淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2807201015151700
中文論文名稱 Fenton相關程序去除色度與DOC之研究
英文論文名稱 Removal of color and organics by Fenton related processes.
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 陳佩茹
研究生英文姓名 Pei-Ru Chen
學號 697480605
學位類別 碩士
語文別 中文
口試日期 2010-06-29
論文頁數 57頁
口試委員 指導教授-康世芳
委員-顏幸苑
委員-李柏青
中文關鍵字 混凝  Fenton  Fenton-like  脫色 
英文關鍵字 Coagulation  Fenton  Fenton-like  Decolorization  Textile wastewater 
學科別分類 學科別應用科學環境工程
中文摘要 Fenton程序兼具氫氧自由基(OH‧)氧化及鐵鹽混凝雙重功能去除有機物,本研究探討Fenton相關程序去除色度與DOC之效率與去除機制,Fenton相關程序包含混凝、Fenton及Fenton-like程序。以反應性偶氮染料Evercion Red H-E3B與聚乙烯醇(Poly(vinyl alcohol), PVA)配製染料濃度20~100 mg/L、PVA 50 mg/L之人工染整廢水,以pH、鐵鹽種類與加藥量及H2O2加藥量為操作變數,所有實驗皆採取瓶杯試驗。
  研究結果顯示Fenton程序之最佳操作pH範圍為2.5~4,色度及DOC去除率可達95 %及78 %以上。Fenton及Fenton-like程序於低鐵鹽加藥量(5 mg/L),色度去除率可達90 %以上,但DOC去除率低於13 %,脫色所需之鐵鹽加藥量低於混凝程序,Fenton相關程序單位鐵鹽加藥量去除色度約為混凝之6至7倍 ,Fenton程序氧化與混凝去除之色度分別為88.9 %與2.7 %,脫色以氧化機制為主。高鐵鹽加藥量(50 mg/L)時,可同時去除DOC與色度分別達75%與95%以上,DOC去除效果則以Fenton-like最佳(Fenton-like>混凝≒Fenton)。Fenton氧化與混凝機制去除之DOC為7.9 %與72.9 %,Fenton-like程序則為3 %與74.2 %。增加鐵鹽加藥量可提升去除DOC之成效,混凝機制去除之色度隨鐵鹽加藥量增加而趨顯著。此外,增加H2O2加藥量雖可增加氫氧自由基生成,但仍無法提供礦化去除DOC,增加H2O2加藥量提高無法顯著提高DOC去除率。依本研究結果,建議廢水脫色採用以氫氧自由基氧化為主之Fenton、Fenton-like程序;,同時脫色去除DOC則採用鐵鹽混凝程序。
英文摘要 The purposes of this study are to investigate the removals of color and dissolved organic carbon (DOC) by ferric coagulation, the Fenton and Fenton-like processes, to compare the removal mechanisms of color and DOC among three processes. The synthetic colored wastewater samples were prepared from 20~50 mg/L of a red reactive azo dyestuff (Red H-E3B) and 50 mg/L of polyvinyl alcohol (PVA).The experimental variables studied include dosages of iron salts (ferrous and ferric) and hydrogen peroxide (H2O2), pH. All experiments were conducted by the Jar test.
The result shows that more than 95 % and 78 % of color and DOC can be removes by Fenton and Fenton-like processes when pH is between 2.5 to 4. In low iron dosages (5 mg/L), by both Fenton and Fenton-like processes, the color removals was higher than 90 %, but the removal of DOC was lower than 13 %. The iron dosages used for decolorization by Fenton and Fenton-like processes are lower than ferric coagulation. The ratio of color removal efficiency, expressed by color removed per iron dosage, between Fenton related processes and ferric coagulation was 6~7. The ratio of color removal by OH. Oxidation and ferric coagulation was 32.9 : 1 and 1.37 : 1 by Fenton and Fenton-like processes, respectively.
