淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2807201016114100
中文論文名稱 含氮橋基雙吡啶衍生物 : 合成、結構、金屬離子感測器與液晶性質研究
英文論文名稱 Studies of Dipyridylamine Derivatives : Synthesis, Structures, Metal Ion Sensing and Liquid Crystal Properties
校院名稱 淡江大學
系所名稱(中) 化學學系博士班
系所名稱(英) Department of Chemistry
學年度 98
學期 2
出版年 99
研究生中文姓名 高憲章
研究生英文姓名 Hsien-Chang Kao
學號 891170085
學位類別 博士
語文別 英文
口試日期 2010-06-01
論文頁數 131頁
口試委員 指導教授-王文竹
委員-林志彪
委員-張一知
委員-王伯昌
委員-施增廉
委員-呂光烈
委員-孫世勝
委員-王文竹
中文關鍵字 1,10雙雜啡    螢光感測器  分子內電荷轉移  雙吡啶  離子液體  離子液晶 
英文關鍵字 Zinc  Fluorescent Sensior  Intraligand charge-transfer  Dipyridylamine  Ionic liquid  Ionic liquid crystal 
學科別分類
中文摘要 本篇論文以1,10-雙雜菲(1,10-phenanthroline) 為架構,合成出類紫質開環配位子bis(1,10-phananthrolin-2-yl)amine (HDPA),並對其物理化學性質進行分析,亦藉由HDPA是否質子化,調控反應物對架橋亞胺基或雜環氮進行修飾,作合成上之探討。由X-ray單晶結構解析,不同pH值環境下,HDPA可具饒曲transoid 及平面syn兩種結構。經氫核磁共振光譜研究顯示,調整pH值,HDPA的構形可因一罕見的分子內 CH•••N氫鍵,產生構形改變。理論計算結果發現,transoid 及平面syn兩種結構之熱焓值,僅差0.5 kcal mol-1,說明氫核磁共振光譜中所見現象,HDPA於溶液態中可進行兩種結構互換。

HDPA 與鋅離子反應可得HDPA的鋅錯合物[Zn(HDPA)(OAc)]。經x-ray單晶結構解析,因強烈π-π作用力影響,[Zn(HDPA)(OAc)]以雙聚體方式呈現於單晶結構中。於晶體堆疊方面,除了π-π作用力外,為使電荷平衡,[Zn(HDPA)(OAc)]亦與大陰離子 [Zn7(μ4-O)2(OAc)12]2-形成共結晶,而此七核鋅簇 [Zn7(μ4-O)2(OAc)12]2-是文獻中未曾被報導過的特殊陰離子。於紫外光-可見光譜中,[Zn(HDPA)(OAc)]的最低能量吸收峰可延伸至400 nm至500 nm,為 的分子內電荷轉移吸收峰。發射光譜中,可以利用 385 nm 為激發波長,使[Zn(HDPA)(OAc)]在385 nm及580 nm產生雙發色光。其中,385 nm為配位子π-π*的螢光,385 nm為架橋亞胺基nimine至配位子π*的螢光。藉由以上光學特性,進而設計離子偵測實驗,發現 HDPA 對於鋅離子具專一偵測性,可作為良好的離子偵測器。

2,2-dipyridylamine 與不同碳數的溴烷反應,可得到一系列高純度具有離子液體特性的N,N’-dialkyl-2,2’-azapyridocyane (Cn-Dpya-X) 衍生物。由X-ray單晶結構分析可知,長碳鏈修飾在吡啶而非架橋亞胺基,並與BF4-共結晶,堆疊成為一層狀結構。以溴為陰離子的系列化合物中,短碳鏈的離子液體具有接近室溫的溶點,長碳鏈的化合物則具有熱致型離子液晶的特性;在偏光顯微鏡下可觀測到SmA的紋理圖。此系列離子液體在加入水後,可轉為層狀排列的濃致型離子液晶。
英文摘要 A family of acyclic aza-bridged bis-1,10-phenanthroline compounds has been synthesized in a convenient way. The resulting compounds 2 and 2•HCl were fully characterized and their solid-state structures and NMR spectroscopic properties were investigated to assess how the structural units affect the alkylation reactions. Solid state structure and NMR spectroscopic investigation reveal the transoid structure for 2. The broadening NMR peak in 2 is due to an unusual intramolecular CH…N hydrogen bond. The unique conformation provides an efficient and regioselective method to prepare the amino-substituted bis-2,2’-1,10-phenanthroline derivatives and 1,10-phenanthrolino-N-alkylated compounds.

