淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2807201509553100
中文論文名稱 即時檢測汞離子/胰蛋白酶的液晶感測系統
英文論文名稱 Real-time Liquid Crystal Based Sensor System Detecting for Mercuric ion/Trypsin
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 103
學期 2
出版年 104
研究生中文姓名 林義程
研究生英文姓名 Yi-Cheng Lin
學號 602180134
學位類別 碩士
語文別 中文
口試日期 2015-06-11
論文頁數 75頁
口試委員 指導教授-陳志欣
委員-吳俊弘
委員-廖尉斯
中文關鍵字 液晶  胰蛋白酶  汞離子 
英文關鍵字 Liquid crystal  Trypsin  Mercury ion 
學科別分類 學科別自然科學化學
中文摘要 液晶感測系統 (liquid crystal based sensor system) 是一種具有輕巧、便宜、操作簡單等特性的檢測系統,利用液晶在偏光下排列的不同,產生不同的色彩變化,使用者不具有專業知識也可以判斷實驗結果。
  我們的研究分為兩部分,第一部分為汞離子的檢測,將能夠與汞離子配位的配體添加於液晶,當溶液中含有汞離子時,錯合物於液晶-水溶液界面產生,使液晶方向改變,而液晶的光學訊號會由暗轉為亮。
  第二部分為胰蛋白酶的檢測,我們希望能藉由簡單的修飾方法,將蛋白質修飾於液晶感測器之金屬網格表面,經由水中胰蛋白酶的水解作用,使蛋白質被水解成片段並破壞液晶排列,使液晶產生光學訊號的轉變,此部分我們使用了三種不同的修飾方法作為液晶檢測的比較。
英文摘要 Liquid crystal sensor is a new type of system that is portable, cheaper and simple operation. Liquid crystal is provided a colorful optical signal according to different orientation of liquid crystals. Therefore, even if the user haven’t professional technique that can use the sensor.
We divide into two parts in our research, first part is the detection of mercury ion. We doped the ligand with the liquid crystals that produce complex in aqueous-liquid crystal interface. The optical signal was change from dark to bright. Second part is the detection of trypsin. We modified the protein on the metal grid. Hydrolytic reactions caused optical signal change. In this part, we used three kind of method to modified the protein.
論文目次 目錄
第一章 緒論...1
1-1 液晶感測器...1
1-1-1 液晶...2
1-1-2 液晶感測器檢測機制...5
1-1-3 液晶感測器種類...6
1-1-3-1 固相液晶感測系統...6
1-1-3-2 氣/液相液晶感測系統...8
1-1-3-3 液滴液晶感測系統...12
1-2 汞檢測...14
1-2-1 環境中的汞...14
1-2-2 汞離子的檢測方法...16
1-3 酵素檢測...18
1-3-1 酵素簡介...18
1-3-2 胰蛋白酶...20
1-3-3 胰蛋白酶檢驗方法...20
1-4 研究動機...21
1-5 總結...23
第二章 實驗方法與材料...24
2-1 實驗藥品與器材...24
2-2 實驗儀器...25
2-3 實驗方法...26
2-3-1 製備PDMS培養皿...26
2-3-2 製備DMOAP玻璃...27
2-3-3 清洗TEM金屬網格...27
2-3-4 汞離子部分...28
2-3-4-1 UV-Vis檢測部分...28
2-3-4-1-1 製備UV-Vis過氯酸汞溶液...28
2-3-4-1-2 製備ZT溶液...28
2-3-4-1-3 製備Job plot之ZT與過氯酸汞溶液...28
2-3-4-2 液晶檢測部分...29
2-3-4-2-1 製備含ZT之液晶...29
2-3-4-2-2 製備不同濃度之SDS水溶液...29
2-3-4-2-3 製備不同濃度之過氯酸汞水溶液...29
2-3-4-2-4 製備金屬氯化物水溶液...29
2-3-4-2-5 製備真實水溶液樣品...29
2-3-4-2-6 製備液晶元件...30
2-3-5 胰蛋白酶部分...30
2-3-5-1 製備含10C之液晶...30
2-3-5-2 製備tris buffer...30
2-3-5-3 製備GA固定法之BSA銅網...31
2-3-5-4 製備金硫鍵修飾法之BSA金網...31
2-3-5-5 製備NHS/EDC修飾法之BSA金網...31
2-3-5-6 螢光分子Cy3標定...32
2-3-5-7 製備液晶元件...32
2-3-5-8 偏光顯微鏡之拍攝...33
第三章 結果與討論...34
3-1 汞離子檢測部分...34
3-1-1 UV-Vis結合力測試...34
3-1-2 確認ZT配位位置...37
3-1-3 空白玻璃的液晶訊號...38
3-1-4 液晶於DMOAP玻璃上的訊號...39
3-1-5 液晶於SDS水溶液和DMOAP玻璃上的訊號...40
3-1-6 液晶系統中汞離子檢測機制...42
3-1-7 ZT之靈敏度測試...45
