淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2808200713105500
中文論文名稱 薄膜式微型壓力感測器暨熱挫曲式驅動器之設計與研製
英文論文名稱 Design and Fabrication of the Diaphragm-Type Micro Pressure Sensors and Thermal Buckled Actuators
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系博士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 王信雄
研究生英文姓名 Hsin-Hsiung Wang
學號 892340018
學位類別 博士
語文別 中文
口試日期 2007-07-24
論文頁數 150頁
口試委員 指導教授-楊龍杰
委員-張忠誠
委員-黃榮堂
委員-林啟萬
委員-康尚文
委員-楊龍杰
中文關鍵字 薄膜結構  壓阻式壓力感測器  聚二甲基矽氧烷  封裝  金屬氧化物半導體微機電製程  熱挫曲式制動器  聚偏二氟乙烯 
英文關鍵字 diaphragm  piezoresistive pressure sensor  PDMS  package  CMOS MEMS  thermal buckled actuator  PVDF 
學科別分類
中文摘要 薄膜結構在微機電技術所製作的微小元件中,係相當重要之關鍵結構,因此本研究將討論微觀尺度下薄膜的力學特性,包括了結構變形的力學分析以及薄膜受力時熱變形狀態,希望了解薄膜之特性表現,並以薄膜結構作為關鍵零件發展感測器與驅動器,並整理出各種元件之理論輸出公式,方便於設計元件之初,即可先行了解元件性能,加快元件設計與製造之速度。
感測器的部分將以微型壓力感測器作為探討的主要對象,本文提出三項壓力計的創新製程,首先改良傳統的全平面薄膜,設計加強島塊於中央位置,增加薄膜強度,製作新型高壓力負載壓力感測器,且利用ANSYS模擬受力時之電壓理論輸出。並且提出以低溫製程之聚二甲基矽氧烷(polydimethylsiloxane, PDMS)微模造技術整合微壓力感測陣列,製作微流道壓力現地量測系統之概念。
第二項創新是以高分子材料PDMS,取代一般工業應用中壓力計下方的玻璃晶片,作為封裝材料;借重PDMS的低溫製程特性與價格低廉優勢,大幅降低壓力計之封裝成本。並比較傳統Pyrex #7740玻璃之陽極接合封裝製程與新型PDMS封裝製程所製作之壓力計輸出性能,比較後發現二者之性能表現於伯仲之間,文中並探討PDMS之洩漏機制。
第三項創新則是利用目前相當成熟之互補式金屬氧化物半導體(CMOS)製程代工的方式,搭配正面蝕刻的加工技法,製作五十微米見方之壓力感測器,其中,壓力薄膜材料為氧化矽,壓電阻則是由多晶矽所組成,並利用金屬犧牲層掏空的方式懸浮壓力薄膜。由於受限於CMOS代工製程中的限制以及遵守代工廠之設計法則,薄膜結構將與以往所呈現之形狀大相逕庭,傳統理論分析的難度將大大提昇,因此將以有限元素模擬分析軟體ANSYS,分析此種特殊薄膜之受力特性,尋找壓電阻最佳位置並先行預測其輸出特性。
驅動器部分則是利用微米尺度薄膜熱傳速度快的特性,配合特殊之結構設計,製作熱挫曲式膜片振動幫浦,以ANSYS模擬受熱時薄膜之熱固耦合作動現象,預測其效能。實際製作之驅動元件可在僅提供3伏特的驅動電壓下,以不超過攝氏40度的工作溫度進行驅動,利用雷射干涉儀量測作動時之狀況發現其最大變型量為0.35微米,截止頻率為1000赫茲。
除了矽基壓力感測器外,本文亦提出利用壓電薄膜聚偏二氟乙烯(PVDF)製作一可撓式力感測器之概念,設計一特殊電極用以測量穩態之壓力負荷,由於PVDF薄膜之可撓性,希冀未來能應用於非平面或不規則表面之力量量測。
英文摘要 Diaphragm-type structure is the most important configuration applied in the MEMS device. In this thesis, the mechanical and thermal-mechanical performances of the diaphragm structures are discussed. Some analytic and numerical solutions of the deformation equation of diaphragms are summarized in this research to predict the performance, stress and strain distribution, of diaphragm structures and to speed up the design and fabrication of micro devices
In the sensor fabrication, this thesis proposes three innovations of pressure sensors. The first one is the configuration modification of the diaphragm structure to fabricate a piezo-resistive pressure sensor which is applied in a high-pressure measurement. A strengthened diaphragm with adding a square fixed mesa is demonstrated to be elegant over the conventional design of piezoresistive high-pressure sensors. This argument is justified by the numerical simulation of the FEM software ANSYS through analyzing the stress of the silicon membrane as well as deriving the ideal output voltage of the high-pressure sensor. This calculated result of sensor performance is compared with the testing data of sensor prototype. This work also describes a fabrication concept of combining the mature silicon bulk-micromachining and new-developed low-temperature surface micromachining technologies to make the microfluidic system chip with both the sensing elements and the flowing channels. By using such an on-site measurement system we can implement the microfluidic experiment in the microchannel much easily and cost-effectively.