An aza-bridged bis-1,10-phenanthroline ligand HDPA was synthesized and observed to display a tetradentate coordination mode to form [Zn(HDPA)(OAc)]. The x-ray crystallography revealed the structure of [Zn(HDPA)(OAc)]2[Zn7(μ4-O)2(OAc)12], and the anion unit [Zn7(μ4-O)2(OAc)12]2- is the first case of a related structure of heptanuclear Zn(II) clusters. The compound then showed its lowest-energy transition assigned to ILCT band and displayed dual fluorescence with λmax = 385nm and 580 nm upon excitation at 325 nm. The emissions with λmax = 580 nm came from an intraligand 1(nimine-π*) excited state. The investigated fluorescence properties of HDPA associated with various metal ions indicated that the emission with λmax at 580 nm was more sensitive with Zn(II) than with other interfering cations.

The synthesis and characterization of N,N’-dialkyl-2,2’-azapyridocyane (Cn-Dpya-X, n = 4, 8, 10, 12, 14, 16 and 18 for X = Br-, ClO4-, BF4-, NO3-) of ionic liquid series are reported. The x-ray crystallography revealed the structure of [C14-Dpya-BF4] and identified the lamellar packing. The short alkyl chains compounds (n = 4,8 and 10) exhibit liquid properties at room temperature. The ionic liquid crystalline behavior of Cn-Dpya-Br (n = 12,14,16,18) was investigated by means of differential scanning calorimetry, polarizing light optical microscopy and X-ray diffractometry. All these four compounds exhibit SmA mesophases when cooling from isotropic liquid. Addition of water to Cn-Dpya-Br (n = 14,16 and 18) is shown to result the lyotropic liquid crystal behaviors.
論文目次 Contents
中文摘要 i
Abstract ii
Chapter I.
Aza-bridged Bis-1,10-phenanthroline Acyclic Derivatives: Synthesis, Structure and Regioselective Alkylation
Introduction 2
Results and Disscusion 2
Summary 14
Chapter II.
An Intraligand Charge-Transfer Fluorescent Sensor of Bis-diphenanthrolinylamine for Zn(II)
Introduction 16
Experimental 22
Results and DIscussion 24
Summary 47
Chapter III.
Thermotropic and Lyotropic Liquid Crystals of Dipyridylamine Salts
Introduction 49
Experimental 53
Results and Discussion 60
Summary 80
Conclusion 82
Reference 84
Supporting Information 90


List of Figures

Figure 1-1 1H-NMR spectra of (a) [H2DPA]Cl, (b)HDPA, (c)MeDPA ,(d)N-MeDPA in DMSO-d6 solution at 300 K. 5
Figure 1-2 1H-NMR spectra of MeDPA in DMOS-d6 solution in various temperature. 9
Figure 1-3 ORTEP representations of the X-ray crystal structures of the HDPA and [H2DPA]Cl. 11
Figure 2-1 Cartoon representation of Cys2His2 zinc finger motif. 17
Figure 2-2 Classification of zinc fluorescence probes. 19
Figure 2-3 Principle of cation recognition by fluorescent PET sensors. 19
Figure 2-4 Spectral displacements of PCT sensors. 20
Figure 2-5 ORTEP diagram of [Zn(HDPA)(OAc)]2[Zn7(μ4-O)2(OAc)12]. 26
