§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2807201113581900
DOI 10.6846/TKU.2011.01021
論文名稱(中文) 直接甲醇燃料電池微幫浦與輕量化集電片之設計與製作
論文名稱(英文) Design and Fabrication of micro pumps and light weight current collectors applied on the Direct Methanol Fuel Cell
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系博士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 宋旻峰
研究生(英文) Min-Feng Sung
學號 895370020
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2011-06-13
論文頁數 153頁
口試委員 指導教授 - 李世鳴(061503@mail.tku.edu.tw)
共同指導教授 - 管衍德(ydkuan@ncut.edu.tw)
委員 - 吳宗信(chongsin@faculty.nctu.edu.tw)
委員 - 牛仰堯(yniu@chu.edu.tw)
委員 - 陳增源(tychen@mail.tku.edu.tw)
委員 - 陳慶祥(cschen@mail.tku.edu.tw)
委員 - 李世鳴(061503@mail.tku.edu.tw)
關鍵字(中) 直接甲醇燃料電池
微機電
微幫浦
FR4玻璃纖維
輕量化
關鍵字(英) Direct Methanol Fuel Cell
Micro Electro Mechanical Systems
Micro Pump
FR4 Glass/Epoxy
Lightweight
第三語言關鍵字
學科別分類
中文摘要
直接甲醇燃料電池(Direct Methanol Fuel Cell, DMFC)使用甲醇溶液為液態燃料,為了維持DMFC穩定性與效能,常使用主動式液態幫浦將燃料輸送至DMFC中。然而幫浦所消耗的功率將影響DMFC系統的總輸出效率,因此本研究擬設計與製作出適合應用至DMFC之磁力式與隔薄膜氣液式兩款微幫浦,其中磁力式微幫浦的低操作電壓與電流,在應用至微型燃料電池充電系統,可以有效地降低系統對幫浦消耗功率的需求,進而提升整體系統的效率。隔薄膜氣液式微幫浦則可以同時帶動陽極的液體燃料與陰極的氣體,若將其應用在小型DMFC系統時,有助於系統的微型化。
此外,DMFC所使用之集電片或雙極板的材質與重量,影響了DMFC系統的體積與微型化,因此本論文擬應用微機電製程(Micro Electro Mechanical Systems, MEMS)中常見的熱蒸鍍技術(Thermo coater technique),將FR4玻璃纖維基材表面鍍上金屬薄層,以製作出圓盤狀輕量化集電板。研究中所開發出的圓盤狀輕量化集電板具有低成本、輕量化、與設計多樣性等優點,相當適合應用至微型燃料電池。最後本論文將結合所開發出的微幫浦、圓盤狀輕量化集電板與直流升壓電路,完成一款可攜式DMFC充電系統。
英文摘要
Direct methanol fuel cells (DMFC) adopt a methanol solution as the liquid fuel. To maintain the stability and performance of DMFCs, an active liquid pump is typically used to supply fuel to the DMFCs. However, the power consumption of the pump affects the total efficiency of a DMFC system. Therefore, this research aims to design and fabricate both a magnetic micro pump and a diaphragm liquid/air micro pump suitable for direct use with methanol fuel cells. When applied to small DMFC charger systems, the low operation voltage and low current characteristics efficiently reduce the power consumption of the system and increase the efficiency of the entire system.
The diaphragm liquid/air micro pump can drive anode liquid fuel and cathode air simultaneously. If applied to small DMFC systems, it can facilitate system miniaturization.
Additionally, the material and weight of the current collector on the bipolar plates adopted in DMFCs will affect the volume and miniaturization of DMFCs. Therefore, this thesis applies the thermal coating technique, which is widely used in microelectromechanical systems (MEMS), to construct the circular lightweight current collectors by coating thin films on FR4 glass/epoxy substrate surfaces.
The current collector developed in this research has the advantages of being low cost and lightweight with a flexible design, making it suitable for micro fuel cell applications. Finally, this thesis integrates the developed micro pumps, the circular light weight current collectors, and the boost circuit to construct a DMFC charge system.
