淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2807201016370100
中文論文名稱 翼胴合一飛機在惡劣天氣中之空氣動力特性研究
英文論文名稱 Aerodynamic Performance Study of Blended-Wing-Body Aircraft under Severe Weather Conditions
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 宋柏璋
研究生英文姓名 Bo-Chang Song
學號 697430451
學位類別 碩士
語文別 英文
口試日期 2010-07-01
論文頁數 79頁
口試委員 指導教授-宛同
委員-潘大知
委員-劉登
中文關鍵字 翼身合一飛機  側風  大雨  二相流  空氣動力學 
英文關鍵字 Blended-Wing-Body  Crosswind  Heavy Rain  Two Phase Flow  Aerodynamics 
學科別分類 學科別應用科學航空太空
中文摘要 飛機設計的好壞來自於安全和效率,由於資源的損耗和短缺,傳統飛機已不符合和現代的需求。隨著科技的進步,一種革命性的發展'翼身合一飛機',擁有較好的升阻比和減低噪音,能夠減少對燃油的消耗和環境的污染。由於溫室效應的影響,極端惡劣天氣變得相當頻繁,對於飛機起飛降落會造成相當大的影響。在這篇論文主要考慮的天氣因素是側風和大雨。在開始運用CFD模擬側風和大雨對翼身合一飛機的影響之前,先驗證M6-wing確保我們的模擬是具有可信度的。側風主要會影響飛機橫向和航向是否穩定,如果滿足穩定條件,飛機經過本身自己的調整就會回到本身的位置,如果不穩定,則會造成偏轉、翻滾,會對飛機造成很重大的影響。這篇論文假設了10m/s、20m/s和30m/s的側風速度。大雨主要會影響飛機的升力係數和阻力係數。這篇論文運用了Fluent DPM的機制模擬了大雨的強度LWC=25g/m3 和LWC=39g/m3對翼身合一飛機的影響。本篇論文主要運用Pro/E建立翼身合一飛機外型,並運用Fluent模擬側風和大雨的影響。本論文希望對未來飛機設計,或飛行安全考量都更有助益。
英文摘要 The goal of aircraft design is to achieve safe and efficient flight. In the world of civilian air transport, efficient, economically attractive configurations are urgently needed. As for civilian commercial aircrafts, studies have shown remarkable performance improvements for the Blended Wing Body (BWB) over conventional subsonic transport. On the other hand, global warming has led to extreme weather around the world frequently, if aircraft taking-off and landing will unavoidably meet with the strong crosswind or/and heavy rain, then aircraft designer must put these severe werather influence into considerations in the conceptual design phase phase. One way to investigate the BWB airplane performance degradation is through CFD calculation.
The detrimental crosswind effects to Blended Wing Bod aircraft longitudinal, lateral and directional stability situation will be presented in this study. The speed of crosswinds considered here are 10m/s, 20m/s and 30m/s. Comparing with Boeing 747-100, no matter BWB is static stable or not, its stability derivative values under crosswind are always smaller than Boeing 747-100, representing the intrinsic nature of BWB static unstable tendency. Also, the heavy rain influence of different rain rates is that the lift coefficient is decreased and drag coefficient is increased at all different angle of attack spectrum. Comparing the different rain rates, liquid water content 39 g/m3 is more influential than 25 g/m3, with maximum reduction of lift coefficient is at angle of attack 0 degree and maximum increase of drag coefficient is at angle of attack 6 degree.
In this study, Fluent is used as a simulation tool, the structure grid is chosen and generated by Gambit, and the standard M6 wing is first validated to ensure this simulation process is correct. This study hope to recognize and comprehend the basic aerodynamic performance for Blended Wind Body aircraft under severe weather situation, and the information gained here will be helpful for future transport aircraft designers.
