淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2807201014114900
中文論文名稱 光反應對氯化銀薄膜的孕核與成長之影響
英文論文名稱 Effect of Photoreaction on Nucleation and Growth of Silver chloride films
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 余奕勳
研究生英文姓名 Yi-Syun Yu
學號 698370300
學位類別 碩士
語文別 中文
口試日期 2010-06-04
論文頁數 75頁
口試委員 指導教授-林清彬
委員-林清彬
委員-林景崎
委員-李勝隆
中文關鍵字 氯化銀薄膜  黑暗環境  UV光  光分解  結晶成長機制  晶態 
英文關鍵字 AgCl film  darkness environment  UV irradiation  photodecomposition  crystal growth mechanism  morphology 
學科別分類 學科別應用科學機械工程
中文摘要 本研究已提出一新穎之氯化銀薄膜製造方法,將硝酸銀水溶液相變化成固態後,滴入氯化鈉水溶液,藉由析出反應製得氯化銀薄膜。並探討在暗室及UV曝照環境下對AgCl薄膜的晶體形態影響。暗室環境之AgCl薄膜晶態,上表面形態為接近等軸狀晶體;下表面型態為微小顆粒以異質孕核於薄膜下表面的硝酸根晶體及以優選方向成長成棒狀結構。UV曝照環境之AgCl薄膜晶態,上表面形態為AgCl晶體以銀原子簇為異質成核點成長成展弦比較大之長軸晶態,其中銀原子簇來自於UV光照射AgCl晶體後產生的光分解所致。
英文摘要 This research has brought a new method to fabricating silver chloride films. The silver nitrate solution phase-changed into solid phase and the sodium chloride solution were infused, and then the silver chloride film was produced by precipitation reaction. And the research is a study of the effects on the crystalline morphology of AgCl film which grew in the UV-exposed environment and in the darkness, respectively. The crystalline morphology of AgCl film upper-surface which grew in the darkness is close to equiaxed crystals. The crystalline morphology of AgCl film under-surface is small particles which heterogeneously nucleated on the nitrate crystals under the surface of the film and to be in accordance with the preferred orientation into the stick-like structure. As the crystalline AgCl film grew in the UV-exposed environment, the AgCl crystal became a long axis crystal due to the silver clusters as heterogeneous nucleation site. And the crystal is identified with a higher aspect ratio. The silver clusters were derived from AgCl crystal photodecomposition which was caused by UV rays irradiation.
論文目次 總目錄
總目錄 I
圖目錄 IV
符號說明 VII
壹、導論 1
1-1 前言 1
1-2文獻回顧 3
1-2-1 氯化銀簡介 3
1-2-2 溶解度 3
1-2-3 過飽和度 5
1-2-4 成核現象 8
1-2-4-1 均質成核 9
1-2-4-2異質成核 12
1-2-4-3二次成核 15
1-2-5 晶體成長 18
1-2-6 雜質對結晶的影響 21
1-3.研究動機與論文架構 23
1-3-1研究動機與目的 23
1-3-2論文架構 24
貳、實驗步驟 28
2-1. 實驗裝置 28
2-1-1 實驗藥品與材料 28
2-1-2 實驗設備及分析儀器 28
2-2 實驗步驟 29
2-2-1氯化銀薄膜之製備 29
2-2-1-1暗室析出氯化銀薄膜Type I與UV曝光氯化銀薄膜之製備 29
2-2-1-2 暗室析出氯化銀薄膜Type II 31
2-2-1-3暗室析出氯化銀薄膜Type I添加HNO3之實驗 32
2-2-2氯化銀薄膜顯微結構及性質分析 33
2-2-2-1顯微結構觀察 33
2-2-2-2 X-光繞射分析(XRD) 33
參、結果與討論 35
3-1暗室析出AgCl薄膜 35
3-1-1暗室析出AgCl薄膜之上表面形態 35
3-1-2暗室析出AgCl薄膜下表面形態 38
3-2 UV曝光析出AgCl薄膜 41
3-2-1 UV曝光析出AgCl薄膜上表面形態 41
3-2-2 UV曝光析出AgCl薄膜下表面形態 44
肆、結論 69
伍、參考文獻 71

圖目錄
Fig.1-1溶解度曲線-超溶解度曲線示意圖 25
Fig.1-2晶體粒徑與自由能之關係示意圖 25
Fig.1-3於外來粒子表面進行異質成核反應 26
Fig.1-4群聚體孕核成穩定晶核 26
Fig.1-5吸收層內的成核現象示意圖 27
Fig.1-6溶液中結晶的驅動力 27
Fig.3-1暗室析出AgCl薄膜上表面形態;反應時間(a)1分鐘;(b) 5分鐘之SEM圖片 46
Fig.3-2 暗室析出AgCl薄膜剖面形態;反應時間(a)1分鐘;(b)5分鐘;(c)10分鐘之SEM圖片 47
Fig.3-3暗室析出AgCl薄膜上表面形態;反應時間(a)10分鐘;(b)20分鐘;(c)30分鐘之SEM圖片 48
Fig.3-4 暗室析出AgCl薄膜剖面形態;反應時間(a)20分鐘;(b)30分鐘之SEM圖片 49
Fig.3-5暗室析出AgCl薄膜上表面形態;反應時間(a)1小時;(b)8小時;(c)16小時之SEM圖片 50
Fig.3-6 暗室析出AgCl薄膜剖面形態;反應時間(a)1小時;(b)4小時;(c)12小時;(d)20小時之SEM圖片 51
Fig.3-7暗室析出AgCl薄膜反應時間24小時之上表面形態SEM照片 52
Fig.3-8暗室析出AgCl薄膜下表面形態;反應時間(a)1分鐘;(b)5分鐘之SEM圖片 53