The second innovation is to use a polymer material, PDMS, as a packaging material to seal the pressure chamber underneath the diaphragm. PDMS is a well-known material in MEMS technology recently. It is not only cheap but also has a merit of easily processing. We completed piezoresistive pressure sensors, made by the same batch, with different packaging materials of Pyrex glass and PDMS sheet in the paper, respectively. Spin-coating is accessed to control the thickness of PDMS sheet by assigning the silicon and Teflon disks as the supporting substrates for PDMS sheets. The sensors packaged by the PDMS room temperature bonding herein verified the similar performance as the ones packaged by the conventional anodic bonding through pressure testing.
The third innovation is to fabricate a piezoresistive pressure sensor with a diaphragm size of 50μm × 50μm by utilizing CMOS MEMS technology. The material of the sensor diaphragm is silicon dioxide, and the piezoresistors are made by polysilicon. For releasing the diaphragms of the micro pressure sensors, this work proposes to use front-side etching technique with etching holes of 5 μm×5μm only. Finally, we use gelatin and parylene to seal the etching holes.
Besides, a design and fabrication of a novel micro actuator device is also described in this research. This work presents a novel diaphragm type thermo-buckled microactuator with only a driving voltage of 3V and under a working temperature about 40℃. It’s a sandwich structure composed of a platinum (Pt) resistor between two parylene films with different thickness. The platinum resistor is assigned as a heating source. Therefore, the parylene diaphragm with different thickness of top and bottom layers is heated by the embedded Pt resistor. The different temperature rise along the thickness direction of the parylene diaphragm not only generates an out-of-plane thermo-buckling deformation, but also induces an asymmetric deflection inclined to upward or downward direction. The maximum displacement of the diaphragm is verified as 0.35 μm experimentally and with the cut-off frequency of 1000 Hz by an AC voltage of 3V in peak-to-peak magnitude.
This study also proposes a concept of fabricating a flexiable pressure sensor array made by a piezoelectric material PVDF foil. This sensor array is supposed to apply to measuring the pressure by a high-frequency AC carrier excitation.
論文目次 目錄
中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 VI
圖目錄 IX
表目錄 XV

第一章 緒論 1
1.1 微機電系統 1
1.2 研究動機 4
1.3 文獻回顧 6
1.4 研究目的 9
第二章 薄膜結構之力學分析 11
2.1 薄膜之結構力學特性 11
2.2 矽質薄膜之結構力學分析 17
2.3 矽之壓阻特性 19
2.5 薄膜式力感測器之性能評估參數 22