Figure 2-6 Packing diagram of [Zn(HDPA)(OAc)]2[Zn7(μ4-O)2(OAc)12]. 27
Figure 2-7 Molecular diagram of [Zn(HDPA)(OAc)]+. 27
Figure 2-8 Molecular diagram of [Zn7(μ4-O)2(OAc)12]2-. 28
Figure 2-9 UV/Vis spectra of 2.68 × 10-5 M HDPA in CH3CN, addition of Zn(OAc)2 MeOH solution. 31
Figure 2-10 UV/Vis spectra of 2.68 × 10-5 M HDPA in CH3CN, addition of Zn(OAc)2 MeOH solution. 32
Figure 2-11 UV/Vis spectra of 2.68 × 10-6 M HDPA CH3CN,addition of Zn(OAc)2 MeOH solution. 33
Figure 2-12 UV/Vis spectra of HDPA:Zn(OAc)2 = 1:1 mole ratio in 1% DMSO MeCN solution,various concentration. 34
Figure 2-13 Contour plots and orbital energies for Zn(HDPA)(OAc) at solid state obtained by DFT method. 36
Figure 2-14 UV/Vis spectrum of HDPA:Zn(OAc)2 =1:1 mole ratio CH3CN solution, addition of HCl MeOH solution. 37
Figure 2-15 Tunable ILCT process of Zn(HDPA)(OAc). 37
Figure 2-16 UV/Vis spectra of HDPA:Zn(OAc)2 = 1:7 mole ratio CH3CN solution, addition of ethylenediamine MeOH solution. 38
Figure 2-17 UV/Vis spectrum of HDPA: Zn(OAc)2 = 1:7 mole ratio CH3CN solution addition of ethylenediamine MeOH solution. 39
Figure 2-18 The absorption, emission and excitation spectrum of 2.68 × 10-5 M Zn(DPA)(OAc) CH3CN solution at room temperature, λex = 450 nm. 40
Figure 2-19 Single-exponential fluorescence decay of Zn(DPA)(OAc) in CH3CN solution. 41
Figure 2-20 The absorption and emission spectrum of 2.68 × 10-5 M Zn(DPA)(OAc) CH3CN solution at room temperature, λex = 325nm. 42
Figure 2-21 Emission spectra of 2.6 × 10-5 M HDPA CH3CN solution, addition of Zn(OAc)2 MeOH solution, λex = 325 nm and 450nm. 43
Figure 2-22 Fluorescence response of HDPA (1.32 × 10-6 M, CH3CN) to different ions (1.32 × 10-6 M, MeOH). 45
Figure 3-1 Common cations and anions of ionic liquid. 49
Figure 3-2 Schematic representation of solid, liquid crystal and liquid. 51
Figure 3-3 Schematic representation of the common mesophase. 52
Figure 3-4 ORTEP diagram of C14-Dpya-BF4. 60
Figure 3-5 Packing diagram of C14-Dpya-BF4. 62
Figure 3-6 DSC Curve of C12-Dpya-Br. 65
Figure 3-7 DSC Curve of C14-Dpya-Br. 67
Figure 3-8 DSC Curve of C16-Dpya-Br. 67
Figure 3-9 DSC Curve of C18-Dpya-Br. 68
Figure 3-10 Variation of phase transition temperatures of the Cn-Dpya-Br (n = 10,12,14,16,18. 70
Figure 3-11 The optical texture observed by C18-Dpya-Br. 70
Figure 3-12 Melting point temperature ranges of different ionic liquid crystals. 72
Figure 3-13 The optical texture observed by C14-Dpya-Br/H2O. 72
Figure 3-14 Powder XRD of C14-Dpya-Br at 65 ˚C,crystalline phase. 73
Figure 3-15 Powder XRD of C14-Dpya-Br at 80 ˚C,mesophase. 74
Figure 3-16 Powder XRD of C14-Dpya-Br at 110 ˚C, isotropic. 74
Figure 3-17 Powder XRD of C16-Dpya-Br at 70 ˚C,crystalline phase. 75
Figure 3-18 Powder XRD of C16-Dpya-Br at 97 ˚C, mesophase. 76
