淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2808200809234300
中文論文名稱 聚二甲基矽氧烷混合銅粉之震盪式熱管研製
英文論文名稱 Fabrication of Polydimethylsiloxane Mixing with Copper Powder Pulsating Heat Pipe
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 鄭博軒
研究生英文姓名 Po-Hsuan Cheng
學號 695370113
學位類別 碩士
語文別 中文
口試日期 2008-07-15
論文頁數 53頁
口試委員 指導教授-康尚文
委員-楊錫杭
委員-楊龍杰
委員-陳育堂
中文關鍵字 震盪式熱管  聚二甲基矽氧烷  銅粉  翻模  充填率 
英文關鍵字 Pulsating Heat Pipes  PDMS  Copper Powder  Turn Over the Mold  Filled Ratio 
學科別分類 學科別應用科學機械工程
中文摘要 本研究是利用聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)與銅粉為材質,製作出一可視化之震盪式熱管(Pulsating Heat Pipe, PHP),震盪式熱管之長、寬及流道內徑分別為56mm、50mm及2mm、總長為580mm。蒸發端和冷凝端的部分置入銅塊作為加熱及冷卻的導體,以增加熱傳導速率,並被包覆於PDMS與銅粉的混合結構,完成真空處理,在固定填充率(60%)及不同輸入功率下(3W、4W、5W、6W、7W、8W)測試其效能,此外,利用攝影機拍攝其作動情形。
實驗結果顯示,以甲醇為工作流體,垂直擺放時,當輸入功率達到8W,可發現流體之震盪頻率跟隨著輸入功率而增加,熱阻值也隨之降低至7.7℃/W。此外,達到平衡狀態的時間也跟隨著輸入功率的增加而提前。
藉由攝影機拍攝流道內作動的情形,發現隨著輸入功率的增加,流場的型態也隨之改變,從一開始的細泡流場,逐漸轉變為彈狀型流場,最後再形成連續彈狀型流場。而汽-液柱之長度也有增加之趨勢。
英文摘要 This paper reports on using polydimethylsiloxane (PDMS) and copper powder to manufacture a visual pulsating heat pipe (PHP) with a length of 56mm, a width of 50mm, an internal diameter of 2mm, and total length of 580mm. Evaporator and condenser were put into copper blocks as the media for heating and heat dissipation. In order to increase the speed of heat conduction, PDMS mixed with copper powder in these two sections and finishing making the vacuum management. According to the fix filled ratio (60%) and different heating power (3W, 4W, 5W, 6W, 7W, 8W) to test the efficiency of the Polydimethylsiloxane mixing with Copper Powder (PCP) PHP.
When the working fluid is methanol, and the PHP is in a vertical orientation, increasing the heating power, then the PHP is working. When the heating power reaches 8 watts and the PHP will work obviously. So we can get the lowest thermal resistance of 7.7℃/W.
A video camera was used to record the fluid pulsating motion inside the PHP. Different heating powers were employed to observe the working situation, flow direction of the vapor plug, liquid slug and the structure form of the flow. We can find the change from minute bubble flow into slug bubble flow and change into continuous slug bubble flow. When PHP is putting higher heat flux, vapor plug and liquid slug will become longer.
