 誌謝....................................................I
中文摘要..............................................III
英文摘要...............................................IV
目錄...................................................VI
圖目錄...............................................VIII
表目錄................................................XII
第一章 緒論.............................................1
1-1 前言................................................1
1-2 研究動機............................................3
1-3 文獻回顧............................................6
1-4 研究目的............................................12
1-5論文架構.............................................12
第二章 無閥門式微幫浦之設計與製程技術...................14
2-1 光罩製作............................................17
2-2 基本製程技術........................................18
2-2-1 晶片清潔..........................................18
2-2-2 微影製程..........................................19
2-3 無閥門式微幫浦之製程................................23
2-3-1 玻璃微流道製作................................23
2-3-2 PDMS進出口接管製作............................26
2-3-3 SU-8微型轉子製作..............................27
2-4 氧氣電漿表面改質技術................................29
第三章 無閥門式微幫浦之實驗量測.........................31
3-1 無閥門式微幫浦之材料與設計..........................31
3-2 無閥門式微幫浦之實驗與量測..........................32
第四章 結論與未來建議...................................56
4-1 結論................................................56
4-2 未來建議............................................57
參考文獻................................................58
附錄....................................................62

圖目錄
圖 1-1 水槽中的轉子.....................................4
圖 1-2 雷諾數圖表.......................................4
圖 1-3 微幫浦之分類.....................................6
圖 1-4 三維被動微混合器結構:(a)流道結構上視圖;(b)三維微流道局部放大圖;(c)三維微流道對準結合機制;(d)三維被動微混合器成品....................................................10
圖 1-5 氣動式蠕動微幫浦元件圖...........................10
圖 1-6 氣動式蠕動微幫浦作動原理示意圖:(a)上視圖;(b)工作原理......................................................11
圖 1-7 (a)較大的玻璃凹槽;(b)較小的玻璃凹槽.............11
圖 2-1 無閥門式微幫浦的工作原理.........................15
圖 2-2 無閥門式微幫浦之漸縮/漸張管設計示意圖。..........15
圖 2-3 無閥門式微幫浦之3D示意圖.........................16
圖 2-4 熱氣動無閥門式微幫浦之3D示意圖...................16
圖 2-5 正光阻與負光阻之製備程序.. ......................20
圖 2-6 蒸鍍鉻膜後的載玻片...............................24
圖 2-7 鉻膜上的光阻圖形.................................24
圖 2-8 Cr-7T蝕刻液開洞..................................25
圖 2-9 玻璃流道.........................................25
圖 2-10 #19 gauge之中空針頭............................26
圖 2-11 PDMS微流道進出口製作:(a)挖管方式;(b)進出口挖孔完成......................................................27
圖 2-12 SU-8微型轉子....................................28
圖 2-13 SU-8微型轉子之製作流程圖........................29
圖 2-14 PDMS經氧氣電漿表面處理之示意圖..................30
圖 3-1 兩種微型轉子之構型...............................31
圖 3-2 玻璃流道Undercut現象.............................32
圖 3-3 VBOE:VHCl:VDI=1:2:4之比例蝕刻結果................33
圖 3-4 BOE蝕刻率曲線圖.................................34
圖 3-5 中間腔體之深度(50.1μm)..........................35
圖 3-6 中央轉軸之深度(6.26μm)..........................35
圖 3-7 微型轉子偏離中央轉軸.............................36
圖 3-8 光罩玻璃.........................................37
圖 3-9 黃光微影後的光阻圖形.............................37
圖 3-10 CR-7T開洞......................................38
圖 3-11 VBOE:VHCl:VDI=1:2:4之比例蝕刻.............38
圖 3-12 表面形貌儀觀察畫面..............................39
圖 3-13 中間腔體之深度..................................40
圖 3-14 中央轉軸之深度..................................40
圖 3-15 載玻片與光罩玻璃(TMA Glass)之Undercut曲線.......41
圖 3-16 雙葉片微型轉子..................................42
圖 3-17 四葉片微型轉子..................................42
圖 3-18 超音波洗淨機....................................43
圖3-19 DV拍攝實況......................................43
圖 3-20 迷你型超音波洗淨機..............................44
圖 3-21 OM觀察迷你型超音波洗淨機之架設實況..............45
圖 3-22 繩子固定微幫浦..................................45
圖 3-23 運作中的微型轉子................................46
圖 3-24 兩種構型微型轉子之轉數..........................48
圖 3-25 功率放大器......................................49
圖 3-26 大型揚聲器......................................49
圖 3-27 波形產生器......................................51
圖 3-28 迷你型電子顯微鏡................................51
圖 3-29 大型揚聲器整體架設狀況..........................52
圖 3-30迷你型電子顯微鏡觀察景象.........................53
圖 3-31誘導旋轉v.s. 激振旋轉之雷諾數曲線圖..............55
圖 附錄-1 旋轉塗布機(Spin coater).......................62
圖 附錄-2 雙面曝光機(Double side).......................63
圖 附錄-3 電子束蒸鍍機(E-beam)..........................64
圖 附錄-4 表面形貌儀(α-step)...........................65
圖 附錄-5 晶圓切割機....................................66
圖 附錄-6 加熱烘烤機(HotPlate)..........................67
圖 附錄-7 光學顯微鏡(Optical Microscope)................68
圖 附錄-8 反應離子蝕刻機(RIE)...........................69