第三章 有限元素軟體模擬分析 28
3.1 ANSYS簡介 28
3.2 ANSYS特殊語法 32
3.3 ANSYS薄膜特性分析 34
第四章 矽質微型壓力感測器 35
4.1 研究目的 35
4.2 文獻回顧 36
4.3 壓力計種類 36
4.4 島塊式壓力計之模擬分析 38
4.5 島塊式薄膜壓力計製造 43
4.6 壓力計測試與量測 46
4.7 壓力計之實際應用 51
第五章 新型封裝方式之壓力感測器 62
5.1 研究目的 62
5.2 文獻回顧 64
5.3 PDMS材料特性 65
5.4 封裝製程 68
6.5 實驗測試暨討論 72
第六章 CMOS 微型壓力感測器 83
6.1 研究目的 83
6.2 文獻回顧 84
6.3 CMOS 壓力感測器設計 86
6.4 CMOS壓力感測器之模擬輸出預估 88
6.5 CMOS 壓力感測器後製程暨量測 95
6.6 CMOS 結果與討論 99
第七章 薄膜式熱制動器 105
7.1 研究目的 105
7.2 文獻回顧 106
7.3 熱挫曲式微型幫浦之設計 109
7.4 熱挫曲式微型幫浦之製作程序 115
7.5 量測與分析 118
第八章 PVDF 可撓式力感測器 123
8.1 文獻回顧 123
8.2 PVDF材料特性 124
8.3 PVDF壓力感測陣列製程 127
第九章 結論與未來建議 133
9.1 本文貢獻之彙整 133
9.2 未來建議 136
參考文獻 141
論文著述目錄 149

圖目錄
圖1.1 全世界第一具微小馬達之掃描式電子顯微鏡照片 2
圖1.2 微細加工技術之分類 3
圖1.3 論文結構之樹狀圖 10
圖2.1 薄膜結構與座標系統 12
圖2.2 1/4矩形薄膜結構式意圖 15
圖2.3 薄膜變性量與應力分布數值解 18
圖2.4 壓電阻位置示意圖 20
圖2.5 壓力薄膜上壓電阻受力變形情況 20
圖2.6 感測器輸出特性曲線 23
圖2.7 非線性度定義 24
圖2.7 非線性度定義(續) 25
圖2.8 遲滯現象 26
圖3.1 有限元素分析流程 29
圖4.1 壓力薄膜構型剖面 38
圖4.2 等比例放大之壓力計示意圖 39
圖4.3 網格分割後之模型 40
圖4.4 X-方向應力分佈圖(1/4晶片圖) 41
圖4.5 Y-方向應力分佈圖(1/4晶片圖) 41
圖4.6 薄膜變形示意圖(1/4晶片圖) 42
圖4.7 3V偏壓下壓力計之輸出電壓預測值 42
圖4.8 製作流程與光罩設計圖 44
圖4.9 <100>凸角補償示意圖 44
圖4.10 電化學自動停止蝕刻裝置 46
圖4.11 切割後之壓力計晶片 46
圖4.12 壓力計晶片背面 47
圖4.13 打線封裝後之壓力計晶片 47
圖4.14 待測之壓力計 47
圖4.15 島塊式壓力計輸出電壓 48
圖4.16 全薄膜式壓力計輸出電壓 48
圖4.17 壓力薄膜之光學顯微鏡側視圖 49
圖4.18 壓力計之理論輸出值與實際輸出值比較圖 50
圖4.19 壓力計陣列晶片正面 51
圖4.20 壓力計陣列晶片背面 51
圖4.21 壓力測試機台 52
圖4.22 已黏貼於電路板並打線完成之待測壓力計陣列晶片 53
圖4.23 壓力測試機台管線示意圖 53
圖4.24 壓力陣列晶片輸出電壓 54
圖4.25 PDMS微流道上蓋與壓力計晶片整合示意圖 55
圖4.26 PDMS主劑與硬化劑 55
圖4.27 微流道結構光罩設計 56
圖4.28 微流道現地量測系統製程圖 57
圖4.29 SU-8微流道母模 57
圖4.30 PDMS微流道上蓋之外框架 58
圖4.31 整合後之微流道壓力現地量測平台 58
圖4.32 可控制體積流率之針筒幫浦 59
圖4.33 微流道內壓力現地量測實驗架設 59
圖4.34 工作流體於壓力計陣列中之流向 60
圖4.35 微流道內壓力分部之理論值與實際值比較 61
圖5.1 壓力計壓力腔體封裝示意圖 63
圖5.2 PDMS材料化學鍵結結構 65
圖5.3 PDMS氧氣電漿表面處理 66
圖5.4 壓力計晶片 69
圖5.5 固化後之PDMS 70
圖5.6 PDMS薄膜 70
圖5.7 PDMS封裝流程 71
圖5.8 PDMS與壓力計晶片接合後之待打線晶片 72
圖5.9 完成整體PDMS封裝製程之壓力計 72
圖5.10 實驗架設示意圖 73
圖5.11 Pyrex #7740玻璃封裝之輸出電壓 73
圖5.12 500μm PDMS封裝之輸出電壓 74
圖5.13 45μm PDMS封裝之輸出電壓 74
圖5.14 三種不同封裝製程之壓力計輸出比較 74
圖5.15 Pyrex #7740玻璃封裝之輸出電壓 76
圖5.16 500μm PDMS封裝之輸出電壓 76
圖5.17 45μm PDMS封裝之輸出電壓 76
圖5.18 PDMS氣體滲透路徑示意 78
圖5.19 壓力計內相關尺寸式意圖 78
圖5.20 數據擷取器 80
圖5.21 500μm厚PDMS封裝與7740玻璃封裝之壓力計比較 81
圖5.22 45μm厚PDMS封裝與7740玻璃封裝之壓力計比較 81
圖6.1 正面蝕刻與背面蝕刻成型薄膜之比較 86
圖6.2 CMOS 0.35μm 2P4M標準製程結構示意圖 86
圖6.3 CMOS 壓力感測器各層結構示意圖 87
圖6.4 X型金屬犧牲層與壓電阻位置示意圖 87
圖6.5 1/4壓力薄膜網格分割圖形 88
圖6.6 壓力薄膜 x應力分布圖 89
圖6.7 壓力薄膜 y方向應力分布圖 89
圖6.8 多晶矽摻雜濃度與電性關係 90
圖6.9 模擬輸出預估值與各種壓阻式壓力感測器之性能指標比較 94
圖6.10 單一壓力感測元件之佈局圖 95
圖6.11 CIC代工之壓力計陣列晶片 95
圖6.12 CMOS 壓力計後製程流程 96
圖6.13 兩種不同顏色之金屬犧牲層(10x100) 98
圖6.14 KOH蝕刻時出現之(100)亮面 98
圖6.15 光學顯微鏡下CMOS 壓力計晶片 99
圖6.16 打線後之CMOS 壓力感測晶片 100
圖6.17 以parylene填塞蝕刻孔洞 100
圖6.18 parylene封裝後之CMOS壓力計 101