論文目次 目 錄
中文摘要…………………………………………………………....……….I英文摘要…………………………………………………………................II目錄……………………………………………………………….......…...IV表目錄…………………………………………………………………….VII圖目錄……………………………………………………………………VIII符號說明………………………………………………………………….XII 第一章 緒論……………..………………………………………………….1
1-1研究動機…………………………………………………………...1
1-2文獻回顧…………………………………………………………...2
1-3研究目的……………………………………………..………….....9
第二章 熱管介紹………………………………………………………….10
2-1傳統式熱管簡介………………………………………………….10
2-1-1傳統式熱管原理……………………………..……………10
2-2震盪式熱管簡介………………………………………………….11
2-2-1震盪式熱管構造及工作原理……………………………..11
2-2-2管路材質及管徑設計…………………………….….……13
2-2-3工作流體的選擇………………………….……….………14
2-2-4工作流體填充率………………….…………….…………15
2-2-5管內汽、液柱流動型態……………………………………16
2-3熱管之優缺點與比較…………………………………………….17
第三章 閉迴路震盪式熱管之設計與製作……..………………………...19
3-1 前言……………………...……………………………………….19
3-2閉迴路震盪式熱管設計………………………………………….21
3-3閉迴路震盪式熱管製程………………………………………….23
3-3-1母模製作…………………..………………………………23
3-3-2銅粉……………………..…………………………………23
3-3-3 PCP PHP半成品製作…………………………………….24
3-3-4 PCP PHP與PDMS基底之接合…………..……………..26
3-3-5加熱棒與銅塊之接合……..……………………………....27
3-3-6 PCP PHP之包覆與絕熱………………………………….28
3-4 PCP PHP之測漏………………………………………………….28
第四章 實驗架設及測試………..………………………………………...29
4-1 抽氣及充填...…………………………………………………….29
4-2 實驗架構……………………………………...………………….31
4-2-1熱電偶線位置……………………………………….…….32
4-2-2熱電偶線溫度校正……..…………………………………33
4-3 實驗測試........................................................................................33
4-4 工作流體觀察……………………………………………………35
4-5 測試平台架設………………………………...………………….35
第五章 結果與討論……………………………………………………….37
5-1 實驗分析………………………………….……...………..……..37
5-2 穩定狀態的判定…………...…………………………………….40
5-3 實驗討論……...………………………………………………….41
5-4 PHP流場型態………...………………………………….…….…41
第六章 結論與未來建議………………………………………………….45
6-1 結論………………………………………………………………45
6-2 未來建議…………………………………………………………45
參考文獻…………………………………………………………………...47
附錄………………………………………………………………………...50



































表目錄
表3-1 不同工作流體對應之管路內徑範圍……………………………..22
表3-2 銅粉規格…………………………………………………………..23
表4-1 實驗測試參數……………………………………………………..34
表5-1 不同加熱功率之平衡標準差百分比……………………………..40































圖目錄
圖1.1 熱管應用於顯示卡………………………………………………….2圖1.2 含流向控制閥之PHP…....………………………………………….3圖1.3 無流向控制閥之PHP……...….…………………………………….4圖1.4 可視化PHP………………………………………………….………5圖1.5 不同管徑及工作流體之效能圖…………………………………….5圖1.6 水與鑽石奈米流體作動溫差表比較圖…………………………….6圖1.7 填充率60%,不同工作流體蒸發冷凝端平均溫差……………….7圖1.8 PHP於三種不同填充率之熱性能比較圖 ( ID/OD=1mm/2mm; 水
平模式)…..……………………………………...………………....……7圖1.9 PHP於三種不同擺放角度之熱性能比較圖 ( ID/OD=2mm/3mm ;
FR=50%)…………………………………………..…….....................…8圖1.10 甲醇及乙醇-垂直及水平擺放之不同輸入功率對蒸發端平均溫度
變化圖……………………………………………..…………..…...…….8圖1.11 甲醇及乙醇-垂直及水平擺放之不同輸入功率對熱阻值變化圖..9圖2.1 熱管示意圖.......................................................................................10圖2.2 震盪式熱管示意圖...........................................................................12圖2.3 各式PHP迴路圖..............................................................................13 (a) 閉迴路式PHP (b) 流向控制閥閉迴路式PHP (c) 開迴路式PHP13