第三語言摘要
論文目次
目錄
第一章 序論	
1-1 前言..............................................	1
1-2 問題探討與研究方法................................	3
第二章 燃料電池背景與文獻回顧	
2-1 微型燃料電池......................................	6
2-1.1 PCB製程.........................................	6
2-1.2 被動式微型燃料電池..............................	9
2-1.3 具微機電製程之微型燃料電池......................	11
2-1.4 微型燃料電池搭配升壓電路的運用..................	13
2-1.5 小結............................................	14
2-2 微機電製程應用於燃料電池之相關研究................	16
2-3 微幫浦之種類與運作原理............................	23
2-3.1 磁力式微幫浦....................................	23
2-3.2 熱致動式微幫浦..................................	27
2-3.3 隔薄膜式微幫浦..................................	30
2-3.4 氣致動式微幫浦..................................	31
2-3.5 小結............................................	34
2-4 集電板製程回顧....................................	36
2-4.1 PCB製程之雙極板或集電片.........................	36
2-4.2 金屬材質之集電片或雙極板........................	38
2-4.3 複合材料材質集電片或雙極板......................	41
2-4.4 小結............................................	42
第三章 圓盤狀輕量化集電板的設計與製作	
3-1 集電板之構造......................................	44
3-2 單電池集電板設計與製作............................	46
3-2.1 基板與幾何設計..................................	46
3-2.2 導電層與抗腐蝕層製作............................	48
3-3 電池組集電板設計與製作............................	55
3-3.1 幾何設計........................................	55
3-3.1.1 第一款集電版..................................	55
3-3.1.2 第二款集電版..................................	59
3-3.1.3 第三款集電版..................................	63
3-3.1.4 第四款集電版..................................	66
3.3.2 疊層設計........................................	67
3-3.3 PDMS墊片製作....................................	71
第四章 適用於DMFC之微幫浦設計與製作	
4-1 磁力式微幫浦設計與製作............................	73
4-1.1 第一款磁力式微幫浦..............................	73
4-1.2 第二款磁力式微幫浦..............................	76
4-1.3 磁力式微幫浦運作原理............................	77
4-2 隔膜氣/液式微幫浦設計與製作.......................	79
4-2.1 微幫浦製作流程..................................	79
4-2.2 隔膜氣/液式微幫浦運作原理.......................	83
第五章 實驗原理與方法	
5-1 實驗平台架設......................................	88
5-2 圓盤狀輕量化集電板之電性測量......................	90
5-2.1 輕量化圓盤狀單電池集電板效能驗證................	90
5-2.2 輕量化圓盤狀電池組集電板效能驗證................	94
5-3 磁力式微幫浦性能測量與單電池效能探討..............	96
5-4 隔膜氣液式微幫浦性能測量與單電池效能探討..........	100
5-5 可攜式燃料電池充電系統效能與轉換效率測試..........	101
第六章 實驗結果與討論	
6-1 圓盤狀輕量化集電板之效能探討......................	103
6-1.1 單電池效能測試..................................	103
6-1.2 電池組效能測試..................................	105
6-2 磁力式微幫浦之效能探討............................	114
6-2.1 第一款磁力式微幫浦性能測試......................	114
6-2.2 第二款磁力式微幫浦性能測試......................	118
6-2.3 具磁力式微幫浦之燃料電池單電池/電池組效能測試...	119
6-3 隔薄膜氣液式微幫浦之效能探討......................	122
6-3.1 隔薄膜氣液式微幫浦性能測試......................	122