圖6.19 CMOS壓力計訊號輸出 101
圖6.20 壓電阻位置與中性軸之關係 102
圖6.21 壓電阻位置與應變關係 103
圖6.22 第一層多晶矽(poly 1)壓電阻幾何形狀 103
圖7.1 聚對二甲苯沈積過程 107
圖7.2 聚對二甲苯N、C、D材料與化學結構 108
圖7.3 以ANSYS所建構之懸空薄膜模型 113
圖7.4 振動膜面之網格分割 113
圖7.5 有限元素軟體ANSYS模擬薄膜變形狀況 114
圖7.6 製作parylene空腔結構所使用之光罩 115
圖7.7 微幫浦薄膜空腔結構製作流程說明 116
圖7.8 微幫浦元件完成實景 117
圖7.9 實驗架設示意圖 118
圖7.10 逐步加大電壓而導致薄膜受熱變形 119
圖7.11 微幫浦作動時之紅外線熱影像儀照片 120
圖7.12 AVID光學干涉儀量測設備 120
圖7.13 無充填工作液體之薄膜作動情形 121
圖7.14 工作流體為水之薄膜作動情形 121
圖7.14 工作流體為水之薄膜作動情形(續) 122
圖8.1 PVDF壓電薄膜示意圖 125
圖8.2 PVDF壓電薄膜 125
圖8.3 壓電薄膜座標位置定義 125
圖8.4 PVDF感測陣列光罩設計圖 128
圖8.5 PVDF感測陣列製程流程圖 129
圖8.6 具底部電極之PVDF薄膜 130
圖8.7 完成上下電極製程之PVDF力感測器 130
圖8.8 可撓式PVDF微感測陣列 130
圖8.9 待測之PVDF微感測陣列 131
圖8.10 PVDF感測陣列 131
圖9.1 CMOS壓力計之理想輸出值比較 135
圖9.2 覆晶式夾治具 137
圖9.3 覆晶式夾治具爆炸視圖 137
圖9.4 訊號傳輸設備 138
圖9.5 氮化矽保護層毀損導致金屬線路被蝕刻 139
圖9.6 薄膜結構元件示意圖 140



表目錄
表1.1 體型加工控制膜厚之相關文獻 7
表2.1 薄膜變形與應力之相關係數 16
表2.2 在室溫中的壓阻係數值 19
表4.1 壓力薄膜幾何參數 39
表4.2 矽晶片之材料性質 40
表4.3 靈敏度與線性度(3V偏壓) 43
表4.4 輸出電壓值 47
表4.5 靈敏度與非線性度之比較(3V偏壓) 50
表5.1 PDMS薄膜詳細製程參數 70
表5.2 不同封裝製程整體比較 75
表5.3 三種不同封裝材之5號壓力計性能比較 77
表6.1 CMOS後製程應用於微機電技術文獻整理 85
表6.2 壓阻式壓力計之尺寸比較 92
表6.3 壓力計之性能指標評比 93
表6.4 後製程之相應蝕刻液及其比例 96
表7.1 40℃溫差之軸向負載及極限挫曲負載值 111
表7.2 40℃溫差時,懸橋中央之最大變形 112
表7.3 溫差40℃所造成之parylene薄膜變形 114

參考文獻 1. 楊龍杰,『認識微機電』,台中,滄海書局,2001年。
2. R. Feynman, “There’s plenty of room at the bottom,” J. of Micro-electromechanical Systems, v.1, pp.60-66, 1992.
3. R. Feynman, “Infinitesimal machinery,” J. of Micro-electromechanical Systems, v.2, pp.4-14, 1993.
4. 張志誠,『微機電技術』,台北,商周出版社,2002年。
5. Proceedings: IEEE Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, Micro Electro Mechanical Systems, Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'. IEEE, 20-22 Feb., 1989.
6. Y.-C. Tai, L.-S. Fan, and R.S. Muller, “IC-processed micro-motors: design, technology, and testing,” Micro Electro Mechanical Systems, 1989, Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'. IEEE, 20-22 Feb., 1989, Page(s): 1-6.
7. G.T.A Kovacs, N.I. Maluf and K.E. Petersen, “Bulk micromachining of silicon” Proceedings of the IEEE v.86, pp. 1536-1551, 1988.
8. J. M. Bustjllo, R. T. Howe and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, v.86, pp. 1552-1573, 1988.
9. K. R. Williams and R. S. Muller, “Etch rates for micromachining processing,” J. of Micro-electromechanical Systems, v. 5, pp. 256-269, 1996.
10. K. E. Bean, “Anisotropic etching of silicon,” IEEE Trans. Electron Devices, v. ED-25, pp. 1185-1193, 1978.
11. H. Seidel, “The mechanism of anistotropic silicon etching and its relevance for micromachining,” Proc. Transducers '87, Rec. 4th Int. Conf. Solid-State Sensors and Actuators, Tokyo, Japan, pp. 120-125, June 2–5, 1987.
