§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2807201018102200
DOI 10.6846/TKU.2010.01065
論文名稱(中文) H2O2/UV氧化程序處理家庭一級出流水之研究
論文名稱(英文) Treatment of Domestic Primary Effluents by H2O2/UV Oxidation Processes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 李彬豪
研究生(英文) Bin-Hao Li
學號 697480878
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-06-29
論文頁數 69頁
口試委員 指導教授 - 徐錠基
委員 - 康世芳
委員 - 顏幸苑
關鍵字(中) H2O2/UV
礦化
氧化
家庭一級出流水
關鍵字(英) H2O2/UV
oxidation
mineralization
domestic primary effluent
第三語言關鍵字
學科別分類
中文摘要
本研究評估H2O2/UV程序處理家庭污水一級出流水之特性,以台北縣家庭污水處理廠之初級沉澱池(一級)出流水為實驗用水樣,其水質濃度COD、DOC及SS分別為106-143、14.6-19.7及34-46 mg/L。實驗採批次式H2O2/UV反應槽,以pH、氧化時間、H2O2加藥量與UV照光強度為操作參數,以DOC、UV254與分子量分布等項目評估有機物氧化或礦化效果。研究結果顯示於pHs 3-4時之DOC與UV254去除率皆較pH 7時佳,此乃因於pHs 3-4較pH 7衍生較多氫氧自由基(OH.)所致。最適氧化時間為90-120分鐘時,DOC與UV254去除率與H2O2分解速率皆可以擬一階反應動力表示,且UV254去除率大於DOC去除率。此外,依H2O2加藥量與UV照光強度之條件不同,於氧化時間大約於120分鐘時,殘留DOC有增加趨勢,此乃因膠體性有機物被氧化成可檢測的(detectable)DOC所致。UV254去除率皆隨UV照光強度增加而提高;相對地,DOC與UV254去除率不隨H2O2加藥量增加而提高,存在一最適H2O2加藥量,此乃因過高H2O2加藥量因競爭OH.所致。由氧化處理後殘留之有機物(DOC)分子量變化,顯示高分子量(0.45μm-100 KD) DOC分解為中、低分子量DOC,且殘留DOC以低分子量(小於1 KD)DOC為主,佔95%以上。本研究處理家庭污水一級出流水之最適操作條件為pH 4、氧化時間為90分鐘、H2O2加藥量600 mg/L及UV照光強度96 
Watts,DOC與UV254去除率分別達70與80%。
英文摘要
This study evaluated the treatability of domestic primary effluents by H2O2/UV oxidation process. The primary effluents were sampled from a wastewater treatment plant located at Taipei County. The concentrations of chemical oxygen demand (COD), dissolved organic carbon (DOC), and suspended solids (SS) were 106-143, 14.6-19.7, and 34-46 mg/L, respectively. All experiments were conducted in a batch H2O2/UV photo-reactor. The experimental parameters included pH, oxidation time, H2O2 dosage and UV intensity. The oxidation and mineralization of organics in water samples was demonstrated by the change in DOC, UV254, and molecular weight (MW) fraction of DOC.
The results showed that the removal of DOC at pHs 3-4 was better than that at pH 7 due to the higher production of hydroxyl free radicals (OH.). The optimum oxidation time ranged from 90 to 120 mins for the removals of DOC and UV254. The removal rates of DOC and UV254, and the degradation of H2O2 followed the pseudo-first-order kinetics. The removal of UV254 was faster than the removal of DOC. For most experimental conditions, the residual DOC showed a decreasing tend within first of the 90 mins oxidation time. In contrast, the residual DOC began to increase again as oxidation time was extended beyond 120 mins. This might be due to the colloidal organics being oxidized into detectable DOC. The removal of UV254 increased with increasing UV intensity and H2O2 dosage. Due to the competition for OH.between DOC and H2O2, the removal of DOC and UV254 did not increase with the increase of H2O2 dosage after an optimum H2O2 dosage had already been added. Furthermore, the DOC of a high molecular weight fraction was oxidized into DOC of medium and low MW fractions. After treatment, DOC of low MW(less than 1 KD) fractions predominated more than 95% of the residual DOC. It was concluded in this study that the optimal operational conditions for treating domestic primary effluents consisted of pH of 4, oxidation time of 90 min, H2O2 dosage of 400 mg/L and UV intensity of 96 watts. At the optimal operational condition, the removal DOC and UV254 reached 70 and 80%, respectively.