Figure 3-19 Powder XRD of C18-Dpya-Br at 118 ˚C, mesophase. 76
Figure 3-20 Powder XRD of C18-Dpya-Br at various temperature. 77
Figure 3-21 Schematic representation of different solid comformations. 78


List of Tables

Table 1-1 Reaction conditions of CP and HDPA. 4
Table 1-2 Chemical shifts and coupling constants for selected compounds. 5
Table 1-3 Crystal data and structure refinement for [H2DPA]Cl. 12
Table 1-4 Crystal data and structure refinement for HDPA. 13
Table 2-1 Crystal data and structure refinement for [Zn(HDPA)(OAc)][Zn7(μ4-O)2(OAc)12]. 29
Table 2-2 Selected bond lengths (Å) and angles (º) for [Zn(HDPA)(OAc)][Zn7(μ4-O)2(OAc)12]. 30
Table 2-3 Fluorescent properties of zinc complexes. 44
Table 2-4 Relative absorbance of 1.34 × 10-6 M HDPA CH3CN solution to 1 equiv of metal ions MeOH solution. 45
Table 3-1 Elemental Analysis data of Cn-Dpya-Br. 59
Table 3-2 Crystal data and structure refinement for C14-DPYA-BF4. 63
Table 3-3 The phase transition and temperatures(oC) of C10-Dpya-Br. 64
Table 3-4 The phase transition and temperatures (oC) of C12-Dpya-Br. 65
Table 3-5 The phase transition and temperatures(oC) of C14-Dpya-Br. 66
Table 3-6 The phase transition and temperatures (oC)of C16-Dpya-Br. 68
Table 3-7 The phase transition and temperatures (oC) of C18-Dpya-Br. 69
Table 3-8 d-spacing list of Cn-Dpya-Br at crystal phase. 77
Table 3-9 Relationship between alkyl chain and d-spacing of Cn-Dpya-Br
at mesophase. 79
Table 3-10 Porperties of some common ILCs. 80



參考文獻 1. Kalyanasundaram, K. Photochemistry of Polypyridine and Porphyrin Complexes; Academic Press: New York, 1992.
2. Kelly, D. M.; Vos, J. G. In Electroactive Polymer Electrochemistry Part 2 ; Lyons, M. E. G., Ed.; Plenum Press: New York, 1994; pp. 173–232.
3. Sammes, P. G.; Yahioglu, G. Chem. Soc. Rev. 1994, 327–334.
4. (a) Cheng, C. C.; Kuo, Y. N.; Chuang, K. S.; Luo, C. F.; Wang, W. J. Angew. Chem., Int. Ed. Engl. 1999, 38, 1255–1257. (b) Hirai, M.; Shinozuka, K.; Sawai, H.; Ogawa, S. Chem. Lett. 1992, 2023–2026. (c) Davis, J. T. Angew. Chem., Int. Ed. 2004, 43, 668–698. (d)Tan, J. H.; Gu, L Q.; Wu, J. W. Mini-Rev. Med. Chem. 2008, 8, 1163–1178. (e) Reed, J. E.; Neidle, S.; Vilar, R. Chem. Commun. 2007, 4366–4368.
5. (a) Ogawa, S.; Yamaguchi, T.; Gotoh, N. J. Chem. Soc., Chem. Commun. 1972, 577–578. (b) Ogawa, S.; Yamaguchi, T.; Gotoh, N. J. Chem. Soc., Perkin Trans. 1 1974, 976–978. (c) Krapcho, A. P.; Sparapani, S.; Leenstra, A.; Seitz, J. D. Tetrahedron Lett. 2009 50, 3195-3197. (d) Conecpcin, J.; Just, O.; Leiva, A. M.; Loeb, B.; Rees Jr., W. S. Inorg. Chem. 2002, 41, 5937-5939.
6. (a) Wang, W. J.; Chuang, K. S.; Luo, C. F.; Liu, H.-Y. Tetrahedron Lett. 2000, 41, 8565–8568. (b) Wang, W. J.; Sengul, A.; Luo, C. F.; Kao, H. C.; Cheng, Y.-H. Tetrahedron Lett. 2003, 44, 7099-7101.