12. D. E. Ibbotson, J. A. Mucha, D. A. Flamm, and J. M. Cook, “Plasmaless dry etching of silicon with fluorine-containing compounds,” J. Appl Phys., v.56, pp. 2939-2942, 1984.
13. J. W. Coburn and H. F. Winters, “Plasma etching—A discussion of mechanisms,” J. Vac. Sci. Technol., v.16, pp. 391-403, 1979.
14. H. A. Waggener, “Electrochemically controlled thinning of silicon,” Bell System technical journal, v.49, pp. 473-475, 1970.
15. E. D. Palik, J. W. Faust Jr., H. F. Gray, R. F. Greene, “Study of the etch-stop mechanism in silicon,” Journal of the Electrochemical Society, v.129, pp. 2051-2059, 1982.
16. B. Kloeck, S. D. Collins, N. F. de Rooij and R. L. Smith, ”Study of electrochemical etch-stop for high-precision thickness control of silicon membranes,” IEEE Transactions on Electron Devices, v.36, pp. 663-669, 1989.
17. H. Seidel, L. Csepregi, A. Heuberger and H. Baumgaertel, “Anisotropic etching of crystalline silicon in alkaline solutions. II. Influence of dopants,” Journal of the Electrochemical Society, v.137, pp. 3626-3632, 1990.
18. P.-Z. Chang and L.-J. Yang, “A method using V-grooves to monitor the thickness of silicon membrane with μm resolution,” J. of Micromechanics and Microengineering, v.8, pp. 182-187, 1998.
19. W.-C. Lin and L.-J. Yang, “A liquid-based gravity-driven etching-stop technique and its application to wafer level cantilever thickness control of AFM probes,” J. of Micromechanics and Microengineering, v.15, pp. 1049-1054, 2005.
20. H. C. Nathanson, W. E. Newell, R. A. Wickstrom, and J. R. Davis Jr., “The resonant gate transistor,” IEEE Trans. Electron Devices, v.ED-14, pp. 117-133, 1967.
21. R. T. Howe and R. S. Muller, “Polycrystalline silicon micromechanical beams,” Proc. Electrochemical Society Spring Meeting, Montreal, Quebec, Canada, pp. 184-185, May 9–14, 1982.
22. R. T. Howe and R. S. Muller, “Polycrystalline silicon micromechanical beams,” J. Electrochem. Soc., v.130, pp. 1420-1423, 1983.
23. R. T. Howe and R. S. Muller, “Resonant microbridge vapor sensor,” IEEE Trans. Electron Devices, v.ED-33, pp. 499-507, 1986.
24. C. S. Smith, “Piezoresistance effect in germanium and silicon,” Physical Review, v.94, pp. 42-49, 1954.
25. J. C. Sanchez, “Semiconductor strain-gage pressure sensors,” Instruments and Control Systems, pp. 117-120, 1963.
26. A. C. M. Gieles and G. H. J. Somers, “Miniature pressure transducers with a silicon diaphragm,” Philips Technical Review, v.33, pp. 14-20, 1973.
27. W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: reviews and recent developments,” Smart Materials and Structures, v.6, pp.530-539, 1997.
28. H. Takao, M. Yawata, K. Sawada and M. Ishida, “Two-dimensional silicon smart tactile image-sensor with single sensing diaphragm actuated by vibrating pressure for simultaneous detection of force and object hardness distributions,” Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2006, pp. 602-605.
29. C. Pramanik, H. Saha and U. Gangopadhyay, “Design optimization of a high performance silicon MEMS piezoresistive pressure sensor for biomedical applications,” J. of Micromechanics and Microengineering, v.16, pp. 2060-2066, 2006.
30. G. Darlinski, U. Böttger, R. Waser, H. Klauk, M. Halik, U. Zschieschang, G. Schmid and C. Dehm, “Mechanical force sensors using organic thin-film transistors,” J. of Applied Physics, v.97, pp.1-4, 2005.
31. A. Manz, N. Graber and H. M. Widmer, “Miniaturized total chemical analysis systems. A novel concept for chemical sensing,” Sensors and Actuators, B: Chemical, v.B1, pp. 244-248, 1990.
32. W. J. Spencer, W. T. Corbett, L. R. Dominguez and B. D. Shafer, “An electronically controlled piezoelectric insulin pump and valves,” IEEE Transactions on Sonics and Ultrasonics, v.25, pp. 153-156, 1978.
33. H.T.G. Van Lintel, F.C.M. Van De Pol and S. Bouwstra, “Piezoelectric micropump based on micromachining of silicon,” Sensors and actuators, v.15, pp. 153-167, 1988.
34. H. Kahn, M.A. Huff and A.H. Heuer, “The TiNi shape-memory alloy and its applications for MEMS,” J. of Micromechanics and Microengineering, v.8, pp. 213-221, 1998.