第三語言摘要
論文目次
目錄
目錄	I
圖目錄	IV
表目錄	VI
前言	1
1-1	研究源起	1
1-2	研究目的	3
第二章	文獻回顧	4
2-1	家庭污水處理技術	4
2-2	H2O2/UV程序原理	6
2-2-1  H2O2/UV程序原理	6
2-3	H2O2/UV程序去除有機物之影響因素	10
2-3-1	pH之影響	10
2-3-2	H2O2加藥量之影響	12
2-3-3	UV光之影響	14
2-3-4	鹼度的影響	16
2-4	分子量分布	17
第三章	實驗方法與材料	18
3-1	實驗材料	18
3-1-1	實廠家庭一級出流水	18
3-1-2	實驗設備	19
3-2	實驗方法	25
3-2-1	H2O2/UV程序及Fenton程序實驗操作步驟	25
3-2-2	分子量分布之測定步驟	27
3-2-3	DOC溶出	27
3-3	水質分析	28
第四章	結果與討論	29
4-1  H2O2/UV與Fenton程序處理家庭一級出流水之性能	29
4-1-1  H2O2/UV與Fenton程序去除有機物之比較	29
4-1-2  Fenton程序去除有機物機制	34
4-2  pH對H2O2/UV氧化程序處理家庭一級出流水之影響	37
4-2-1  pH對有機物去除之影響	37
4-2-2  pH對有機物去除動力常數之影響	40
4-2-3  pH對有機物分子量分布之影響	43
4-3  H2O2加藥量對H2O2/UV氧化程序處理家庭一級出流水之影響	46
4-3-1  H2O2加藥量對有機物去除之影響	46
4-3-2  H2O2加藥量對有機物去除動力常數之影響	51
4-3-3  H2O2加藥量對有機物分子量分布之影響	54
4-4  UV照光強度對H2O2/UV氧化程序處理家庭一級出流水之影響	56
4-4-1  UV照光強度對有機物去除之影響	56
4-4-2  UV照光強度對有機物去除動力常數之影響	61
4-4-3  UV照光強度對有機物分子量分布之影響	64
第五章	結論	66
參考文獻	67

圖目錄
圖3-1  UV反應槽設備	22
圖4-1  H2O2/UV與Fenton程序對DOC殘留率之影響	31
圖4-2  H2O2/UV與Fenton程序對UV254殘留率之影響	31
圖4-3  H2O2/UV與Fenton程序對H2O2殘留率之影響	33
圖4-4  Fenton程序對DOC溶出之影響	36
圖4-5 pH於反應時間60分鐘時各水質項目殘留率	39
圖4-6 pH於反應時間120分鐘時各水質項目殘留率	39
圖4-7 pH操作之H2O2殘留反應動力	41
圖4-8 pH操作之DOC殘留反應動力	41
圖4-9 pH操作之UV254殘留反應動力	42
圖4-10 pH操作條件分子量分布	45
圖4-11 H2O2加藥量對H2O2殘留率之比較	49
圖4-12 H2O2加藥量對DOC殘留率之比較	49
圖4-13 H2O2加藥量對UV254殘留率之比較	50
圖4-14 H2O2加藥量之H2O2殘留反應動力比較	52
圖4-15 H2O2加藥量之DOC殘留反應動力比較	52
圖4-16 H2O2加藥量之UV254殘留反應動力比較	53
圖4-17 H2O2加藥量操作條件分子量分布	55
圖4-18 UV照光強度對H2O2殘留率之比較	59
圖4-19 UV照光強度對DOC殘留率之比較	59
圖4-20 UV照光強度對UV254殘留率之比較	60
圖4-21 UV照光強度之H2O2殘留反應動力比較	62
圖4-22 UV照光強度之DOC殘留反應動力比較	62
圖4-23 UV照光強度之UV254殘留反應動力比較	63
圖4-24 UV照光強度分子量分布	65
 
表目錄
表2-1 不同氧化劑之氧化力比較	9
表3-1 台北縣污水處理廠水質現況	18
表4-1  H2O2/UV程序分解H2O2及礦化DOC、UV254之反應動力常數	42
表4-2  H2O2/UV程序分解H2O2及礦化DOC、UV254之反應動力常數及殘留率	53
表4-3 不同UV照光強度H2O2/UV程序的處理能力	63
參考文獻
參考文獻
1.Aleboyeh A., Moussa Y. and Aleboyeh H. (2005). The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74. Dyes and pigments 66, 129-134.
2.Behnajady M.A., Modirshahla N, and Shokri M. (2004). Photodestruction of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters. Chemosphere 55, 129-134.
3.Crittenden J. C., Hu S., Hand D.W. and Green S.A.(1999). A kinetic model for H2O2/UV process in a completely mixed batch reactor. Water Research, 33, 2315-2328.
4.Daneshvar N., Behnajady M.A., M. Khayyat Ali Mohammadi, M.S. Seyed Dorraji.(2008). UV/H2O2 treatment of Rhodamine B in aqueous solution:Influence of operational parameters and kinetic modeling. Des. 230, 16-26.
5.Galindo C, Jaques P, Kalt A. (2001). Photochemical and photocatalytic degradation of an indigoid dye: a case study of acid blue 74(AB74). J. Photochemistry and Photobiology A. Chemistry.,141, 47-56.
6.Ghodbane H., Hamdaoui O.(2010). Decolorization of antraquinonic dye, C.I. Acid Blue 25, in aqueous solution by direct UV irradiation, UV/H2O2 and UV/Fe(II) processes. Chem. Engin. Jour., 160, 226–231.
7.Gong, J., Liu, Y. and Sun, X. (2008). O3 and UV/O3 oxidation of organic constituents of biotreated municipal wastewater. Water research 42(4-5), 1238-1244.