3-1-8 ZT之特異性測試...47
3-1-9 穩定度測試...48
3-1-10 不同的界面活性劑測試...49
3-1-11 真實樣品測試...52
3-2 酵素檢測部分...53
3-2-1 利用GA固定法修飾BSA於銅網...56
3-2-1-1 網格大小對於檢測之影響...57
3-2-1-2 胰蛋白酶濃度對液晶影響之測試...59
3-2-1-3胰蛋白酶之偵測極限...60
3-2-2 利用金硫鍵修飾BSA於金網...61
3-2-3 利用EDC/NHS修飾蛋白質於金網...64
第四章 結論...68
4-1汞離子檢測結論...68
4-2 酵素檢測結論...69
第五章 參考資料...70

圖目錄
圖 1 液晶於偏光下的光學訊號...1
圖 2 5CB結構...4
圖 3 液晶排列與光學訊號之關係圖...6
圖 4 固相液晶感測系統基本架構...8
圖 5 氣/液相液晶系統基本架構與偏光下的成像...9
圖 6 液晶液滴系統液滴內排列與偏光下的成像...13
圖 7 PAA-b-LCP 結構...13
圖 8 MS1結構...17
圖 9 rhodamine 6G-pyridine derivative (RP) 結構...18
圖 10 ZT結構圖...34
圖11 不同當量數的汞離子滴定ZT (50 μM) 之UV曲線...35
圖12 Job plot...36
圖13 Benesi-Hildebrand plot...36
圖14 1NMR (300 MHz) 圖譜...38
圖15 空白玻璃上之液晶訊號...39
圖16 DMOAP結構圖...40
圖17 液晶於水中的訊號...40
圖18 SDS結構圖...41
圖19 在濃度不同之SDS溶液中的液晶變化...42
圖20 液晶對照組...43
圖21 ZT與ZT錯合物加入5CB中之比較圖...44
圖22 ZT檢測汞離子之機制示意圖...45
圖23 0.5% SDS 之汞離子的偵測極限...46
圖24 0.05% SDS之汞離子的偵測極限...46
圖25 ZT於不同離子的檢測...48
圖26 穩定度測試...49
圖27 CTAB結構...49
圖28 tween 20結構...50
圖29 在濃度不同之CTAB溶液中的液晶變化...51
圖30 在濃度不同之tween 20溶液中的液晶變化...51
圖31 在5%之tween 20溶液中的汞離子偵測極限...51
圖32 真實樣品測試...53
圖33 酵素檢測機制示意圖...54
圖34 10C結構...55
圖 35 不同的pH下10C液晶訊號的轉變...56
圖 36 GA增加BSA分子量之機制...57
圖 37 不同濃度的還原劑之液晶訊號...57
圖 38 網格大小對液晶訊號之影響...58
圖 39 胰蛋白酶濃度對於液晶之影響...59
圖40 GA固定法之胰蛋白酶偵測極限...60
圖41 cysteine結構...61
圖42 金硫鍵修飾法...62
圖43 金硫鍵修飾法之胰蛋白酶偵測極限...63
圖44 金硫鍵法BSA經胰蛋白酶水解之螢光訊號...64
圖45 MUA結構...65
圖46 EDC/NHS連結蛋白質的機制...65
圖47 EDC/NHS修飾法之液晶訊號與螢光訊號...66
圖48 EDC/NHS修飾法經胰蛋白酶水解之液晶與螢光訊號...67
參考文獻 1. Kahn, F. J., Taylor, G. N. & Schonhorn, H. Surface-produced alignment of liquid crystals. Proc. IEEE 61, 823-828 (1973).
2. Chen, C.-H. & Yang, K.-L. Functional protease assay using liquid crystals as a signal reporter. Biosens. Bioelectron. 35, 174-179 (2012).
3. Tan, H., Li, X., Liao, S., Yu, R. & Wu, Z. Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation. Biosens. Bioelectron. 62, 84-89 (2014).
4. Chen, C.-H. & Yang, K.-L. A liquid crystal biosensor for detecting organophosphates through the localized pH changes induced by their hydrolytic products. Sens. Actuators B Chem. 181, 368-374 (2013).
5. Chang, C.-Y. & Chen, C.-H. Oligopeptide-decorated liquid crystal droplets for detecting proteases. Chem Commun 50, 12162-12165 (2014).
6. Chen, C.-H. & Yang, K.-L. Liquid crystal-based immunoassays for detecting hepatitis B antibody. Anal. Biochem. 421, 321-323 (2012).
7. Han, G.-R., Song, Y.-J. & Jang, C.-H. Label-free detection of viruses on a polymeric surface using liquid crystals. Colloids Surf. B Biointerfaces 116, 147-152 (2014).
8. He, S., Liang, W., Cheng, K.-L., Fang, J. & Wu, S.-T. Bile acid-surfactant interactions at the liquid crystal/aqueous interface. Soft Matter 10, 4609 (2014).
