§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2807201414202500
DOI 10.6846/TKU.2014.01169
論文名稱(中文) 使用TS-CMAC控制器調節DC-DC昇降壓式轉換器之輸出電壓
論文名稱(英文) Output Voltage Regulation For DC-DC Buck-Boost Converter Using TS-CMAC Controller
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 李育庭
研究生(英文) Yu-Ting Lee
學號 601460255
學位類別 碩士
語言別 英文
第二語言別
口試日期 2014-07-03
論文頁數 50頁
口試委員 指導教授 - 劉寅春
委員 - 李世安
委員 - 邱謙松
關鍵字(中) 升降壓轉換器
T-S模糊
小腦模型控制
關鍵字(英) Buck-boost converter
T-S Fuzzy
CMAC
第三語言關鍵字
學科別分類
中文摘要
本論文提出一個使用T-S模糊小腦模型控制調節DC-DC升降壓轉換器之輸出電壓。模糊和非線性系統控制是我們實現升降壓轉換器的主要理論。設計T-S模糊小腦控制的靈感來自於PDC設計控制增益和權重值成一個單一的向量擴充與T-S模糊和小腦模型控制的相似, 最後將穩定性分析的問題轉換成線性矩陣不等式(LMIs)的型式並且用Matlab去求解。這種控制方法有三方面的優勢
(1)小腦模型控制提高了初始權重的準確性-小腦模型控制的權重使用來自於PDC設計的LMI解出的控制增益。(2)放寬對系統不確定性的假設-我們放棄去假設一個系統不確定性嚴格上限為已知。(3)基於LMI設計加入了適應能力,讓小腦模型控制允許時變參數在系統中。
英文摘要
We propose a output voltage regulation for DC-DC Buck-Boost converter using Takagi-Sugeno fuzzy cerebellar model articulation control (T-S CMAC). The T-S CMAC design is inspired by the structure similarity of the T-S fuzzy and CMAC where the parallel distributed compensation (PDC) to design control gains and weighting parameter are augmented into a single vector. The stability analysis and controller synthesis are then systematically formulated into linear matrix inequalities (LMIs) and using matlab to solved. The advantages of this approach are three fold, i) increasing accuracy of CMAC initial weights-we assign the initial weights of CMAC using the control gains solved by the LMIs from the PDC design; and ii) relaxes assumption on system uncertainty – we give up the assumption that a strict upper bound on system uncertainly is known, iii) introduces adaptive ability in LMI-based design –lead the CMAC design allows time-varying parameters in the system.
第三語言摘要
論文目次
Abstract in Chinese  I
Abstract in English  II
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Definition and principle of various types of converter . . . . . . . . . . 1
1.1.2 Linear matrix inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.1.3 Fuzzy system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Cerebellar model articulation controller with T-S fuzzy model . . . .5
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Problem Formulation and Motivations . . . . . . . . . . . . . . . . . . . . . . . .14
1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 DC-DC BUCK-BOOST CONVERTER MATHEMATICAL MODEL . . . . . . . . .15
2.1 DC-DC Buck-Boost Converter Structure . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Averaging method of one time scale discontinuous system . . . . . 17
2.2.2 DC-DC Buck-Boost converter maths model . . . . . . . . . . . . . . . . . . . 18
3 TAKAGI-SUGENO FUZZY CEREBELLAR MODEL ARTICULAI
TION CONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Nominal Tracking Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Overall Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 NUMERICAL SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1 DC-DC Buck-Boost Converter Component Design . . . . . . . . . . . . . . . .30
4.1.1 Inductor section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Capacitor section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 DC-DC Buck-Boost Converter Simulations . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Example 1 (Varying load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Example 2 (Reference voltage variation test) . . . . . . . . . . . . . . . . . . 37
5 PRACTICAL EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Experiment Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6 CONCLUSIONS AND FUTURE WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

List of Figures
1.1 Buck converter circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Boost converter circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.3 CMAC basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.4 CMAC separate each input to each memory region . . . . . . . . . . . . . . . 6
1.5 CMAC structure with T-S fuzzy model . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 System structure of DC-DC Buck-Boost Converter . . . . . . . . . . . . . . . . .16
2.2 MOSFET turn-on condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.3 MOSFET turn-off condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Boundary condition at DC-DC Buck-Boost Converter’s CCM/DCM . . . . .32
4.2 capacitor volatge ripple at DC-DC Buck-Boost Converter’s CCM condition 34
4.3 Output Voltage when Vref = 8v, RLoad = 30Ω. . . . . . . . . . . . . . . . . . . . . .36
4.4 Output Voltage when Vref = 8v, RLoad = 50Ω. . . . . . . . . . . . . . . . . . . . . . 36
4.5 Output Voltage when Vref = 8v, RLoad = 50Ω. . . . . . . . . . . . . . . . . . . .. . .38
4.6 Output Voltage when Vref = 25v, RLoad = 50Ω. . . . . . . . . . . . . . . . . . . . .38
5.1 System structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 DSP card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 DSP I/O box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 TDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Output Voltage when Vin = 15v, Vref = 8v. . . . . . . . . . . . . . . . . . . . . . . . . .43

List of Tables
2.1 Definition of mathematical symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Definition of mathematical symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Parameter of varying load of Buck-Boost converter . . . . . . . . . . . . . . . . . 35
4.3 Parameter of reference voltage variation of Buck-Boost converter . . . . . 37
5.1 Parameter of experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
參考文獻
[1] E. A. J. Dixon, I. Nakashima and M. Ortuzar, “Electric vehicle using a combination of ultracapacitors and zebra battery,” IEEE Transactions on INDUSTRIAL ELECTRONICS, vol. 57, pp. 943–949, 2010.