圖2.4高速攝影之PHP作動圖….……………………………………..…16 (a) 甲醇為工作流體之PHP
(b) 水為工作流體之PHP
圖2.5 以甲醇為工作流體之汽柱位移、速度及時間關係圖…...……....17圖2.6 以水為工作流體之汽柱位移與時間關係圖……………………...17圖3.1 銅管製作之震盪式熱管….…………………...…………………...20圖3.2 玻璃管和U型銅管製作之半可視化震盪式熱管………………..20圖3.3 PDMS製可視化震盪式熱管………...………………………….....21圖3.4 PDMS混合銅粉震盪式熱管……………….……….......................21圖3.5 鋁板設計圖…………………...……………………………………22圖3.6 鋁板母模示意圖……………….......................................................23圖3.7 母模放置於壓克力凹槽內示意圖………………………………...25圖3.8 切除蒸發端與冷凝端部分示意圖.……………………...………...25圖3.9 銅塊示意圖………………………………………………………...25圖3.10 PCP PHP翻模完成示意圖……...………………………………26圖3.11 熱電偶線置入示意圖….….….....…….…….……………………26圖3.12 PDMS基底示意圖...............………………………………….….27圖3.13 PCP PHP各部位名稱示意圖……….….…………………...…..27圖4.1真空幫浦…..………...……………………………………..….……30圖4.2真空計……………...………………………………………..……...30圖4.3工作流體之脫氣處理…………………………………….………...30圖4.4 PHP腔體內部的脫氣處理…………………………………….….31圖4.5 電源供應器………………………………………………………...31圖4.6 水冷系統...........................................................................................32圖4.7 數據擷取器………………………………………………...………32圖4.8 熱電偶線位置圖………………………………………………...…33圖4.9 PHP汽-液柱圖……..………..………….…….………….…..........35圖4.10 實驗架構圖…….………...……………………………………….36圖5.1加熱功率為3W之時間與溫度變化示意圖...................................37圖5.2加熱功率為4W之時間與溫度變化示意圖...................................38圖5.3加熱功率為5W之時間與溫度變化示意圖...................................38圖5.4加熱功率為6W之時間與溫度變化示意圖...................................39圖5.5加熱功率為7W之時間與溫度變化示意圖...................................39圖5.6加熱功率為8W之時間與溫度變化示意圖...................................40圖5.7蒸發端與冷凝端之平均溫度…...…..…………....…………….…..41圖5.8甲醇垂直放置之熱阻值………….………………………………...41圖5.9 輸入功率為4W時 PHP汽-液柱圖.…..……………….………...42圖5.10 輸入功率為7W時 PHP汽-液柱圖……………………….…….42圖5.11 管內流場型態………………………………………………….….43 (a) 細泡流場型態
(b) 彈狀型汽柱
(c) 核沸騰現象
圖5.12 核沸騰現象……………………………….…...…………….……43
參考文獻 參考文獻
[1] http://www.amd.com.tw/us-en/index.shtml
[2] http://www.amd.com.tw/us-en/Processors/ProductInformation/
0,,30_118_13909,00.shtml
[3] http://www.nvidia.com.tw/
[4] http://www.coolaler.com/
[5] 林玉興,「薄膜式散熱器之研製」,碩士論文,淡江大學機械與機電工程學系,民國九十二年。
[6] 陳慧倫,「銀奈米流體應用於震盪式熱管效能之研究」,碩士論文,淡江大學機械與機電工程學系,民國九十五年。
[7] 吳宗祐,「聚二甲基矽氧烷之震盪式熱管研製」,碩士論文,淡江大學機械與機電工程學系,民國九十六年。.
[8] R. S. Gaugler,“Heat Transfer Devices”, U. S. Patent 2, 350, 348, (1994).
[9] G. M. Grover, U. S. Patent No. 3229759 (1963).
[10] Akachi H., U.S. Patent, Patent No. 5219020 (1993).
[11] Akachi H., Polasek F., and Stlc P.,“Pulsating Heat Pipes,”Proceedings of the 5th International Heat Pipe Symposium, Melbourne, Australia, pp. 208-217 (1996).