6-3.2 具隔薄膜氣液式微幫浦之燃料電池單電池/電池組效
      能測試..........................................	124
6-4 具兩款微幫浦之電池組搭配升壓晶片之測試............	126
第七章 結論與未來展望	
7-1 結論..............................................	129
7-2 未來展望..........................................	135
參考文獻..............................................	136
著作目錄..............................................	147
附錄	
附錄1本論文所製作的磁力式微幫浦參加2010台北國際發明展
      獲銀牌獎........................................	152
附錄2本論文所製作的磁力式微幫浦參加2010德國紐倫堡國際 
      發明展獲銀牌獎..................................	153

表目錄
表6-1 圓盤狀輕量化單電池集電板的面電阻之阻抗量測結果..	105
表6-2 3Cell電池組使用一般導線之各顆電池負載電壓差異表..110
表6-3 3Cell電池組使用銅導片之各顆電池負載電壓差異......111
表6-4 第一款磁力式微幫浦消耗功率表....................	115
表6-5 第二款磁力式微幫浦消耗功率表....................	118
表6-6 隔薄膜氣液式微幫浦在不同電容組合下所產生的時間差	123
表6-7 隔薄膜氣液式微幫浦在不同電容搭配所產生的流量....	124
表6-8 磁力式微幫浦搭配升壓晶片TPS61202的轉換效率......	126
表6-9 隔薄膜氣液式微幫浦搭配升壓晶片TPS61202的轉換效率	126
表7-1 圓盤狀輕量化集電板與其他集電板比較表............	130
表7-2 磁力式與隔薄膜氣液式微幫浦的流量與操作電壓一覽表	132

圖目錄
圖1-1 本研究之研究架構圖..............................	4
圖3-1 輕量化集電板構造圖..............................	45
圖3-2 複合材料照片....................................	45
圖3-3 銅與鎳靶材顆粒..................................	45
圖3-4 圓盤狀輕量化集電板幾何設計圖....................	46
圖3-5 圓盤狀輕量化集電板照片..........................	47
圖3-6 圓盤狀輕量化集電板製作流程......................	47
圖3-7 鎢舟照片........................................	49
圖3-8 熱蒸鍍機照片....................................	50
圖3-9 熱蒸鍍機之中的高真空腔體照片....................	50
圖3-10 熱蒸鍍機開機流程...............................	52
圖3-11 熱蒸鍍機關機流程...............................	54
圖3-12 第一款圓盤狀輕量化電池組集電板成品.............	56
圖3-13a 第一款圓盤狀輕量化電池組之陽極集電板..........	57
圖3-13b 第一款圓盤狀輕量化電池組之陰極集電板..........	58
圖3-14 第一款圓盤狀輕量化電池組集電板遮罩板...........	58
圖3-15a 第二款圓盤狀輕量化電池組集電板之陽極幾何設計..	60
圖3-15b 第二款圓盤狀輕量化電池組集電板之陰極幾何設計..	60
圖3-16 第二款圓盤狀輕量化電池組集電板構造示意圖.......	61
圖3-17 第二款圓盤狀輕量化電池組集電板遮罩板圖片.......	62
圖3-18a 第二款圓盤狀輕量化電池組的陽極集電板成品......	62
圖3-18b 第二款圓盤狀輕量化電池組的陰極集電板成品......	63
圖3-19 第三款圓盤狀輕量化電池組集電板的幾何設計.......	64
圖3-20 第三款圓盤狀輕量化電池組集電板之遮罩板圖片.....	65
圖3-21a 第三款圓盤狀輕量化電池組陽極集電板之實體照片..	65
圖3-21b 第三款圓盤狀輕量化電池組陰極集電板之實體照片..	66
圖3-22 第四款圓盤狀輕量化電池組集電板成品.............	67
圖3-23 具開放式陰極的DMFC電池組之疊層分解圖.........	68
圖3-24 具開放式陰極的DMFC電池組燃料流動示意圖.......	69
圖3-25 具主動式陰極的DMFC電池組之疊層分解圖.........	70
圖3-26 具主動式陰極的DMFC電池組之燃料流動示意圖.....	70
圖3-27 常用於燃料電池防漏性的組件-PTFE墊片............	72
圖3-28 PDMS墊片製作流程圖............................	72
圖4-1 第一款磁力式幫浦分解圖..........................	74
圖4-2 第一款磁力式微幫浦製作流程......................	75
圖4-3 第一款磁力式幫浦實體照片........................	76
圖4-4 第二款磁力式幫浦分解圖..........................	77
圖4-5 第二款磁力式幫浦實體照片........................	77
圖4-6 第一磁力式微幫浦運作示意圖......................	78
圖4-7 第二磁力式幫浦運作示意圖........................	79
圖4-8 隔膜氣/液式微幫浦之壓縮腔體立體分解圖............81
圖4-9 隔膜氣/液式微幫浦之壓縮腔體平面分解圖............82