7. A dichloromethane solution (5 mL) of 1 (0.9 g, 4.2 mmol) were added with HCl(aq) until no white precipitate generated. Dried under vacuum and heated under N2 at 120 oC ( 10 mins ),the color of mixture turned from white to yellow, heated the mixture under NH3 atmosphere at 240 oC ( 6 h ) until the materials color of mixture turned to deep brown, after washed by dichloromethane and ice methanol, the brown powder were recrystallized by slow diffusion from diethyl ether into concentrated methanol solution to afford 2.HCl (1.283 g, 76%). 1H-NMR (DMSO-d6) δ 9.25 (d, J = 1.8, 4.4 Hz, 1H), 8.85 (d, J = 8.3 Hz, 1H), 8.71 (dd, J = 8.3, 1.8 Hz, 1H), 8.18 (d, J = 8.8 Hz, 1H), 8.15 (d, J = 8.8 Hz, 1H), 7.98 (dd, J = 8.3, 1.8 Hz, 1H), 7.97 (d, J = 7.97 Hz, 1H). 13C-NMR (DMSO-d6) δ158.6; 150.9; 150.6; 142.2; 142.1; 138.3; 138.0; 131.0; 127.7; 127.3; 124.9; 124.1; 122.8; 115.0. ESI-MS (M+H) = 374.
8. The crude product of 2.HCl was dissolved in water (280 mL) and then adjust to pH 8 by addition of NH4OH solution. The deep brown precipitates were generated while the pH value changes. The product was collected by filtration and was thoroughly extraced by Soxhlet with acetone to afford 2 in quantitative yield. 1H-NMR(DMSO-d6) δ 10.98 (s, 1H), 9.12 (d, J = 1.8, 4.2 Hz, 2H), 8.88 (br d, 2H), 8.46 (d, J = 9.0 Hz, 2H), 8.45 (dd, J = 1.8, 8.4 Hz, 2H), 7.93 (d, J = 9.0 Hz, 1H), 7.81 (d, J = 9.0, 2H), 7.74 (dd, J = 4.2, 8.4 Hz, 2H). 13C-NMR(DMSO-d6) δ 153.8; 149.7; 144.5; 144.1; 138.2; 136.1; 128.6; 126.3; 124.1; 123.7; 122.9; 115.1. Anal. Calcd for C24H15N5: C, 77.20; H, 4.05; N, 18.76. Found: C, 77.25 ; H, 4.20; N, 18.78.
9. A dichloromethane solution (10 mL) of 2 (100 mg, 0.27 mmol) was added with iodomethane dropwise (62uL, 0.35mmol), and the resulting yellow solution was stirred at room temperature overnight. The yellow precipitate thus formed and collected by filtration, washed thoroughly with dichloromethane and n-hexane, and dried to yield 3 as a light yellow solid ( 97 mg, 93%). 1H-NMR(DMSO-d6) δ 10.85 (s, 1H), 9.58 (d, J = 9.5 Hz, 1H), 9.36 (d, J = 5.7 Hz, 1H), 9.24 (d, J = 8.6 Hz, 1H), 9.13(dd, J = 3.8, 1.9 Hz, 1H), 8.76 (d, J =9.5 Hz, 1H), 8.47 (dd, J = 7.6, 1.9 Hz, 1H), 8.44 (d, J = 8.6 Hz, 1H), 8.31 (d, J = 8.6 Hz, 1H), 8.24 (dd, J = 8.6, 5.7 Hz, 1H), 8.12 (d, J = 8.6, 1H), 7.94 (d, J = 8.6 Hz, 1H), 7.85 (d, J = 8.6 Hz, 1H), 7.72 (d, J = 8.6 Hz, 1H), 7.70 (dd, J = 7.6, 3.8 Hz, 1H), 5.30 (s, 3H). 13C-NMR(DMSO-d6) δ 152.8; 150.6; 149.9; 146.5; 144.7; 144.4; 139.5; 139.4; 138.3; 136.3; 136.1; 132.4; 130.2; 129.0; 127.8; 126.4; 124.3; 124.0; 123.6; 123.3; 123.2; 117.0; 114.9; 52.2. Anal. Calcd for C25H18N5I: C, 58.26; H, 3.52; N, 13.59. Found: C, 58.09 ; H, 3.66; N, 13.55.