[12] Gi. K., Maezawa, K. Y., and Yamazaki, N.,“CPU Cooling of Notebook PC by Oscillating Heat Pipe,”Proceedings of the 11th International Heat Pipe Conference, Tokyo, Japan, pp. 166-169 (1999).
[13] Gi. K., Sato F., and Maezawa S.,“Flow Visualization Experimental on Oscillating Heat Pipe,”Proceedings of the 11th International Heat Pipe Conference, Tokyo, Japan, pp. 373-377 (1999).
[14] S. Nagata, R. Shirakashi, and S Nishio,“Closed Loop Heat Transport Tube,”第36回日本傳熱演講論文集, pp. 675-676 (1999).
[15] S. Khandekar, M. Schneider, P. Schäfer, R. Kulenovic and M. Groll,“Visualization of Thermofluiddynamic Phenomena in Flat Plate Closed Loop Pulsating Heat Pipe,”Proc. 6th Int. Heat Pipe Symposium, Chiang Mai, Thailand, pp. 235-247 (2000).
[16] Tong B., Wong T. and Ooi K., Closed-Loop Pulsating Heat Pipe, Applied Thermal Engineering, Vol. 21, pp. 1845-1862 (2001).
[17] W. Qu and T. Ma,“Experimental Investigation on Flow and Heat Transfer of a Pulsating Heat Pipe,”Journal of Engineering Thermophysics, Vol. 23, No. 5, pp. 596-598 (2002).
[18] P. Charoensawan, S. Khandekar, M. Groll and P. Terdtoon,“Closed Loop Pulsating Heat Pipe Part A: Parametric Experimental Investigations,”Applied Thermal Engineering, Vol. 23, pp. 2009-2020 (2003).
[19] 游博淮,「氧化銅奈米流體、水、甲醇應用於避迴路型震盪式熱管之研究」,碩士論文,台北科技大學冷凍空調工程學系,民國九十五年。
[20] H. B. Ma, C. Wilson, B. Borgmeyer, K. Park, and Q. Yu, S. U. S. Choi and M. Tirumala, “Effet of nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe,” Applied Physics Letters, Vol. 88, pp. 143116-1~3 (2006)
[21] Y. Honghai, M. Groll, and S. Khandekar, “Operation Limit of Closed Loop Pulsating Heat Pipes, ”Applied Thermal Engineering, In Press, Accepted Manuscript, Available online 16 February 2007.
[22] http://www.bmpcoe.org/
[23] http://www. electronics-cooling.com/articles/2003/2003_may_a4
[24] Sameer Khandekar, Nicolas Dollinger and Manfred Groll.,
“Understanding Operational Regimes of Closed Loop Pulsating Heat Pipes:An Experimental Study,” Applied Thermal Engineering, Elsevier Science, Vol. 23, pp. 707-719 (2003).
[25] E. White and R. Beardmore, “The Velocity of Rise of Single Cylindrical Air Bubbles through Liquids Contained in Vertical Tubes,”Chem. Engg. Science, Vol. 17, pp. 351-361 (1962).
[26] R. T. Doboson and T.M. Harms,“Lumped Parameter Analysis of Closed and Open Oscillatory Heat Pipe,”Proceedings of 11th Interational Heat Pipe Conference, pp. 137-142(1999).
[27] S. Meazawa,“Heat Pipe: Its Origin, Development and Present Situation,“Proceeding of the 6th Internation Heat Pipe Symposium, Chiang Mai, pp. 3-13 (2000).
[28] Y. Honghai, M. Groll, and S. Khandekar,“Operation Limit of Closed Loop Pulsating Heat Pipes,”Applied Thermal Engineering, In Press, Accepted Manuscript, Available online 16 February (2007).
[29] J. L. Xu, Y. X. Li, and T. N. Wong, “High speed flow visualization of a closed loop pulsating heat pipe,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 3338-3351 (2005).
[30] 鑫陶應用材料有限公司
http://www.titanex.com.tw
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-08-29公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-08-29起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信