圖4-10 隔膜氣/液式微幫浦之壓縮腔體製作流程圖...........82
圖4-11 隔膜氣/液式微幫浦之壓縮腔體實體照片.............83
圖4-12 隔膜氣/液式微幫浦之壓縮腔體運作示意圖...........84
圖4-13 隔膜氣/液式微幫浦閥門開關與空氣幫浦做動的時間圖.85
圖4-14 無穩態多諧振盪器電路圖.........................	86
圖4-15 改良後的無穩態多諧振盪器電路實體照片...........	87
圖4-16 包含電路之隔膜氣/液式微幫浦照片.................87
圖5-1 單電池原始效能(基準組)之實驗架設圖...............89
圖5-2 四點式探針表面電阻測試儀........................	91
圖5-3 四點式探針表面電阻測試流程......................	91
圖5-4 破壞式表面輪廓量測儀............................	92
圖5-5 圓盤狀輕量化單電池集電板之實驗架構圖............	93
圖5-6 圓盤狀輕量化單電池集電板之實驗架設照片..........	94
圖5-7 圓盤狀輕量化電池組集電板之實驗架構圖............	95
圖5-8 圓盤狀輕量化電池組集電板之實驗架設照片..........	96
圖5-9 銣鐵硼磁鐵數量與磁性流體吸附關係圖..............	97
圖5-10 銣鐵硼磁鐵轉盤.................................	98
圖5-11 磁力式微幫浦實驗架構圖.........................	99
圖5-12 第一款磁力式微幫浦實驗架設照片.................	99
圖5-13 第二款磁力式微幫浦實驗架設照片.................	99
圖5-14 隔膜氣液式微幫浦運用至DMFC實驗架設照片.......	100
圖5-15 TPS61200升壓晶片...............................	101
圖5-16 TPS61200升壓晶片通用電路.......................	101
圖5-17 TPS61202升壓晶片轉換效率曲線...................	102
圖6-1 圓盤狀輕量化集電板在不同導電層與抗腐蝕層厚度之影
      響..............................................	104
圖6-2 3Cell電池組使用的MEA之原始效能測試..............	107
圖6-3 3Cell電池組之效能................................108
圖6-4 電極面積影響電池效能之原因......................	108
圖6-5 3Cell電池組之各顆電池負載電壓....................109
圖6-6 電池組用銅導片串聯之實驗架設照片................	110
圖6-7 3Cell電池組使用銅導片與傳統導線之效能比較圖......111
圖6-8 6Cell電池組之防水墊片使用PTFE與PDMS的效能比較圖	113
圖6-9 6Cell電池組之MEA原始效能曲線圖..................	113
圖6-10 常見液體幫浦與所需的消耗功率...................	115
圖6-11 第一款磁力式微幫浦搭配兩顆銣鐵棚磁鐵之流量與操
       作電壓關係圖...................................	116
圖6-12 第一款磁力式微幫浦搭配四顆銣鐵棚磁鐵之流量與操
       作電壓關係圖...................................	117
圖6-13 磁力式微幫浦轉速與磁性液體吸附高度之關係圖.....	117
圖6-14 第二款磁力式微幫浦搭配兩顆銣鐵棚磁鐵之流量與電
       壓關係圖.......................................	119
圖6-15 第一款磁力式微幫浦應用至DMFC單電池之實驗結果	120
圖6-16 第二款磁力式微幫浦應用至DMFC單電池之實驗結果	120
圖6-17 磁力式微幫浦與蠕動式幫浦之較佳DMFC效能比較圖	121
圖6-18 磁力式微幫浦應用至3Cell電池組之實驗結果.........122
圖6-19 隔薄膜氣液式微幫浦可更換電容之位置.............	123
圖6-20 隔薄膜氣液式微幫浦應用至單電池之實驗結果.......	125
圖6-21 隔薄膜氣液式微幫浦應用至6Cell電池組之實驗結果...125
圖6-22 TPS61202升壓晶片之輸出電壓與電流關係圖.........	128
圖7-1 具銅/鎳與銅/金兩種圓盤狀輕量化集電板長時間效能測
      試..............................................	131
圖7-2 具圓盤狀輕量化集電板與磁力式微幫浦之可攜式充電系
      統..............................................	134
參考文獻
[1]N.S. Sisworahardjo, M.S. Alam, G. Aydinli, “Reliability and availability analysis of low power portable direct methanol fuel cells,” J. of Power Sources, Vol.177, 2008, pp.412-418.
[2]J. Larminie, A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons Ltd., New Jersey, 2003.
[3]S.K. Kamarudin, F. Achmad, W.R.W. Daud, “Overview on the application of direct methanol fuel cell,” Internation al journal of hydrogen energy, Vol.34, 2009, pp.6902- 6916.