表目錄
表 2-1本文與先前文獻[5]之微幫浦構型比較.................17
表 3-1 超音波激振參數表.................................47
表 3-2 輸入振動大型揚聲器參數表.........................54

參考文獻 [1]楊龍杰,掌握微機電,台中市,滄海書局,2007年6月初版,頁142-149。
[2]林宏樺,以聚-對二甲苯微機電技術製作之熱挫曲式微型致動器,碩士論文,淡江大學,台北縣,2005年7月。
[3]林岳正,低驅動電壓之熱致動微元件,碩士論文,淡江大學,台北縣,2007年7月。
[4]周禹廷,低溫及低驅動電壓之微型熱挫曲式微幫浦分析與研製,碩士論文,淡江大學,台北縣,2008年6月。
[5]林子淵,熱氣動無閥門式微幫浦之研製,碩士論文,淡江大學,台北縣,2008年6月。
[6]Chia, B. T., Liao, H.-H., and Yang Y.J., ”A bovel thermo-pneumatic peristaltic micropump with low temperature elevation,” Transducers 2009, pp. 1159-1162, 2009.
[7]Vandenberghe, N., Zhang, J., and Childress, S., “Symmetry breaking leads to forward flapping flight,” Journal of Fluid Mechanics, 506, pp. 147-155, 2004.
[8]Xia, Y., and Whitesides, G. M., “Soft lithography,” Annual Review of Materials Science, 28(1), pp. 153-184, 1998.
[9]Xia, Y., and Whitesides, G. M., “Soft lithography,” Angewandte Chemie - International Edition, 37(5), pp. 551-575, 1998.
[10]Laser, D. J., and Santiago, J. G., “A review of micropumps,” Journal of Micromechanics and Microengineering, 14(6), pp. R35-R64, 2004.
[11]Woias, P., “Micropumps-past, progress and future prospects,” Sensors and Actuators B: Chemical, 105, pp. 28-38, 2005.
[12]Yang, L.J., Wang, J.M., and Huang, Y,L., ”The micro ion drag pump using ITO electrodes to resist aging,” Sensors and Actuators A: Physical, 111(1), pp. 118-122, 2004.
[13]Wang, J.M., and Yang, L.J., “Electro-hydro-dynamic(EHD) micropumps with electrode protection by parylene and gelatin,” Tamkang Journal of Science and Engineering, 8(3), pp. 231-236, 2005.
[14]Yang, L.J., Ko, K.C., and Wang, J.M., “A circular microchannel fluid transportation,” Sensors and Actuators A: Physical, 139, pp. 172-177, 2007.
[15]Sefton, M.V., Lusher, H.M., Firth, S.R., and Waher, M.U., “Controlled release micropump for insulin administration,” Annals of Biomedical Engineering, 7(3-4), pp. 329-343, 1979.
[16]Van De Pol, F. C. M., Wonnink, D. G. J., Elwenspoek, M., and Fluitman, J.H.J., “Thermo-pneumatic actuation principle for a microminiature pump and other micromechanical devices,” Sensors and Actuators, 17(1 -2 PT1), pp. 139-143, 1989.
[17]Stemme, E., and Stemme, G., “Valveless diffuser/nozzle-based fluid pump,” Sensors and Actuators A: Physical, 39(2), pp. 159-167, 1993.
[18]Gerlach, T., Schuenemann, M., and Wurmus, H., “New micropump principle of the reciprocating type using pyramiddic micro flowchannels as passive valves,” Journal of Micromechanics and Microengineering, 5(2), pp. 199-201, 1995.
[19]Olsson, A., Stemme, G., and Stemme, E., “Diffuser-element design investingation for valve-less pumps,” Sensors and Actuators A: Physical, 57(2), pp. 137-143, 1996.
[20]Olsson, A., Stemme, G., and Stemme, E., “Micromachined diffuser/nozzle elements for valve-less pumps,” IEEE, Piscataway, NJ, USA, San Diego, CA, USA, pp. 378-383, 1996.
[21]Olsson, A., Enoksson, P., Stemme, G., and Stemme, E., “Micromachined flat-walled valveless diffuser pump,” Journal of Microelectromechanical Systems, 6(2), pp. 161-166, 1997.
[22]Jo, B.-H., Van Lerberghe, L.M., Motsegood, K.M., and Beebe, D.J., “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” Journal of Microelectromechanical Systems, 9(1), pp. 76-81, 2000.
[23]Jeong, O.C., and Konishi, S., “Fabrication and drive test of pneumatic PDMS micro pump,” Sensors and Actuators A: Physical, 135(2), pp. 849-856, 2007.
[24]Mazurczyk, R., El Khoury, G., Dugas, V., Hannes, B., Laurenceau, E., Cabrera, M., Krawczyk, S., Souteyrand, E., Cloarec, J.P., Chevolot, Y., “Low-cost, fast prototyping method of fabrication of the microreactor devices in soda-lime glass,” Sensors and Actuators B: Chemicall, 128(2), pp. 552-559, 2008.
[25]王信雄,薄膜式微型壓力感測器暨熱挫曲式驅動器之設計與研製,博士論文,淡江大學,台北縣,2007年6月。
[26]許家睿,新式被動閥式微幫浦之開發及其流場量測,博士論文,臺灣大學,台北市,2007年6月。
[27]Minqiang B., Tracy M., Graham, J.E., James, S.W., Alan G.R.E., “A new masking technology for deep glass etching and its microfluidic application,” Sensors and Actuators A, 115, pp. 476-482, 2004.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-08-31公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-08-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信