35. S. K. Clark and K. D. Wise, “Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors,” IEEE Transactions on Electron Devices, v.ED-26, pp. 1887-1896, 1979.
36. 楊龍杰,“半導體微型加速度計及其相關技術之研究”,國立台灣大學應用力學研究所博士論文,民國八十六年一月。
37. Mario Di Giovanni, Flat and Corrugated Diaphragm Design Handbook, Marcel Dekker, INC. New York and Basel.
38. S. Timoshenko and S. Woinowsky-Krieger, “Theory of plates and shells.” McGraw-Hill, New York, 1959.
39. S.M. Sze, Semiconductor Sensor, Wiley, 1994.
40. ANSYS user guide.
41. Yamada, K., Nishihara, M., Shimada, S., “Nonlinearity of the Piezoresistance Effect of p-Type Silcon Diffused Layers,” IEEE Transactions on Electron Devices, Vol.ED-29, no.1, pp71-77 (1982)
42. David Burns, ”Doctorial Dissertation”, Department of Materials Science, University of Wisconsin, Madison (1988)
43. H. Sandmaier, K. Kuhl, “Piezoresistive Low-Pressure Sensor with high Sensitivity and High Accuracy,” Sensors and Actuators A, v.21, pp.142-145 (1990).
44. O.N. Tufte, P.W. Chapman, D. Long, “Silicon Diffusion-Element Piezoresistive Diaphragms,” Journal of Applied Physics, Vol.33, no.11, pp3322-3327 (1962).
45. V. Stankevic, C. Simkevicius, “Application of Aluminum Films as Temperature Sensors for the Compensation of Output Thermal Shift of Silicon Piezoresistive Pressure Sensors,” Sensors and Actuators A, v.71, pp.161-166 (1998).
46. 鄭金郎,新型SOI-like 壓力計之設置作測試與應用,碩士論文,淡江大學機械工程系,台北,2001。
47. K. Sato, M. Shikida, Y. Matsushima, “Characterization of orientation-dependent Etchoing Properties of Single-Crystal Silicon: Effect of KOH Concentration,” Sensors and Actuators, A 64, p87-93 (1998).
48. Marc Madou, Fundamentals of MICROFABRICATION, CRC Press, New York, pp. 200~204.
49. T. N. Jackson, M. A. Tischler and K. D. Wise, “Electrochemical p-n junction etch-stop for the formation of silicon micro-structures,” IEEE Electron Device Letter, v.EDL-2, pp. 44-45, 1981.
50. L.-J. Yang and S.-W. Kang, “The SOI-like method od reduceing the die size of bulk-micromachined sensors,” Sensors and Materials, v.14, pp.23-24, 2002.
51. L.-J. Yang, H.-H. Wang, W.-H. Liao, H.-W. Huang and C.-C. Chang, “The testing machine for micro-sensors subjected to different states of pressure and temperature,” IEEE Proc. ICM2005, IEEE, Taipei, 2005, p.805-810.
52. J. B. Nysaether, A. Larsen, B. Liverod and P. Ohlchers, “Measurement of packagine-induced stress and thermal zero shift in transfer molded silicon piezoresistive pressure sensors,” J. of Micromechanics and Microengineering, v.8, pp. 168-171, 1998.
53. K. Schjolberg- henriksen, G. U. Jensen et al, “Sodium contamination in integrated MEMS packaged by anodic bonding,” IEEE Proc. MEMS’03, pp. 626-629, 2003.
54. D. Armani, C. Liu and N. Aluru, “Re-configurable fluid circuits by PDMS elastomer micromachining,” IEEE Proc. MEMS’99, pp. 222-227(1999).
55. G. Wallis and D. I. Pomerantz, “Field assisted glass-metal sealing,” J. Appl. Phys., v.40, pp. 3946-3949, 1969.
56. P. Krause, M. Sporys et al, “Silicon to silicon anodic bonding using evaporated glass,” TRANSDUCERS '91, 24-27 June, pp. 978 – 981, 1991.
57. A. Berthold, L. Nicola et al, “Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers,” Sensors and Actuators A, v.82, pp. 224-228, 2000.
58. W. H. Ko, J. T. Suminto, and G. J. Yeh, “Bonding techniques for microsensor, micromachining and micropackaging of transducers,” Elsevier Science Publishing, NY, pp41-61, 1985.
59. J. H. Quenzer, W. Benecke, “Low-temperature silicon wafer bonding”, Sensors and Actuators A, v.32, pp. 340-344, 1992.
60. W. P. Eaton, S. H. Risbud, and R. L. Smith, “Silicon wafer-to-wafer bonding at T< 200 degree C with polymethylmethacrylate,” Appl. Phys. Lett., v.65, pp. 439-441, 1994.
61. Q.Y. Tong, U. Gasele, “A model of low temperature wafer bonding and its applications,” J. Electrochem Soc., v.146, 1773-1779, 1996.