[4]Y.D. Kuan, S.R. Lee, S.M. Lee, M.F. Sung, H.S. Chiou, “The Performance Analysis of a Portable Charger System using Direct Methanol Fuel Cells,” Proceedings of the 35th International Matador Conference, 2007, pp.7-1.
[5]S.J.C. Cleghorn, C.R. Derouin, M.S. Wilson, S. Gottesfel D, “A printed circuit board approach to measu ring current distribution in a fuel cell,” J. of Applied Electro Chemistry, Vol.28, 1998, pp.663-672.
[6]R. O'Hayre, D. Braithwaite, W. Hermannb, S.J. Lee, T. Fabian, S.W. Cha, Y. Saito, F. B. Prinz, “Development of portable fuel cell arrays with printed-circuit technology,” J. of Power Sources, Vol.124, 2003, pp.459-472.
[7]A. Schmitz, M. Tranitz, S. Wagner, R. Hahn, C. Hebling, “Planar self-breathing fuel cells,”J. of Power Sources, Vol.118, 2003, pp.162-171.
[8]A. Schmitz, S. Wagner, R. Hahn, H. Uzun, C. Hebling, “Stability of planar PEMFC in Printed Circuit Board technology,”J. of Power Sources, Vol.127, 2004, pp.197-205.
[9]Y.D. Kuan, C.H. Chang, “Experimental Investigation on the Process-Induced Damage of a Direct Methanol Fuel Cell Assembled by the Printed Circuit Board Technique,”J. of Fuel Cell Science and Technology, Vol.6, 2009, pp.011016-1-011016-9
[10]Z. Guo, A. Faghri, “Miniature DMFCs with passive thermal- fluids management system,” J. of Power Sources, Vol.160, 2006, pp.1142-1155.
[11]C.H. Lee, C.H. Park, S.Y. Lee, B.O. Jung, Y.M. Lee, “Passive DMFC system using a proton conductive hydrocarbon membrane,”Desalination, Vol.233, 2008, pp.210-217.
[12]A. Faghri, Z. Guo, “Passive DMFC system using a proton conductive hydrocarbon membrane,” Applied Thermal Engineer ing, Vol.28, 2008, pp.1614-1622. 
[13]N. Paust, S. Krumbholz, S. Munt, C. Müller, P. Koltay, R. Zengerle, C. Ziegler,  “Self-regulating passive fuel supply for small direct methanol fuel cells operating in all orientations,” J. of Power Sources, Vol.192, 2009, pp.442-450.
[14]L. Zhong, X. Wang, Y. Jiang, Q. Zhang, X. Qiu, Y. Zhou, L. Liu,  “A micro-direct methanol fuel cell stack with optimized design and microfabrication,” Sensors and Actuators A, Vol.143, 2008, pp.70-76
[15]K. Shah, W.C. Shin, R.S. Besser, “A PDMS micro proton exchange membrane fuel cell by conventional and non –conventi onal microfabrication techniques,” Sensors and Actuators B, Vol.97, 2004, pp.157-167.
[16]D.D. Meng, C.J. Kim, “An active micro-direct methanol fuel cell with self-circulation of fuel and built-in removal of CO2 bubbles,” J. of Power Sources, Vol.194, 2009, pp.445-450.
[17]Y.H. Seo, Y.H. Cho, “Micro direct methanol fuel cells and their stacks using a polymer electrolyte sandwiched by multi-window microcolumn electrodes,” Sensors and Actuators A, Vol.150, 2009, pp.87-96.
[18]J. Han, E.S. Park, “Direct methanol fuel-cell combined with a small back-up battery,” J. of Power Sources, Vol.112, 2002, pp.477-483.
[19]B.D. Lee, D.H. Jung, Y.H. Ko, “Analysis of DMFC/battery hybrid power system for portable applications,” J. of Power Sources, Vol.131, 2004, pp.207-212. 
[20]Y. Zhang, H. He, Z. Yuan, S. Wang, X. Liu,  “Effect of design and operating parameters on dynamic response of a micro direct methanol fuel cell,” International J. of Hydrogen Energy, Vol.36, 2011, pp.2230-2236.
[21]B. Bullecks, R. Rengaswamy, D. Bhattacharyya, G. Campbell,  “Development of a cylindrical PEM fuel cell,” International J. of Hydrogen Energy, Vol.36, 2011, pp.713-719 
[22]S.J. Lee, A. Chang-Chien, S.W. Cha, R. O’Hayre, Y.I. Park, Y. Saito, F.B. Prinz,  “Design and fabrication of a micro fuel cell array with flip-flop interconnection,” J. of Power Sources, Vol.112, 2002, pp.410-418.