論文目次 Contents
Abstract III
Contents V
List of Figures VII
List of Tables XI
Nomenclature XIII
Chapter 1 Introduction 1
Chapter 2 Reference Research 5
2-1 Blended Wing Body Aerodynamics 10
2-2 Static Stability 12
2-3 Heavy Rain on Airfoil 17
Chapter 3 Numerical Modeling 24
3-1 Geometry Model Construction 24
3-2 Grid Generation 28
3.3 Navier-Stokes Equations 33
3-4 Turbulence Model 34
3-5 Crosswind 37
3-6 Discrete Phase Model 38
3-7 Verification 40
Chapter 4 Results and Discussion 46
4-1 Coefficient of Lift, Drag and Longitudinal Stability 46
4-2 Lateral and Directional Stability with Crosswind 53
4-3 Heavy Rain Condition 63
Chapter 5 Conclusions 75
References 77



List of Figures
Figure 2-1: G.38 [3] ............................................................ 5
Figure 2-2: AW52 [4] .......................................................... 6
Figure 2-3: YB49 [5] ........................................................... 7
Figure 2-4: B-2 Spirit [6] .................................................... 8
Figure 2-5: The Boeing BWB-450 baseline [7] ...................... 9
Figure 2-6: Coefficient of lift thickness to chord ratio over the wing span. [7] ................................................... 11
Figure 2-7: The six-degree-of-freedom for a rigid airplane [13] ........................................................................ 13
Figure 2-8: The pitching moment of airplane [15] ............... 15
Figure 2-9: The rolling moment of airplane [15] ................. 16
Figure 2-10: The yawing moment of airplane [15] ............... 17
Figure 2-11 Characteristics of four surface water flow regions:..........................1. droplet-impact region; 2. film-convection region; 3.rivulet-formation region; and 4. droplet-convection region [22]. 23
Figure 3-1 Blended Wing Body geometry model [12] ........... 24
Figure 3-2 Blended Wing Body geometry model in 3D ......... 25
Figure 3-3 The airfoil section profile at y=0.0, 6.0 and y=0.0, -6m .................................................................. 25
Figure 3-4 The airfoil section profile at y=10.0, 13.0 m and y=-10.0, -13.0m ................................................ 26
Figure 3-5 The airfoil section profile y=17.5, 23.5, 38.75 m and y=-17.5,-23.5,-38.75m ....................................... 26
Figure 3-6 Twist angle distribution .................................... 27
Figure 3-7 Far mesh of the Blended Wing Body .................. 29
Figure 3-8 Near mesh of the Blended Wing Body ................ 30
Figure 3-9 Multi-block for Blended Wing Body .................. 30
Figure 3-10 Near structure mesh of the Blended Wing Body . 31
Figure 3-11 The Y plus at cruise condition .......................... 32
Figure 3-12 The Y plus with free stream velocity 49.4774 m/s ........................................................................ 32
Figure 3-13 Near structure mesh of the Blended Wing Body . 41
Figure 3-14 The Y plus of M6 wing(x/c=0.4) ...................... 42
Figure 3-15 Pressure coefficients at section y/b=0.2 ............ 42
Figure 3-16Pressure coefficients at section y/b=0.4 ............. 43
Figure 3-17 Pressure coefficients at section y/b=0.65 .......... 43
Figure 3-18 Pressure coefficients at section y/b=0.8 ............ 44
Figure 3-19 Pressure coefficients at section y/b=0.9 ............ 44
Figure 3-20 Pressure coefficients at section y/b=0.95 .......... 45
Figure 3-21 Pressure coefficients at section y/b=0.99 .......... 45
Figure 4-1 The coefficient of lift with free stream velocity 49.4774m. ......................................................... 48
49.4774m. ......................................................... 49
Figure 4-3 The CL vs. CD with free stream velocity 49.4774m ........................................................................ 49
Figure 4-4 Compare with Qin pressure drag and skin fraction drag. ................................................................. 51
Figure 4-5 The coefficient of moment with Mach number 0.85 free stream velocity 49.4774m. .......................... 53
Figure 4-6 Compare Cl and Cn with invicid and viscous case at AOA=00 ............................................................ 55
Figure 4-7 Compare Cl and Cn with invicid and viscous case at AOA=10 ............................................................ 56