10. Into dimethyl sulfoxide(20 mL) were successively added potassium hydroxide (85 mg, 1.5 mmol) and 2 (100 mg, 0.27 mmol). The resulting deep-orange coloured solution with was stirred at room temperature for 30 min. Iodomethane (62uL, 0.35mmol) was then added and the orange solution was stirred at room temperature for 48 h. It was then diluted with water (100mL), which lead to the immediate deposition of a fine yellow precipitate and was collected by filtration, washed with water ( 3 × 20 mL), and the yellow solid was recrystallized from methanol, and dried to yield 4 ( 55 mg, 53% ). 1H-NMR(DMSO-d6) δ 9.13( dd, J=4.2, 3.0 Hz, 2H), 8.54 (dd, J = 9.0, 3.0 Hz, 2H), 8.53(d, J = 8.8 Hz, 2H), 8.27 (d, J=8.8 Hz, 2H), 7.97 (d, J = 9.0 Hz, 2H), 7.90 (d, J = 9.0 Hz, 2H), 7.80 (dd, J = 9.0, 4.2 Hz, 2H), 5.25 (s, 3H). ESI-MS (M+H) = 388. Anal. Calcd for C25H17N5: C, 77.50; H, 4.42; N, 18.08. Found: C, 77.02 ; H, 4.58; N, 17.83.
11. Rice, C. R.; Anderson, K. M. Polyhedron 2000, 19, 495-498.
12. Vieira, F. T.; de Lima, G. M.; Wardell, J. L.; M.S.V. Wardell, S.; Krambrok, K.; de C. Alcantara, A. F. J. Organomet. Chem. 2008, 693, 1986-1990.
13. (a) Chen, Y.; Fu, W. F.; Li, J. L.; Zhao, X. J.; Ou, X. M. New. J. Chem. 2007, 31, 1785-1788. (b) Wu, F.; Riesgo, E.; Pavalova, A.; Kipp, R. A.; Schmehl, R. H., Thummel, R. P. Inorg. Chem. 1999, 38, 5620-5628.
14. (a) Lash, T. L.; Von Ruden, A. L. J. Org. Chem. 2008, 73, 9417-9425. (b) Nakamura, Y.; Aratani, N.; Shinokubo, H.; Takagi, A.; Kawai, T.; Matsumoto, T.; Yoon, Z. S.; Kim, D. Y.; Ahn, T. K.; Kim, D.; Muranaka, A.; Kobayashi, N.; Osuka, A. J. Am. Chem. Soc. 2006, 128, 4119-4127.
15. Johnson, C. K. ORTEP II; Report ORNL-5138; Oak Ridge National Laboratory: Oak Ridge, TN, 1976.
16. The crystallographic data in CIF format have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC reference number 750240 and 750265. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(0) 1223 336033 or email: deposit@ccdc.cam.ac.uk].
17. CAChe® 4.4 Windows, Fujitsu Limited, Japan, 2000.
18. Nishigaki, S.; Yoshioka, H.; Nakatsu, K. Acta Crystallogr., Sect. B 1978, 34, 875–879.
19. Hensen, K.; Kettner, M.; Bolte, M. Acta Crystallogr., Sect. C 1998, 54, 359–361.
20. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry. Wiley, New York, 1988.
21. Auld, D. S. Biometals. 2001, 14, 271–313.
22. (a) Berg, J. M.; Shi, Y. Science. 1996, 271, 1081–1085. (b) Finney, L. A.; O’Halloran, T. V. Science, 2003, 300, 931–936.
23. Lim, N. C.; Freake, H. C.; Brückner, C. Chem. Eur. J. 2005, 11, 38–49.
24. Vallee, B. L.; Falchuk, K. H. Physiol. Rev. 1993, 73, 79–118.
25. Spiro, T. G. Zinc Enzymes, Wiley, New York. 1983, 124.
26. Laity, J. H.; Lee, B. M.; Wright, P. E. Curr. Opin. Struct. Biol. 2001, 11, 39–46.
27. Prasad, A. S. Am, J. Clin. Nutr. 1991, 53, 403–412.
28. Dutnall, R. N.; Neuhaus, D.; Rhodes, D. Structure 1996, 4, 599–611.
29. de Onis, M.; Frongillo, E. A. ; Blossner, M. Bull W. Y. O. 2000, 78, 1222–1233.
30. (a) Outten, C. E.; O’Halloran, T. V. Science 2001, 292, 2382–2388. (b) Outten, C. E.; Tobin, T. A.; Penner-Hahn, J. E.; O’Halloran, T. V. Biochemistry 2001, 40, 10417–10423.