[23]H.Y. Cha, H.G. Choi, J.D. Nam, Y. Lee, S. M. Cho, E.S. Lee, J.K. Lee, C.H. Chung, “Fabrication of all- polymer micro-DMFCs using UV-sensitive photoresist,” Electrochimica Acta, Vol.50, 2004, pp.795-799.
[24]G.Q. Lu, C.Y. Wang, T.J. Yen, X. Zhang, “Development and characterization of a silicon-based micro direct methanol fuel cell,” Electrochimica Acta, Vol.49, 2004, pp.821-828.
[25]S.S. Hsieh, C.L. Feng, C.F. Huang, “Development and performance analysis of a H2/air micro PEM fuel cell stack,” J. of Power Sources, Vol.163, 2006, pp.440-449.
[26]K. Wozniak, D. Johansson, M. Bring, A. Sanz-Velasco, P.  Enoksson, “A micro direct methanol fuel cell demonstra teor,” J. of Micromech. Microeng, Vol.14, 2004, pp. S59–S63. 
[27]Y. Zhang, J. Lu, S. Shimano, H. Zhou, R. Maeda, “Develop ment of MEMS-based direct methanol fuel cell with high power density using nanoimprint technology,” Electroc Hemistry Communications, Vol.9, 2007,  pp.136 5-1368. 
[28]A. Kamitani, S. Morishita, H. Kotaki, S. Arscott, “Fuel supply optimization in micro fuel cells,” Procedia Chemistry, Vol.1, 2009, pp.457-460.
[29]S. Motokawa, M. Mohamedi, T. Momma, S. Shoji, T. Osaka, “MEMS-based design and fabrication of a new concept micro direct methanol fuel cell (µ-DMFC),” Electroche Mistry Communications, Vol.6, 2004, pp.562-565.
[30]C.Y. Lee, R.D. Huang, C.W. Chuang, “Novel Integrati on Approach for In situ Monitoring of Temperature in Micro-direct Methanol Fuel Cell,” Japanese J. of Applied Physics, Vol.46, 2007, pp.6911-6914.
[31]J.W. Ha, A. Kundu, J.H. Jang, “Poly-dimethylsiloxane (PDMS) based micro-reactors for steam reforming of methanol,” Fuel Processing Technology, Vol.91, 2010, pp.1725-1730.
[32]J.W. Ha, J.H. Jang, J.H. Gil, S.H. Kim, “The fabricate on and performance of a poly-dimethylsiloxane (PDMS)-based micro reformer for application to electronics,” International J. of Hydrogen Energy, Vol.33, 2008, pp.2059-2063.
[33]X. Liu, B. Zhangl, Y. Zhang, X. Lu, X. Wang, P. Zhang, “The Effects of Different Flow Channels on Silicon- based Micro Direct Methanol Fuel Cells,” Proceedings of the 2nd IEEE, 2007, pp.905-908.
[34]T. Fabiana, R. O’Hayre, S. Litster, F.B. Prinz, J.G. Santiago, “Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump,” J. of Power Sources, Vol.195, 2010, pp.3640-3644.
[35]S. B hm, W. Olthuis, P. Bergveld, “A plastic micropump constructed with conventional techniques and materialls,” Sensors and Actuators, Vol.77, 1999, pp.223-238.
[36]D. Xu, L. Wang, G. Ding, Y. Zhou, A. Yu, B. Cai, “Charact eristics and fabrication of NiTiSi diaphragm micro pump,” Sensors and Actuators A, Vol.93, 2001, pp.87-92.
[37]S. Santra, P. Holloway, C.D. Batich, “Fabrication and testing of a magnetically actuated micropump,” Sensors and Actuators B, Vol.87, 2002, pp.358-364.
[38]E.G. Kim, J.G. Oh, B. Choi, “A study on the development of a continuous peristaltic micropump using magnetic fluids,” Sensors and Actuators A, Vol.128, 2006, pp. 43-51. 
[39]A.T. Al-Halhouli, M.I. Kilani, S. Büttgenbach, “Develo pment of a novel electromagnetic pump for biomedical applications,” Sensors and Actuators A, Vol.162, 2010, pp.172-176.