In high iron dosages (50 mg/L), Fenton-like process has the best efficiency of DOC removal between ferric coagulation and Fenton related processes. The ratio of DOC removal by OH. Oxidation and ferric coagulation was 1 :9.2 and 1 : 9.39 by Fenton and Fenton-like processes, respectively. Increase H2O2 dosages can increase the ratio of color removal by ferric coagulation by Fenton process. In Fenton-like process, the ratio of color removal increase when H2O2 dosages increase. For the removal of DOC, increase H2O2 dosage won’t improve the efficiency of DOC.
It was also found that the non-color background organic compound PVA can complete with the red dye H-E3B for OH., leading to the reduced color removal as the PVA content increases. Therefore, it demonstrated that the removal of color is the OH. Oxidation and the removal of DOC is ferric coagulation by Fenton related processes. It is concluded that both the Fenton and Fenton-like processes were better used for color removal but DOC removal.
論文目次 圖目錄 III
表目錄 IV
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 染整廢水特性及處理技術 3
2-1-1染整廢水特性 3
2-1-2 染整廢水處理技術 6
2-2 化學混凝理論及處理染整廢水 7
2-2-1 化學混凝理論 7
2-2-2 化學混凝法處理染整廢水 10
2-3 Fenton程序處理染整廢水 12
2-3-1 Fenton程序理論 12
2-3-2 Fenton程序影響因素 14
2-3-3 Fenton程序處理染整廢水 16
第三章 實驗材料與方法 18
3-1 實驗材料 18
3-1-1 人工染整廢水 18
3-1-2 實驗藥品 21
3-1-3 實驗設備 22
3-2 實驗方法 23
3-2-1 化學混凝與Fenton程序瓶杯試驗 23
3-2-2 水質分析 24
第四章 結果與討論 25
4-1 鐵鹽混凝去除色度與DOC 25
4-1-1 鐵鹽加藥量對化學混凝去除色度之影響 25
4-1-2鐵鹽加藥量對化學混凝去除DOC之影響 25
4-2 Fenton程序去除色度與DOC 28
4-2-1 pH對Fenton程序去除色度與DOC之影響 28
4-2-2 鐵鹽加藥量對Fenton程序去除色度與DOC之影響 30
4-2-3 H2O2加藥量對Fenton程序去除色度與DOC之影響 32
4-2-4 Fenton程序去除色度與DOC之機制 34
4-3 Fenton-like程序去除色度與DOC 38
4-3-1鐵鹽加藥量對Fenton-like程序去除色度與DOC之影響 38
4-3-2 H2O2加藥量對Fenton-like程序去除色度與DOC之影響 40
4-3-3 Fenton-like程序去除色度與DOC之機制 43
4-4 各程序去除色度與DOC效能之比較 47
4-4-1 各程序單位鐵鹽加藥量去除色度與DOC效能之比較 47
4-4-2 有機物背景濃度對各程序去除色度影響之比較 51
第五章 結論 52
參考文獻 53

圖3- 1 Evercion Red H-E3B之UV-VIS光譜圖 19
圖4- 1鐵鹽加藥量對化學混凝去除色度與DOC之影響 26
圖4- 2鐵鹽加藥量對化學混凝去除色度之影響 27
圖4- 3鐵鹽加藥量對化學混凝去除DOC之影響 27
圖4- 4 pH對Fenton程序去除色度與DOC之影響 29
圖4- 5鐵鹽加藥量對Fenton程序去除色度與DOC之影響 31
圖4- 6鐵鹽加藥量對Fenton程序去除色度與DOC之影響 31
圖4- 7 H2O2加藥量對Fenton程序去除色度與DOC之影響 33
圖4- 8 H2O2加藥量對Fenton程序去除色度與DOC之影響 33
圖4- 9不同鐵鹽加藥量對Fenton程序色度溶出之影響 36
圖4- 10不同鐵鹽加藥量對Fenton程序DOC溶出之影響 36
圖4- 11不同H2O2加藥量對Fenton程序色度溶出之影響 37
圖4- 12不同H2O2加藥量對Fenton程序DOC溶出之影響 37
圖4- 13鐵鹽加藥量對Fenton-like程序去除色度與DOC之影響 39
圖4- 14鐵鹽加藥量對Fenton-like程序去除色度與DOC之影響 39
圖4- 15 H2O2加藥量對Fenton-like程序去除色度與DOC之影響 42
圖4- 16 H2O2加藥量對Fenton-like程序去除色度與DOC之影響 42
圖4- 17 Fenton-like程序於不同鐵鹽加藥量時色度之殘留率變化 45
圖4- 18 Fenton-like程序於不同鐵鹽加藥量時DOC之殘留率變化 45
圖4- 19 Fenton-like程序於不同H2O2加藥量時色度之殘留率變化 46
圖4- 20 Fenton-like程序於不同H2O2加藥量時DOC之殘留率變化 46
圖4- 21各程序之色度殘留率 49
圖4- 22各程序之DOC殘留率 49