31. (a) Hang, Y.; Mukherjee, S.; Oldield, E. J. Am. Chem. Soc. 2005, 127, 2370–2371. (b) Lipton, A. S.; Wright, T. A.; Bowman, M. K.; Reger, D. L.; Ellis, P. D. J. Am. Chem. Soc. 2003, 124, 5850–5860.
32. Valeur, B. Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim, 2001.
33. Jiang, P.; Guo, P. Coord. Chem. Rev. 2004, 248, 205–229.
34. Valeur, B. ; Leray, I. Coord. Chem. Rev. 2000, 205, 3–40.
35. de Silva, A. P.; Fox, D. B.; Hyxley, A. J. M.; Moody, T. S. Coord. Chem. Rev. 2000, 205, 41–57.
36. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566.
37. (a) Schilt, A. Applications of 1,10-Phenanthroline and Related Compounds; Pergamon: London, 1969. (b) Chelucci, G.; Thummel, R. P. Chem. Rev. 2002, 102, 3129–3170.
38. Ogawa, S.; Yamaguchi, T.; Gotoh, N. J. Chem. Soc., Chem. Commun. 1972, 577–578. (b) Ogawa, S.; Yamaguchi, T.; Gotoh, N. J. Chem. Soc., Perkin Trans. 1 1974, 976–978. (c) Krapcho, A. P.; Sparapani, S.; Leenstra, A.; Seitz, J. D. Tetrahedron Lett. 2009 50, 3195-3197. (d) Conecpcin, J.; Just, O.; Leiva, A. M.; Loeb, B.; Rees Jr., W. S. Inorg. Chem. 2002, 41, 5937–5939.
39. (a) Wang, W. J.; Sengul, A.; Luo, C. F.; Kao, H. C.; Cheng, Y. H. Tetrahedron Lett. 2003, 44, 7099–7101. (b) Wang, W. J.; Kao, H. C.; Hsu, C, J.; Hsu, C. W.; Lin, C. H. unpublished results.
40. (a) Frisch, M. J. Gaussian03; Gaussian, Inc.: Pittsburgh, PA, 2003. (b) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 454–464. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. (d) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
41. (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270–283. (b) Hay, P. J; Wadt, W. R. J. Chem. Phys. 1985, 82, 284–298.
42. SHELX-97. G.M. Sheldrick, 1997. Programs for crystal structure solution and refinement, University of Gottingen, Germany.
43. SADABS. Version 2007/2. G.M. Sheldrick, 1997. Bruker AXS Inc., Madison, Wisconsin, USA.
44. (a) Attanasio, D.; Dessy, G.; Fares, V. J. Chem. Soc., Dalton Trans. 1979, 28–34. (b) Lalioti, N.; Raptopoulou, C. P.; Terzis, A.; Aliev, A. E.; Perlepes, S. P.; Gerothanassis, I. P.; Zoupa, M. Chem. Comm. 1988, 1513–1514. (c) Ng, M. T.; Deivaraj, T. C.; Vittal, J. J. Inorg. Chim. Acta. 2003, 348, 173–178.
45. F. A. Cotton, L. M. Daniels, L. R. Falvello, J. H. Matonic, C. A. Murillo, X. Wang and H. Zhou, Inorg. Chim. Acta 1997, 266, 91–102.
46. Smith, R. C.; Dennis, A. E. Chem. Comm. 2007, 4641–4643.
47. Thummel, R. P.; Zong, R. Inorg. Chem. 2005, 44, 5984–5986.
48. Vogler, A. Kunkely, H. Coor. Chem. Rev. 2007, 251, 577–583.
49. Jiang, P.; Chen, L.; Lin, J.; Liu, Q.; Ding, J.; Gao, X.; Guo, Z. Chem. Comm. 2002, 1424–1425.
50. Hendrickson, K. M. ; Rodopoulos, T.; Pittet, P. A.; Mahadevan, I.; Lincoln, S. F.; Ward, A. D.; Kurucsev, T.; Duckworth, P. A.; Forbes, I. J.; Zalewski, P. D.; Betts, W. H. J. Chem. Soc., Dalton Trans. 1997, 3879–3882.
51. de Silva, S. A.; Zavaleta, A.; Baron, D. E.; Allam, O.; Isidor, E. V.; Kashimura, N.; Percarpio, J. M. Tetrahedron Lett. 1997, 38, 2237–2240.