Figure 4-8 The Cl with different crosswind speed in different angle of attack. ................................................. 61
Figure 4-9 The Clβ variation in different angle of attack. .... 62
Figure 4-10 The Cn with different crosswind speed in different angle of attack. ................................................. 63
Figure 4-11 The Cnβ variation in different angle of attack. ... 63
Figure 4-12 The comparing coefficient of lift in two rain rates. ........................................................................ 66
Figure 4-13 The comparing coefficient of drag in two rain rates. ........................................................................ 66
LWC=39g/m3. ................................................... 67
Figure 4-16 z/b=41.18% Cp contour at LWC=0g/m3 and LWC=39g/m3 .................................................... 67
Figure 4-17 z/b=91.18% Cp contour at LWC=0g/m3. ........... 68
Figure 4-18 The comparing coefficient of lift decreased ratio in tow rain rates. ................................................... 70
Figure 4-19 The comparing coefficient of drag increased ratio in two rain rates. ................................................... 70
Figure 4-20 The comparing lift to drag ratio in two rain rates. ........................................................................ 72
Figure 4-21 The bar chart comparing lift to drag ratio in two rain rates ................................................................. 72
Figure 4-21 The particles impact to Blended Wing Body by Fluent. .............................................................. 74



List of Tables
Table 2-1 A performance comparison of the BWB-450 with the A380-700 for 480 passengers and 8,700 nm range [8] ........................................................................ 10
Table 3-1 ONERA M6 wing geometry [25]. ......................... 40
Table 4-1 The coefficient of lift, drag and moment at 0.85 Mach number. ............................................................ 46
Table 4-2 The lift, drag and moment coefficient at free stream velocity 49.4774 m/s. ........................................ 47
Table 4-4 Cmα variation in the simulation at Mach Number 0.85. ........................................................................ 51
Table 4-5 Cmα variation in the simulationat at free stream velocity 49.4774 m/s. ........................................ 52
Table 4-8 The Cl and Cn variation with different crosswind speed at angle of attack 00. ................................ 56
Table 4-9 The Cl and Cn variation with different crosswind speed at angle of attack 10. ................................ 56
Table 4-10 The Cl and Cn variation with different crosswind speed at angle of attack 20. ................................ 57
Table 4-11 The Cl and Cn variation with different crosswind speed at angle of attack 30. ................................ 57
Table 4-12 The Cl and Cn variation with different crosswind speed at angle of attack 40. ................................ 58
Table 4-13 The Cl and Cn variation with different crosswind speed at angle of attack 60. ................................ 58
Table 4-14 The Cl and Cn variation with different crosswind speed at angle of attack 80. ................................ 59
Table 4-15 The Cl and Cn variation with different crosswind speed at angle of attack 100. ............................... 59
Table 4-16 The Cl and Cn variation with different crosswind speed at angle of attack 120. ............................... 60
Table 4-17 The CL and CD variation with at liquid water content 25g/m3. ................................................. 64
Table 4-18 The CL and CD variation with at liquid water content 39g/m3. ................................................. 64
Table 4-21 The CL decreased and CD increased variation with at liquid water content 25g/m3 and 39g/m3. ............. 69
Table 4-22The lift to drag decreased variation with at liquid water content 25g/m3 and 39g/m3 ....................... 71
Table 5-1 Boeing 747-100 and Blended Wing Body static stability data. .................................................... 75


參考文獻 References
[1]Wan, T. and Wu, S. W., “Aerodynamic Performance Analysis under the Influence of Heavy Rain,” Journal of Aeronautics, Astronautics and Aviation, Vol. 41, No. 3, 2009, pp.173-180.
[2]Fluent’s User Guide.
[3]http://www.flightglobal.com.