[2] E. Lefeuvre, D. Audigier, C. Richard, and D. Guyomar, “Buck-boost converter for sensorless power optimization of piezoelectric energy harvester,” IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 2018–2025, Sept 2007.
[3] U. o. T. T. I. . S. M. M. . M. M. H. Babaei, E. ; Fac. of Electr. & Comput. Eng., “Operational modes and output-voltage-ripple analysis and design considerations of buck–boost dc–dc converters,” IEEE Transactions on Industrial Electronics, vol. 59, pp. 381–391, Jan. 2012.
[4] S. D. Mitchell, S. Ncube, T. G. Owen, and M. Rashid, “Applications and market analysis of dc-dc converters,” in 2008. ICECE 2008.International Conference on Electrical and Computer Engineering., Dec 2008, pp. 887–891.
[5] L. Rubino, B. Guida, F. Liccardo, P. Marino, and A. Cavallo, “Buck-boost dc/dc converter for aeronautical applications,” in 2010 IEEE International Symposium on Industrial Electronics (ISIE), July 2010, pp. 2690–2695.
[6] H. T. U. . F. M. Gummi, K. ; Bechtel Corp., “Double-input dc–dc power electronic converters for electric-drive vehicles—topology exploration and synthesis using a single-pole triple-throw switch,” IEEE Transactions on Industrial Electronics, vol. 57, pp. 617–623, 2010.
[7] V. Jha and P. Rai, “State space averaged modeling of basic converter topologies,” Eletrical, Electronics and Communication Engineering VSRD-IJEECE, vol. 2 (8), pp. 566–575, 2012.
[8] V. Tahani and F. Sheikholeslam, “Stability analysis and design of fuzzy control systems,” in The 1998 IEEE International Conference on Fuzzy Systems Proceed- 46 ings, 1998. IEEE World Congress on Computational Intelligence., vol. 1, May 1998, pp. 456–461 vol.1.
[9] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory. Society for Industrial Mathematics, 1994, vol. 15.
[10] L. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–353, 1965.
[11] R. Isermann, “On fuzzy logic applications for automatic control, supervision, and fault diagnosis,” IEEE Transactions on Systems, Man and Cybernetics, Part A Systems and Humans, vol. 28, no. 2, pp. 221–235, Mar 1998.
[12] F. S. Lin, “Integral fuzzy control and application on power converter,” Master’s thesis, CYCU, 2003.
[13] M. H. Rashid, “Devices, and applications’’ electrical computer engineering university of west florida.” Power Electronics Circuits, 2004.
[14] ——, “Devices and applications, 2d edition.” Power Electronics Circuits, 1993. 
[15] M. H. E. Rashid, “Devices, circuits, and applications. florida: Elsevier inc.” Power Electronics Handbook, 2007.
[16] C. S. Middlebrook, R. D., “A general unified approach to modeling switching converter power stages„” IEEE Power Electronics Specialists Conference Record, pp. 18–34, 1976.
[17] D. M. Mitchell, “Switching regulator analysis,” McGraw-Hill, 1988.
[18] G. Wester and R. Middlebrook, “Low-frequency characterization of switched dc-dc converters,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-9, no. 3, pp. 376–385, May 1973.
[19] V. Vorperian, “Simplified analysis of pwm converters using model of pwm switch. ii. discontinuous conduction mode,” IEEE Transactions on Aerospace and Electronic Systems, vol. 26, no. 3, pp. 497–505, May 1990. 47
[20] M. Clique and A. Fossard, “A general model for switching converters,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-13, no. 4, pp. 397–400, July 1977.
[21] R. R. S. N. O. Kislovski, A. S., “Dynamic analysis of switching mode dc/dc converters,” Van Nostrand Reinhold, ISBN 0-442-23916-5., 1991.