9. Nandi, R., Singh, S. K., Singh, H. K., Singh, B. & Singh, R. K. Fabrication of liquid crystal based sensor for detection of hydrazine vapours. Chem. Phys. Lett. 614, 62-66 (2014).
10. Liu, D., Hu, Q.-Z. & Jang, C.-H. Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface. Colloids Surf. B Biointerfaces 108, 142-146 (2013).
11. Lowe, A. M. & Abbott, N. L. Liquid crystalline materials for biological applications. Chem. Mater. 24, 746-758 (2012).
12. He, S. et al. Liquid crystal based sensors for the detection of cholic acid. Anal. Methods 5, 4126 (2013).
13. Hunter, J. T., Pal, S. K. & Abbott, N. L. Adsorbate-induced ordering transitions of nematic liquid crystals on surfaces decorated with aluminum perchlorate salts. ACS Appl. Mater. Interfaces 2, 1857-1865 (2010).
14. Zhong, S. & Jang, C.-H. Highly sensitive and selective glucose sensor based on ultraviolet-treated nematic liquid crystals. Biosens. Bioelectron. 59, 293-299 (2014).
15. Ding, X. & Yang, K.-L. Liquid crystal based optical sensor for detection of vaporous butylamine in air. Sens. Actuators B Chem. 173, 607-613 (2012).
16. Zuo, F. et al. An air-supported liquid crystal system for real-time reporting of host-guest inclusion events. Chem. Commun. 50, 1857 (2014).
17. Lee, D.-Y. et al. pH-responsive aqueous/LC interfaces using SGLCP-b-polyacrylic acid block copolymers. Soft Matter 6, 1964 (2010).
18. Khan, M. & Park, S.-Y. Specific detection of avidin-biotin binding using liquid crystal droplets. Colloids Surf. B Biointerfaces 127, 241-246 (2015).
19. Kim, J., Khan, M. & Park, S.-Y. Glucose sensor using liquid-crystal droplets made by microfluidics. ACS Appl. Mater. Interfaces 5, 13135-13139 (2013).
20. Liu, S.-J., Nie, H.-G., Jiang, J.-H., Shen, G.-L. & Yu, R.-Q. Electrochemical sensor for mercury(II) based on conformational switch mediated by interstrand cooperative coordination. Anal. Chem. 81, 5724-5730 (2009).
21. Lee, S., Rao, B. A. & Son, Y.-A. Colorimetric and ‘turn-on’ fluorescent determination of Hg2+ ions based on a rhodamine-pyridine derivative. Sens. Actuators B Chem. 196, 388-397 (2014).
22. Mandal, A. K. et al. recognition of Hg2+ ion through restricted imine isomerization: crystallographic evidence and imaging in live cells. Org. Lett. 14, 2980-2983 (2012).
23. Yu, S.-Y. & Wu, S.-P. A highly selective turn-on fluorescence chemosensor for Hg (II) and its application in living cell imaging. Sens. Actuators B Chem. 201, 25-30 (2014).
24. Hu, L. et al. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens. Bioelectron. 32, 297-299 (2012).
25. Li, H., Zhang, W. & Zhou, H. Electrochemical biosensor based on base-stacking-dependent DNA hybridization assay for protein detection. Anal. Biochem. 449, 26-31 (2014).
26. Dong, M., Qi, H., Ding, S. & Li, M. Electrochemical determination of trypsin using a heptapeptide substrate self-assembled on a gold electrode. Microchim. Acta 182, 43-49 (2015).
27. Wang, H.-H., Xue, L., Yu, C.-L., Qian, Y.-Y. & Jiang, H. Rhodamine-based fluorescent sensor for mercury in buffer solution and living cells. Dyes Pigments 91, 350-355 (2011).
28. Hu, Q.-Z. & Jang, C.-H. Using liquid crystals for the label-free detection of catalase at aqueous-LC interfaces. J. Biotechnol. 157, 223-227 (2012).
29. Du, Y. et al. Surface-enhanced raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange. Anal. Chem. 85, 3160-3165 (2013).
30. Carlton, R. J., Gupta, J. K., Swift, C. L. & Abbott, N. L. Influence of simple electrolytes on the orientational ordering of thermotropic liquid crystals at aqueous interfaces. Langmuir 28, 31-36 (2012).
31. Xie, J., Zheng, Y. & Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131, 888-889 (2009).
32. Hatefi-Mehrjardi, A. Bienzyme self-assembled monolayer on gold electrode: An amperometric biosensor for carbaryl determination. Electrochimica Acta 114, 394-402 (2013).
33. Sosna, M., Fapyane, D. & Ferapontova, E. E. Reconstitution of peroxidase onto hemin-terminated alkanethiol self-assembled monolayers on gold. J. Electroanal. Chem. 728, 18-25 (2014).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-07-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-07-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信