62. Sihai Chen, Mingxiang Chen et al, “Research on wafer scale bonding method based on gold-tin eutectic solders [MEMS packaging],” Proc. Electronic Packaging Technology, 28-30, pp. 187-189, 2003.
63. J C Lötters, W Olthuis, P H Veltink and P Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. of Micromechanics and Microengineering, v.7, pp. 145-147, 1997.
64. M. A. Eddings amd B. K. Gale, “A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices,” J. of Micromechanics and Microengineering, v.16, pp. 2396-2402, 2006.
65. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman and I. Pinnau, ” Gas sorption, diffusion, and permeation in poly(dimethylsiloxane),” J. of Polymer Science, Part B: Polymer Physics, v.38, pp. 415-434, 2000.
66. M. Parameswaran, H. P. Baltes, L. Ristic, A. C. Dhaded and A. M. Robinson, “A new approach for the fabrication of micromechanical structures,” Sensors and Actuators, v.19, pp. 289-307, 1989.
67. H. P. Baltes, O. Paul and O. Brand, “Micromachined thermally based CMOS microsensors,” Proc. IEEE 86 (1998) 1660-1678.
68. P. J. French, P. T. J. Gennissen and P. M. Sarro, “New silicon micromachining techniques for microsystem,” Sensors and Actuators A, v.62, pp. 652-662, 1997.
69. T. Scjeiter, H. Kapels, K. G. Oppermann, M. Steger, C. Hierold, W. M. Werner and H. J. Timme, “Full integration of a pressure sensor into a standard BiCMOS process,” Sensors and Actuators A, v.67, pp. 211-214, 1998.
70. D. Wijngaards, M. Bartek and R. F. Wolffenbuttel, “Silicon IC process compatible thin metal film post-process module,” Sensors and Actuators A, v.68, pp. 419-428, 1998.
71. D. F. Guillou, S. Santhanam and R. Carley, “Laminated sacrificial – poly MEMS technology in standard CMOS,” Sensors and Actuators A, v.85, pp. 346-355, 2000.
72. H. Baltes and O. Brand, “CMOS-based microsensors and packaging,” Sensors and Actuators A, v.92, pp. 1-9, 2001.
73. J. T. Horstmann and K. F. Goser, “Monolithic integration of a silicon micromirror in combination with the CMOS drive circuit on one chip,” Microelectronic Engineering, v.67, pp. 390-396, 2003.
74. H. Dadaicevs, M. Kandler, Y. Manoli, W. Mokwa and E. Spiegel, “Surface micromachined pressure sensors with integrated CMOS readout electronics,” Sensors and Actuators A, v.43, pp. 157-163, 1994.
75. G. K. Fedder, S. Santhanam, M. L. Reed, S. C. Eagle, D. F. Guillou, M. S. C. Lu and L. R. Carley, “Laminated high-aspect ratio microstructures in a conventional CMOS process,” Sensors and Actuators A, v.57, pp. 103-110, 1997.
76. C. L. Dai and P. Z. Chang, “A CMOS Surfaced Micromachined Pressure Sensor”, Journal of the Chinese Institute of Engineers, v.22, pp. 375-380, 1999.
77. G. Zhang, H. Xie, L. deRosset and G. K. Fedder, “A lateral capacitive CMOS accelerometer with structure curl compensation,” Proc. Tech. Dig. 12th IEEE International Conference on Micro Electro Mechanical Systems – MEMS’99 (1999) 606-611.
78. H. Xie and G. K. Fedder, “A CMOS z-axis accelerometer with capacitive comb-finger sensing,” Proc. Tech. Dig. 13th IEEE International Conference on Micro Electro Mechanical Systems – MEMS 2000 (2000) 496-501.
79. H. Xie, L. Erdmann, Q. Jing and G. K. Fedder, “Simulation and characterization of a CMOS z-axis microactuator with electrostatic comb drives,” Proc. 2000 International Conference on Modeling and Simulation of Microsystems – MSM 2000 (2000) 181-184.
80. A.V. Chavan and K.D. Wise, “A monolithic fully-integrated vacuum-sealed CMOS pressure sensor,” IEEE Transactions on Electron Devices, v.49, pp.164-169, 2002.
81. T. Salo, T. Vancura, O. Brand and H. Baltes, “CMOS-based sealed membranes for medical tactile sensor array,” Proc. IEEE MEMS’03 (2003) 590-593.
82. H. Takao, K. Sawada and M. Ishida, “Silicon smart tactile image sensor with pneumatically swollen single diaphragm structure,” Proc. of IEEE MEMS 2004, Maastricht, Netherlands, pp. 846-849, January 2004.
83. L. J. Yang, C. C. Lai, C. L. Dai and P. Z. Chang, “A piezoresistive micro pressure sensor fabricated by commercial DPDM CMOS process,” Tamkang Journal of Science and Engineering, v.8, pp. 67-73, 2005.