52. Burdette, S. C.; Frederickson, C. J.; Bu, W.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 1778–1787.
53. Huston, M. E.; Haider, K. W.; Czarnik, A. W. J. Am. Chem. Soc. 1988, 110, 4460–4462.
54. Aoki, S.; Kaido, S.; Fujioka, H.; Kimura, E. Inorg. Chem. 2003, 42, 1023–1030.
55. (a) Welton, T. Chem. Rev. 1999, 99, 2071–2083. (b) Wasserscheid, P.; Keim, W. Angew Chem. Int. Ed. 2000, 39, 3772–3789. (c) Wilkes, J. S. Green Chem. 2002, 4, 3–10. (d) Rogers, R. D.; Seddon, K. R. Ionic Liquids : Industrial Applications to Green Chemistry, ACS Symposium Series 818, American Chemical Society, Washington, DC, 2002. (e) Rogers, R. D.; Seddon, K. R. Ionic liquids as Green Solvents : Progess and Prospects, ACS Symposium Series 856, American Chemical Society, Washington, DC, 2003.
56. Sugden, S; Wilkins, H. J. Chem. Soc. 1929, 1291–1298.
57. Scheffler, T.B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage, P. D. Inorg. Chem. 1983, 22, 2099–2100. (b) Laher, T. M.; Hussey, C. L. Inorg. Chem. 1983, 22, 3247–3251. (c) Scheffler, T. B.; Hussey, C. L. Inorg. Chem. 1984, 23, 1926–1932. (d) Hitchcock, P. B.; Mohammed, T. J.; Seddon, K. R.; Zora, J. A.; Hussey, C. L.; Ward, E. H. Inorg. Chim. Acta 1986, 113, L25–L26.
58. Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc. Chem. Commun. 1992, 965–967.
59. Saeva, F. D. Liquid Crystals: The Fourth State of Matter; Marcel dekker: New York, 1979.
60. H. Stegemeyer. Liquid Crystals, Steinkopff-verlag, Springer, New York, 1994.
61. (a) Kelker, H.; Hatz, R. Handbook of liquid crystals; Verlag Chemie: Weinheim, 1980. (b) Demus, D.; Goodby, J.; Gray, G. W.; Spies, H. W; Vill, V., Eds. Handbook of Liquid Crystals; Wiley-VCH: Weinheim, 1988.
62. Binnemans, K. Chem. Rev. 2005, 105, 4148–4204.
63. (a) Foxon, S. P.; Walter, O.; Schindler, S. Eur. J. Inorg. Chem. 2002, 1, 111–121. (b) Yang, W.; Schmider, H.; Wu, Qingguo.; Zhang, Y. S.; Wang, S. Inorg. Chem. 2000, 39, 2397–-2404. (c) Lanzafame, J. M.; Muenter, A. A.; Brumbaugh, D. Chem. Phys. 1996, 210, 79–89. (d) Muenter, A. A.; Brumbaugh, D. V.’ Apolito, J.; Horn, L. A.; Spano, F. C.; Mukamel, S. J. Phys. Chem. 1992, 96, 2783–2790.
64. Leubner, I. H. J. Org. Chem. 1973, 6, 1098–1102.
65. (a) Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R.; Seddon, K. R. J. Mater. Chem. 1998, 8, 2627–2636. (b) Bradley, A. E.; Hardacre, C.; Holbrey, J. D.; Johnston, S.; McMath, S. E.; Neiuwenhuyzen, M. Chem. Meter. 2002, 14, 629–635. (c) Lee, C. K.; Ling, M. J.; Lin, I. J. B. Dalton Trans. 2003, 4731–4737.
66. Browers, J.; Butts, C. P.; Martin, P. J.; Vergara-Gurierrez, M. C.; Heenan. R. K. Langmuir 2004, 20, 2191–2198. (b) Binks, B. P.; Dyab, A. K. F.; Flectcher, P. D. I. Chem Commun. 2003, 2540–2541. (c) Firestone, M. A.; Dzielawa, J. A.; Zapol, P.; Curtiss, L. A.; Seifert, S.; Dietz, M. L. Langmuir 2002, 18,7258–7260.



論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-08-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-08-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信