8.Goren, U., Aharoni, A., Kummel, M., Messalem, R., Mukmenev, I., Brenner, A. and Gitis, V. (2008). Role of membrane pore size in tertiary flocculation/adsorption/ultrafiltration treatment of municipal wastewater. Separation and Purification Technology 61(Compendex), 193-203.
9.Hsueh, C. L.; Huang, Y. H.; Wang, C. C.; Chen, C. Y. (2005). Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 58, 1409-1414.
10.Kang, S. F., Yen, H. Y. and Yang, M. H. (2003). Treatment of textile effluents by H2O2/UV oxidation combined with RO separation for reuse. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 38(7), 1327-1339.
11.Kang, S., Yen, H., Liao, C. and Yao, Y. (2010) Decolorization and Mineralization of Textile Effluent by H2O2/Ultraviolet Processes. Environ. Eng. Sci. 27(4), 357-363.
12.Kim S.M., Geissen S.U. and Vogelpohl (1997). Landfill leachate treatment by a photoassisted Fenton reaction. Wat. Sci. Tech. 35, 239-248.
13.Kositzi, M., Poulios, I., Malato, S., Caceres, J. and Campos, A. (2004) Solar photocatalytic treatment of synthetic municipal wastewater. Water research 38(5), 1147-1154.
14.Kim, I., Yamashita, N., Tanaka, H. (2009). Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. Journal of Hazardous Materials.166,1134-1140.
15.Kositzi, M., Poulios, I., Malato, S., Caceres, J. and Campos, A. (2004). Solar photocatalytic treatment of synthetic municipal wastewater. Water research 38(5), 1147-1154.
16.Liao, C.H., Lu, M.C., Yang, Y.H, Lu, I.C. (2000). UV-catalyzed hydrogen peroxide treatment of textile wastewater. Environ. Eng. Sci., 17 (1), 9–18. 
17.Liao C.H. and Gurol M.D. (1995). Chemical oxidation by photolytic decomposition of hydrogen peroxide. Environ. Sci. and Tech 29, 3007-3014.
18.Ledakowicz S. and Gonera M. (1999). Optimisation of Oxidants Dose for Combined Chemical and Biological Treatment of Textile Wastewater. Wat. Res. 33, 2511-2516.
19.Millero F. J., LaFerriere A., Fernandez M., Hubinger S.(1989).Oxidation of H2S with H2O2 in natural waters. Environ. Sci. Technol., 23, 209.
20.Modirshahla, N. and Behnajady, M.A. (2006). Photooxidative degradation of Malachite Green (MG) by UV/H2O2: Influence of operational parameters and kinetic modeling. Dyes and Pigments 70(1), 54-59.
21.Ogata Y. K., Tomizawa and Takagi K. (1981). Photo-oxidation of formic, acetic and propionic acids with aqueous hydrogen peroxide. Can. J. Chem. 59, p14.
22.Peternel I., Koprivanac N. and Kusic H. (2006). UV-based processes for reactive azo dye mineralization. Wat. Res. 40, 525-532.
23.Sapach R, Viraraghavan T (1997). An introduction to the use of hydrogen peroxide and ultraviolet radiation: an advanced oxidation process. J. Environ. Sci. Health A 32,2355-2366.
24.Schrank S.G., Santos J.N.R., Souza D.S. and Souza E.E.S. (2007). Decolourisation effects of Vat Green 01 textile dye and textile wastewater using H2O2/UV process. J. Photochemistry and Photobiology A: Chemistry 186, 125-129.
25.Schroder H (1998). Characterization and monitoring of persistent toxic organics in the aquatic environment. Wat. Res. 38, 151-158.
26.Shu H.Y., Chang M.C. ans Hsieh W.P. (2006). Remedy of dye manufacturing process effluent by UV/H2O2 process. J. Hazard. Mater. B128, 60-66.
27.Snell F. D. and Ettre L. S.(1987). Encyclopedia of industrial chemical analysis, New York: John Wiley & sons, pp. 427.
28.Wang G.S., Chen H.W. and Kang S.F. (2001). Catalyzed UV oxidation of organic pollutants in biologically treated wastewater effluents. The Sci. of the Total Environ. 277, 87-94. 
29.Xua B., Gaoa N.Y., Chengb H., Xiaa S.J., Rui M., Zhaoa D.D.(2009). Oxidative degradation of dimethyl phthalate (DMP) by UV/H2O2 process. Jour. Haz. Mat., 162, 954–959
30.Yeber, M., Rodriguez, J., Freer, J., Baeza, J., Duran, N. and Mansilla, H. (1999) Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere 39(10), 1679-1688.
31.Yonar T., Kestioglu K. and Azbar N.(2006). Treatability studies on domestic wastewater using UV/H2O2 process. Applied Catalysis B: Environ. 67, 223–228.
32.曾迪華、莊連春、郭家倫、楊志堅, UV/H2O2 氧化程序於水處理之應用, 工業污染防治第14 卷第4 期, 205-247, 1995。
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信