[22] R. Tymerski, “Frequency analysis of time-interval-modulated switched networks,” IEEE Transactions on Power Electronics, vol. 6, no. 2, pp. 287–295, Apr 1991. [23] ——, “Application of the time-varying transfer function for exact small-signal analysis,” IEEE Transactions on Power Electronics, vol. 9, no. 2, pp. 196–205, Mar 1994.
[24] M. Amin and O. Mohammed, “Development of high-performance grid-connected wind energy conversion system for optimum utilization of variable speed wind turbines,” IEEE Transactions on Sustainable Energy, vol. 2, no. 3, pp. 235–245, July 2011.
[25] G. Pannell, D. Atkinson, and B. Zahawi, “Analytical study of grid-fault response of wind turbine doubly fed induction generator,” IEEE Transactions on Energy Conversion, vol. 25, no. 4, pp. 1081–1091, Dec 2010.
[26] H. Wang, C. Nayar, J. Su, and M. Ding, “Control and interfacing of a gridconnected small scale wind turbine generator,” in Power Engineering Conference, 2009. AUPEC 2009. Australasian Universities, Sept 2009, pp. 1–5.
[27] S. Alepuz, S. Busquets-Monge, J. Bordonau, J. Martinez-Velasco, C. Silva, J. Pontt, and J. Rodriguez, “Control strategies based on symmetrical components for grid-connected converters under voltage dips,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2162–2173, June 2009.
[28] W. Hu, Z. Chen, Y. Wang, and Z. Wang, “Flicker mitigation by active power control of variable-speed wind turbines with full-scale back-to-back power con- 48 verters,” IEEE Transactions on Energy Conversion, vol. 24, no. 3, pp. 640–649, Sept 2009.
[29] B. Liu, X. Yang, Y. Zhang, H. Ye, and F. Kong, “A new control strategy combing pi and quasi-pr control under rotate frame for three phase grid-connected photovoltaic inverter,” in 2011 IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE ECCE), May 2011, pp. 882–888.
[30] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-15, no. 1, pp. 116–132, Jan 1985.
[31] K.-Y. Lian, T.-S. Chiang, C.-S. Chiu, and P. Liu, “Synthesis of fuzzy model-based designs to synchronization and secure communications for chaotic systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 31, no. 1, pp. 66–83, Feb 2001.
[32] H. Lam, F. H. F. Leung, and P.-S. Tam, “Fuzzy control of dc-dc switching converters based on ts modeling approach,” in 1998. IECON ’98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, vol. 2, Aug 1998, pp. 1052–1054 vol.2.
[33] K. Tanaka, T. Kosaki, and H. Wang, “Backing control problem of a mobile robot with multiple trailers: fuzzy modeling and lmi-based design,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 28, no. 3, pp. 329–337, Aug 1998.
[34] J. S. Albus, “A new approach to manipulator control: The cerebellar model articulation controller,” 1975.
[35] C. shin Lin and C.-T. Chiang, “Learning convergence of cmac technique,” IEEE Transactions on Neural Networks, vol. 8, no. 6, pp. 1281–1292, Nov 1997. 49
[36] Y. Kim and F. Lewis, “Optimal design of cmac neural-network controller for robot manipulators,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 30, no. 1, pp. 22–31, Feb 2000.
[37] S. Bahravar, H. Mahery, E. Babaei, and M. Sabahi, “Mathematical modeling and transient analysis of dc-dc buck-boost converter in ccm,” in 2012 IEEE 5th India International Conference on Power Electronics (IICPE), Dec 2012, pp. 1–6.
[38] Y.-H. Chang, “Design and analysis of multistage multiphase switched-capacitor boost dc-ac inverter,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 1, pp. 205–218, 2011.
[39] K.-Y. Lian, C.-S. Chiu, T.-S. Chiang, and P. Liu, “Lmi-based fuzzy chaotic synchronization and communications,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 539–553, 2001.
[40] J. Sun and H. Grotstollen, “Averaged modelling of switching power converters: Reformulation and theoretical basis,” in 1992. PESC’92 Record., 23rd Annual IEEE Power Electronics Specialists Conference. IEEE, 1992, pp. 1165–1172.
[41] C. shin Lin and C.-T. Chiang, “Learning convergence of cmac technique,” IEEE Transactions on Neural Networks, vol. 8, no. 6, pp. 1281–1292, 1997.
[42] R.-J. Wai and L.-C. Shih, “Design of voltage tracking control for dc-dc boost converter via total sliding-mode technique,” IEEE Transactions on Industrial Electronics,
vol. 58, no. 6, pp. 2502–2511, 2011.
[43] H. Wang, K. Tanaka, and M. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, pp. 14–23, 1996. 50
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信