[40]M. Shen, L. Dovat, M.A.M. Gijs, “Magnetic active-valve micro pump actuated by a rotating magnetic assembly,” Sensors and Actuators B, Vol.154, 2011, pp.52-58.
[41]S.M. Ha, W. Cho, Y. Ahn, “Disposable thermo-pneumatic micro pump for bio lab-on-a-chip application,” Microelectronic Engineering, Vol.86, 2009, pp.1337- 1339.
[42]A. Wego, H.W. Glock, L. Pagel, S. Richter, “Investigat ions on thermo-pneumatic volume actuators based on PCB technology,” Sensors and Actuators A, Vol.93, 2001, pp. 95-102. 
[43]A. Wego, L. Pagel, “A self-filling micropump based on PCB technology,” Sensors and Actuators A, Vol.88, 2001, pp.220-226. 
[44]J.H. Kim, K.H. Na, C.J. Kang, Y.S. Kim, “A disposable thermopneumatic-actuated micropump stacked with PDMS layers and ITO-coated glass,” Sensors and Actuators A, Vol.120, 2005, pp.365-369.
[45]H. Takao, K. Miyamura, H. Ebi, M. Ashiki, K. Sawada,  M. Ishida, “A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test system on silicon,” Sensors and Actuators A, Vol.119, 2005, pp.468-475. 
[46]D.H. Jun, W.Y. Sim, S.S. Yang, “A novel constant delive ry thermopneumatic micropump using surface tensions,” Sensors and Actuators A, Vol.139, 2007, pp.210-215.
[47]B.T. Chia, H.H. Liao, Y.J. Yang, “A novel thermo-pneumatic peristaltic micropump with low temperature elevation on working fluid,” Sensors and Actuators A, Vol.165, 2011, pp.86-93. 
[48]W.I. Jang, C.A. Choi, C.H. Jun, Y.T. Kim, M. Esashi, “Surface micromachined thermally driven micropump,” Sensors and Actuators A, Vol.115, 2004, pp.151-158.
[49]T.T. Nguyen, N.S. Goo, V.K. Nguyen, Y. Yoo, S. Park, “Design, fabrication, and experimental characterizeat ion of a flap valve IPMC micropump with a flexibly supported diaphragm,” Sensors and Actuators A, Vol.141, 2008, pp.640-648.
[50]T.T. Nguyen, M. Pham, N.S. Goo, “Development of a Peristaltic Micropump for Bio-Medical Applications Based on Mini LIPCA,” J. of Bionic Engineering, Vol.5, 2008, pp.135-141.
[51]H.K. Ma, B.R. Hou, C.Y. Lin, J.J. Gao, “The improved performance of one-side actuating diaphragm micropump for a liquid cooling system,” International Communicat Ions in Heat and Mass Transfer, Vol.35, 2008, pp.957-966.
[52] C.H. Wang, G.B. Lee, “Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection,” Biosensors and Bioelectronics, Vol. 21, 2005, pp.419-425.
[53]S.B. Huang, M.H. Wu, G.B. Lee, “Microfluidic device utilizing pneumatic micro-vibrators to generate alginate microbeads for microencapsulation of cells,” Sensors and Actuators B, Vol.147, 2010, pp.755-764.
[54]F. Trenkle, S. Haeberle, R. Zengerle, “Normally-closed peristaltic micropump with re-usable actuator and disposable fluidic chip,” Sensors and Actuators B, Vol.154, 2011, pp.137-141.
[55]C. Koch, V. Remcho, J. Ingle, “PDMS and tubing-based peristaltic micropumps with direct actuation,” Sensors and Actuators B, Vol.135, 2009, pp.664-670.
[56]Y.C. Hsu, J.H. Li, N.B. Le, “An experimental and numerical investigation into the effects of diffuser valves in polymethylmethacrylate (PMMA) peristaltic micropumps,” Sensors and Actuators A, Vol.148, 2008, pp.149-157.
[57]C.M. Cheng, C.H. Liu, “A capillary system with 1×4 microflow switches via a micronozzle–diffuser pump and hydrophobic-patch design for continuous liquid handling,” Sensors and Actuators A, Vol.130-131, 2006, pp.430-437.
[58]S.H. Kim, H.Y. Cha, C.M. Miesse, J.H. Jang, Y.S. Oh, S.W. Cha,  “Air-breathing miniature planar stack using the flexible printed circuit board as a current collector,” International J. of Hydrogen Energy, Vol. 34, 2009, pp.459-466.