圖4- 23有機物背景濃度對各程序去除色度之影響 51

表2- 1典型紡織染整廢水特性 4
表2- 2我國目前印染整理業規範之放流水標準 5
表2- 3常用之混凝劑 9
表3- 1人工染整廢水之色度與DOC資料表 18
表3- 2紅色反應性偶氮染料Evercion Red H-E3B基本資料 19
表3- 3水溶性高分子化合物聚乙烯醇基本資料 20
表4- 1混凝、Fenton及Fenton-like程序於低鐵鹽加藥量時,去除色度及DOC之比較。(Fe2+ / Fe3+ =5 mg/L) 50
表4- 2混凝、Fenton及Fenton-like程序於高鐵鹽加藥量時,去除色度及DOC之比較。(Fe2+ / Fe3+ =50 mg/L) 50

參考文獻 1. Azbar N., Yonar T., and Kestioglu K. 2004. Comparison of various advanced oxidation process and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere, 55, 35-43.
2. Badawy M.I. and Ali M.E.M., 2006. Fenton’s oxidation and coagulation processes for the treatment of combined industrial and domestic wastewater. Journal of Hazardous Materials, 136, 961-966.
3. Bouasla C., Samar M. E., and Ismail F., 2010. Degradation of methyl violet 6B dye by the Fenton process. Desalination, 254, 35-41.
4. Ciotti C., Baciocchi R., and Tuhkanen T., 2009. Influence of the operating conditions on highly oxidative radicals generation in Fenton’s systems. Journal of Hazardous Materials, 161, 402-408.
5. Chang M.W., Chern J.M., 2010. Decolorization of peach red azo dye, HF6 by Fenton reaction: Initial rate analysis. Journal of the Taiwan Institute of Chemical Engineers, 41, 221-228.
6. Deng Y., 2007. Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate. Journal of Hazardous Materials, 146, 334-340.
7. Duesterberg C.K., Mylon S.E., and Waite T.D., 2008. pH effects on iron-catalyzed oxidation using Fenton's reagent. Environmental Science and Technology, 42, 8522-8527.
8. Fu F., Wang Q., and Tang B., 2010. Effective degradation of C.I. Acid Red 73 by advanced Fenton process. Journal of Hazardous Materials, 174, 17-22.
9. Furlan F.R., Silva L.G.M., Morgado A.F., Souza A.A.U., and Souza S.M.G.U., 2010. Removal of reactive dyes form aqueous solutions using combined coagulation/flocculation and adsorption on activated carbon. Resources, Conservation and Recycling, 54, 283-290.
10. Gulkaya I., Surucu G.A., and Dilek F.B., 2006. Importance of H2O2/Fe2+ ration in Fenton’s treatment of a carpet dyeing wastewater. Journal of Hazardous Materials, 136, 763-769.
11. Hameed B.H. and Lee T.W., 2009. Degradation of malachite green in aqueous solution by Fenton process. Journal of Hazardous Materials, 164, 468-472.
12. Hsing H.J., Chiang P.C., Chang E.E., and Chen M.Y., 2007. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study. Journal of Hazardous Materials, 141, 8-16.
13. Huang Y.H., Huang Y.F., Chang P.S., and Chen C.Y., 2008. Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton. Journal of Hazardous Materials, 154, 655-662.
14. Hsueh C.L., Huang Y.H., Wang C.C., and Chen C.Y., 2005. Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, 58, 1409-1414.