84. P. J. French and A. G. R. Evans, “Polycrystalline silicon strain sensors,” Sensors and Actuators, v.8, pp. 219-225, 1985.
85. A. Dehe, K. Fricke, K. Mutamba and H.L. Hartnagel, “Piezoresistive GaAs pressure sensor with GaAs/AlGaAs membrane technology,” Journal of Micromechanics and Microengineering, v.5, pp. 139-142, 1995.
86. T. Lisec, M. Kreutzer and B. Wagner, “Surface micromachined piezoresistive pressure sensors with step-type bent and flat membrane structures,” IEEE Transactions on Electron Devices, v.43, pp. 1547-1552, 1996.
87. C.-H. Wu, C.A. Zorman and M. Mehregany, “Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure sensors for high temperature applications,” IEEE Sensors Journal, v.6, pp.316-324, 2006.
88. L.-J. Yang, J.-M. Wang and Y.-L. Huang, “The micro ion drag pump using indium-tin-oxide (ITO) electrodes to resist aging,” Sensors and Actuators A, v.111, pp. 118-122, 2004.
89. Jan Noordegraaf, et al., ”C-shield parylene allows major weight saving for EM shielding of microelectronic,” The First IEEE International Symposium on Polymeric Packaging, 1997, pp.190~196.
90. http://www.paryleneengineering.com/
91. X. Yang, J. M. Yang, Y. C. Tai and C. M. Ho, “Micromachined membrane particle filters,” Sensors and Actuators A, v.73, 1999, pp.184~191.
92. K. Minami, H. Morishita and M. Easash, “A bellows-shape electrostatic microactuator,” Sensors and Actuators A, v.72, pp.269~276, 1999.
93. X. Q. Wang and Y. C. Tai, “A normally closed in-channel micro check valve,” Proceeding of 13TH IEEE MEMS, January 23-27, 2000, pp.614~617.
94. K. Walsh, J. Norville and Y. C. Tai, “Photoresist as a sacrificial layer by dissolution in acetone,” Proceeding of the 14TH IEEE MEMS, 2001, pp.114~117.
95. L. J. Yang, T. J. Yao, Y. L. Huang, Y. Xu and Y. C. Tai, “Marching velocity of capillary meniscuses in microchannels,” Proceeding of the 15TH IEEE MEMS, Jan 20-24, 2002, pp.93~96.
96. Y. Mizuno, M. Liger and Y. C. Tai, “Nanofluidic flowmeter using carbon sensing element,” Proceeding of the 17TH IEEE MEMS, Jan 25-29, 2004, pp.322~325.
97. J. W. L. Zhou, H. Y. Chan, T. K. H. To, K. W. C. Lai and Wen J. Li, “Polymer MEMS actuators for underwater micromanipulation,” IEEE/ASME Transactions on Mechatronics, v.9, pp.334~342, 2004.
98. http://www2.acae.cuhk.edu.hk/~cmns/
99. H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon and E. G. Lovell, “Thermo-magnetic metal flexure actuators,” Tech. Dig. Solid-State Sen. Act. Workshop, Hilton Head Island, SC, June 22-25, 1992, pp.73~75.
100. W. C. Chen, C. C. Chu, J. Hsieh, and W. Fang, “A Reliable Single-layer Out-of-plane Micromachined Thermal Actuator,” Sensors and Actuators A, v.103, pp. 48~58, 2003.
101. T. Seki, M. Sakata, T. Nakajima and M. Matsumoto, “Thermal Buckling Actuator for Micro Relays,” Transducers’97, Vol. 2, pp.1153~1156.
102. Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technology Letters, v.17, pp. 447-449, 2005.
103. S. B. Lang, B. D. Sollish, M. Moshitzky and E. H. Frei, “Model of a PVDF piezoelectric transducer for using in biomedical studies,” Ferroelectrics, v.24, pp. 289-292, 1979.
104. J. Dargahi, “Piezoelectric and pyroelectric transient signal analysis for detection of the temperature of a contact object for robotic tactile sensing,” Sensors and Actuators A, v.71, pp. 89-97, 1998.
105. J. Dargahi, “Piezoelectric tactile sensor with three sensing elements for robotic, endoscopic and prosthetic applications,” Sensors and Actuators A, v.80, pp. 23-30, 2000.
106. J. Dargahi, M. Parameswaran and S. Payandeh, “Micromachined piezoelectric tactile sensor for an endoscopic grasper - theory, fabrication and experiments,” Journal of Microelectromechanical Systems, v.9, pp. 329-335, 2000.
107. 楊啟榮,蔡其成,黃信瑀,唐隆綾,“感光型PVDF壓電薄膜之微影與應用特性探討”,第八屆奈米工程暨微系統技術研討會,新竹,(2004)。
108. 蔡英輝,“利用壓電薄膜(PVDF)做為擾動性壓力量測之可行性研究”,碩士論文,淡江大學土木工程系,1990。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-09-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-09-03起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信