[59]V. Baglio, A. Stassi, F.V. Matera, V. Antonucci, A.S. Aricò,  “Investigation of passive DMFC mini-stacks at ambient temperature,” Electrochimica Acta, Vol.54, 2009, pp.2004-2009.
[60]J.W. Guo, X.F. Xie, J.H. Wang, Y.M. Shang, “Effect of current collector corrosion made from printed circuit board (PCB) on the degradation of self-breathi ng direct methanol fuel cell stack,” Electrochimica Acta, Vol.53, 2008, pp.3056-3064.
[61]J. Barranco, F. Barreras, A. Lozano, A.M. Lopez, V. Roda, J. Martin, M. Maza, G.G. Fuentes, E. Almandoz,  “Cr and Zr/Cr nitride CAE-PVD coated aluminum bipolar plates for polymer electrolyte membrane fuel cells,” International J. of Hydrogen Energy, Vol.35, 2010, pp.11489-11498.
[62]A. Kraytsberg, M. Auinat, Y. Ein-Eli, “Reduced contact resistance of PEM fuel cell’s bipolar plates via surface texturing,” J. of Power Sources, Vol.164, 2007, pp.697-703.
[63]H. Yang, T.S. Zhao, “Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells,” Electrochimica Acta, Vol.50, 2005, pp.3243- 3252.
[64]R.C. Makkus, A.H.H. Janssen, F.A. de Bruijn, R.K.A.M. Mallant, “Stainless steel for cost-competitive bipolar plates in PEMFCs,” Fuel Cells Bulletin, Vol.17, 2000, pp5-9.
[65]Y.H. Yun, “Deposition of gold–titanium and gold–nic kel coatings on electropolished 316L stainless steel bipolar plates for proton exchange membrane fuel cells,” International J. of Hydrogen Energy, Vol.35, 2010, pp.1713-1718.
[66]J.J. Martin, W. Qian, H. Wang, V. Neburchilov, J. Zhang,  D.P. Wilkinson, Z. Chang, “Design and testing of a passive planar three-cell DMFC,” J. of Power Sources, Vol.164, 2007, pp.287-292.
[67]W.M. Yang, S.K. Chou, C. Shu, “Effect of current-collec tor structure on performance of passive micro direct methanol fuel cell,” J. of Power Sources, Vol.164, 2007, pp.549-554.
[68]P. Yi, L. Peng, L. Feng, P. Gan, X. Lai, “Performance of a proton exchange membrane fuel cell stack using conductive amorphous carbon-coated 304 stainless steel bipolar plates,” J. of Power Sources, Vol.195, 2010, pp.7061-7066.
[69]S.H. Wang, J. Peng, W.B. Lui, “Surface modification and development of titanium bipolar plates for PEM fuel cells,” J. of Power Sources, Vol.160, 2006, pp.485-489.
[70]S.H. Wang, J. Peng, W.B. Lui, J.S. Zhang, “Performa nce of the gold-plated titanium bipolar plates for the light weight PEM fuel cells,” J. of Power Sources, Vol.162, 2006, pp.486-491.
[71]M.C. Hsiao, S.H. Liao, M.Y. Yen, C.C. M. Ma, S.J. Lee, Y.H. Chen, C.H. Hung, Y.F. Lin, X.F. Xie, “Electrical and thermal conductivities of novel metal mesh hybrid polymer composite bipolar plates for proton exchange membrane fuel cells,” J. of Power Sources, Vol.195, 2010, pp.509-515.
[72]Y. Wang, L. Pham, G.P.S. de Vasconcellos, M. Madou, “Fabrication and characterization of micro PEM fuel cells using pyrolyzed carbon current collector plates,” J. of Power Sources, Vol.195, 2010, pp.4796- 4803.
[73]C. Ayranci, J. Carey, “2D Braided composites: A review for stiffness critical applications,” Composite structures, Vol.85, 2008, pp.43-58.
[74]德州儀器官方網站 http://www.ti.com/
[75]林祐瑋,PDMS應用至圓盤式直接甲醇燃料電池組件之設計與製作,淡江大學航空太空工程學系碩士論文,民國97年.
[76]陳清良,電子學,龍騰文化公司出版,西元2001年.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信