15. Kang S.-F., Liao C.-H., and Chen M.-C., 2002. Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere 46, 923-928.
16. Kuo W.G., 1992. Decolorizing dye wastewater with Fenton's reagent. Water Research, 26, 881-886.
17. Kim T.H., Park H., Yang G., and Kim S.Y., 2004. Comparision of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. Journal of Hazardous Materials, 112, 95-103.
18. Kulik N., Panova Y., and Trapido M., 2007. The Fenton Chemistry and Its Combination with Coagulation for Treatment of Dye Solutions. Separation Science and Technology, 42, 1521-1534.
19. Lefebver E. and Legube B., 1992. Iron(II) coagulation of humic substances extracted from surface waters: effect of pH and humic substances concentration. Water Research, 24, 591-606.
20. Lee H. and Shodo M., 2008. Removal of COD and color form Livestock Wastewater by the Fenton Method. Journal of Hazardous Materials, 153, 1314-1319.
21. Lucas M.S., Dias A.A., Sampiao A., Amaral C., and Peres J.A., 2007. Degradation of a textile reactive Azo dye by a combined chemical-biological process: Fenton’s reagent-yeast. Water Research, 41, 1103-1109.
22. Lucas M.S. and Peres J.A., 2006. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 71, 236-244.
23. Ma X.J. and Xia H.L., 2009. Treatment of water-based printing ink wastewater by Fenton process combined with coagulation. Journal of Hazardous Materials, 162, 386-390.
24. Malik P.K. and Saha S.K., 2003. Oxidation of direct dyes with hydrogen peroxide using ferrous ions as catalyst. Separation and Purification Technology, 31, 241-250.
25. Modirshahla N., Behnajady M.A., and Ghanbary F., 2007. Decolorization and mineralization of C.I. Acid Yellow 23 by Fenton and photo-Fenton processes. Dyes and Pigments, 73, 305-310.
26. Meric S., Kaptan D., and Olmez T., 2004. Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere, 54, 435-441.
27. Papadopoulos A.E., Fatta D., and Loizidou M., 2007. Development of optimization of dark Fenton oxidation for the treatment of textile wastewater with high organic load. Journal of Hazardous Materials, 146, 558-563.
28. Qiu Z., He Y., Liu Z., and Yu S., 2005. Catalytic oxidation of the dye wastewater with hydrogen peroxide. Chemical Engineering and Processing, 44, 1013-1017.
29. Ramirez J.H., Duarte F.M., Martins F.G., Costa C.A., and Madeira L.M., 2009. Modelling of the synthetic dye Orange II degradation using Fenton's reagent: From batch to continuous reactor operation. Chemical Engineering Journal, 148, 394-404.
30. Rodriguez M., Sarria V., Esplugas S., and Pulgarin C., 2002. Photo-Fenton treatment of a biorecalcitrant wastewater generated in textile activities: biodegradability of the photo-treated solution. Journal of Photochemistry and Photobiology A: Chemistry, 151, 129-135.
31. Riera-Torres M., Gutiérrez-Bouzán C., and Crespi M., 2010. Combination of coagulation-flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 252,53-59.
32. Sun S.P., Li C.J., Sun J.H., and Shi S.H., 2009. Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Journal of Hazardous Materials, 161, 1052-1057.
33. Reynolds Tom D., Richards Paul A., 1996. Unit operations and process in environmental engineering (2nd ed). PWS publishing company.
34. 康世芳, 楊振昇, 陳宇陽, 2000. Fenton程序改善染整廢水有機物特性之研究. 第二十五屆廢水處理技術研討會論文集.
35. 楊萬發, 駱尚廉, 2000. 環境工程(一) 自來水工程. 茂昌圖書.
36. 中華民國行政院環境保護署, 2009. 水汙染防治法規,放流水標準.
37. 環保署, 2003. 「印染整理業」、「農藥業」、「印刷電路板業」及「晶圓製造及半導體製造業」等四行業之廢水中特定物質前處理及管理制度評估計畫. 第4-1~4-57頁.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-29公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-07-29起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信