[4]Northrop, J. K., “The Development of All-Wing Aircraft,” Journal of Royal Aeronautical Society, Vol. 51, 1947, pp. 481-510.
[5http://www.aircraftinformation.info/gallery_bombers_cancelled.htm.
[6]http://www.aviationexplorer.com.
[7]Liebeck, R. H., Page, M. A. and Rawdon, B. K., “Blended Wing Body Subsonic Commercial Transport,” AIAA Paper 98-0438, 1998.
[8]Leifur, T. L. and Mason, W. H., “The Blended Wing Body Aircraft,” Virginia Polytechnic Institute and State University Blacksburg, 2006.
[9]Qin, N., Vavalle, A., Moigne, A. L., Laban, M., Huckett, K., and Weinerfelt, P., “Aerodynamic Studies of Blended Wing Body Aircraft,” AIAA Paper 2002-5448, 2002.
[10]Roman, D., Gilmore, R., and Wakayama, S., “Aerodynamics of High-subsonic Blended Wing Body Configuration,” AIAA Paper 2003-554, 2003.
[11]Qin, N., Vavalle, A., Moigne, A. L., Laban, M., Huckett, K., and Weinerfelt, P., “Aerodynamic Considerations of Blended Wing Body Aircraft,” Progress in Aerospace Sciences, Vol. 40, 2004, pp. 321-343.
[12]Wan, T. and Yang H., “Aerodynamic Performance Investigation of a Modern Blended-Wing-Body Aircraft under the Influence of Heavy Rain Condition,” 8th Asian CFD Conf., Hong Kong, January 10, 2010.
[13]Roskam, J., Airplane Flight Dynamics and Automatic Flight Controls, the University of Kansas, 1988.
[14]Hahne, D. E., “Evaluation of the Low-Speed Stability and Control Characteristics of a Mach 5.5 Wave Rider Concept,” NASA Technical Memorandum 4756.
[15]Nelson, R. C., Flight Stability and Automatic Control, 2nd edition, McGraw- Hill, N.Y., 1998.
[16]Rhode, R. V., “Some Effects of Rainfall on Flight of Airplanes and on Instrument Indications,” NACA TN 903, April 1941.
[17]Markowitz, A. M., “Raindrop Size Distribution Expression,” Journal of Applied Meteorology, Vol. 15, 1976, pp.1029-1031
[18]Luers, J. and Haines, P., “Heavy Rain Influence of Airplane Accidents,” Journal of Aircraft, Vol. 20, No. 2, Feb 1983.
[19]Bilanin, A. J., “Scaling Laws for Testing Airfoils under Heavy Rainfall,” Journal of Aircraft, Vol. 24, No. 1, Jan. 1987, pp.31-37.
[20]Bezos, G. M. and Campbell, B. A., “Development of a Large-Scale, Outdoor, Ground-Based Test Capability for Evaluating the Effect of Rain on Airfoil Lift,” NASA TM-4420, April 1993.
[21]Valentine, J. R. and Decker, R. A., “Tracking of Raindrops in Flow over an Airfoil,” Journal of Aircraft, Vol. 32, No. 1, Jan-Feb.1995, pp.100-105.
[22]Thompson, B. E., Jang, J., and Dion, J. L., “Wing Performance in Moderate Rain,” Journal of Aircraft, Vol. 32, No. 5, Sept.-Oct. 1995, pp. 1034-1039.
[23]Wan, T. and Pan, S. P., “Aerodynamic Efficiency Study under the Influence of Heavy Rain via Two-Phase Flow Approach,” Proceedings of the 27th International Congress of Aeronautical Sciences (ICAS), Nice, France, September 19-24, 2010.
[24]Bardina, J. E., Huang, P. G., and Coakley, T. J., “Turbulence Modeling Validation, Testing, and Development,” NASA Technical Memorandum 1997.
[25]The ONERA M6 Wing, available online;URL:http://www.grc. nasa.gov/WWW/wind/valid/m6wing/m6wing01/m6wing01.html.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-02公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-02起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信