Fig.3-9暗室析出AgCl薄膜下表面形態;反應時間(a)10分鐘;(b)20分鐘;(c)30分鐘之SEM圖片 54
Fig.3-10(a)暗室析出AgCl薄膜TypeII; (b)(c) 暗室析出AgCl薄膜TypeI添加HNO3上表面形態SEM圖片 55
Fig.3-11暗室析出AgCl薄膜下表面形態;反應時間(a)1小時;(b)8小時;(c)20小時之SEM圖片 56
Fig.3-12 UV曝光AgCl薄膜反應時間1分鐘上表面形態;放大倍率(a)2000;(b)1200之SEM圖片 57
Fig.3-13 UV曝光AgCl薄膜反應時間3分鐘上表面形態;放大倍率(a)2000;(b)1200;(c)500之SEM圖片 58
Fig.3-14 UV曝照氯化銀薄膜之XRD分析(a)UV曝照氯化銀薄膜 (b)銀標準繞射圖譜 (c)氯化銀標準繞射圖譜 59
Fig.3-15 UV曝光反應時間1分鐘氯化銀薄膜之EPMA mapping分析 60
Fig.3-16 UV曝光反應時間24小時氯化銀薄膜之EPMA mapping分析 61
Fig.3-17 UV曝光AgCl薄膜上表面形態;反應時間(a)7分鐘;(b)10分鐘;(c)20分鐘之SEM圖片 62
Fig.3-18 UV曝光AgCl薄膜上表面形態;反應時間(a)1小時;(b)8小時之SEM圖片 63
Fig.3-19 UV曝光AgCl薄膜剖面形態;反應時間(a)30分鐘;(b)1小時;(c)4小時;(d)12小時;(e)16小時;(f)24小時之SEM圖片 64
Fig.3-20 UV曝光AgCl薄膜上表面形態;反應時間(a)12小時;(b)20小時;(c)24小時之SEM圖片 65
Fig.3-21 UV曝光AgCl薄膜下表面形態;反應時間(a)1分鐘;(b)10分鐘;(c)20分鐘之SEM圖片 66
Fig.3-22 UV曝光AgCl薄膜下表面形態;反應時間(a)1小時;(b)8小時;(c)20小時之SEM圖片 67
Fig.3-23 UV曝光AgCl薄膜下表面形態;反應時間(a)8小時;(b)20小時;(c)24小時之SEM圖片 68

參考文獻 伍、參考文獻
1. Chi-Kit Siu, Brigitte S. Fox-Beyer, Martin K. Beyer, and Vladimir E. Bondybey, “Ab Initio Molecular Dynamics Studies of Ionic Dissolution and Precipitation of Sodium Chloride and Silver Chloride in Water Clusters, NaCl(H2O)n and AgCl(H2O)n, n = 6, 10, and 14”, Chem. Eur. J 12(2006), pp.6382 – 6392.
2. 簡文鎮,「以凝聚理論探討碳酸鈣之成核引發時間」,國立台灣大學化學工程研究所博士論文(2001)pp.28-46.
3. Söhnel O. and J. Garside, Precipitation: Basic Principles and Industrial Applications, Butterworth-Heinemann, Oxford. (1992).
4. Nielsen, A. E. “Electrolyte Crystal Growth Mechanisms”, J. Cryst. Growth, 67, 2(1984a) pp.289-310.
5. Nielsen, A. E. and J. M. Toft, “Electrolyte Crystal Growth Kinetics”, J. Cryst. Growth, 67, 2 (1984b) pp.278-288.
6. King, M. and A. Mersmann, “On Supersaturation during Mass Crystallization from Solution”, Chem. Eng. Technol., 13, 1(1990) pp.50-62.
7. Dirksen, J. A. and T. A. Ring, “Fundamentals of Crystallization: Kinetic Effects on Particle Size Distributions and Morphology”, Chem. Eng. Sci., 46, 10, (1991) pp.2389-2427.
8. 石政怡,「次成核的機構和其在結晶程序上之應用」,國立台灣大學化學工程研究所博士論文(1995)pp.6-11.
9. Myerson, A. S., Handbook of Industrial Crystallization, Butterworth-Heinemann, (1992).
10. Mullin, J. W., Crystallization, 3rd, Butterworth-Heinemann, Oxford, (1993).
11. Mullin, J. W. and M. M. Osman, “Nucleation and Precipitation of Nickel Ammonium Sulphate Crystals from Aqueous Solution”, Kristall and Technik, 8, 4 (1973) pp.471-481.
12. Nývlt, J., O. Söhnel, M. Matuchova and M. Broul, The Kinetics of Industrial Crystallization, Elsevier, Amsterdam, (1985).
13. Walton,A. G., “Nucleation in Liquids and Solutions”, in Nucleation, A. C. Zettlemoyer, ed., Dekker, NY, (1969).
14. Nomura, T., M. Alonso, Y. Kousaka and K. Tanaka, “A Model for Simultaneous Homogeneous and Heterogeneous Nucleation”, J. Colloid Interface Sci., 203, 1 (1998).pp.170-178.
15. Kousaka, Y., T. Nomura, S. Hasebe, K. Tanaka and M. Alonso, “A Model of Liquid-phase Homogeneous Nucleation in a System Containing Seed Particles”, KONA, 17, (1999) pp.190-196.
16. Grünewald, T, L. Dahne and C. A. Helm, “Supersaturation and Crystal Nucleation in Confined Geometries “J. Phys. Chem. B, 102, 25 (1998) pp 4988–4993.
17. Derjaguin, B. V. and L. D. Landau “ Theory of stability of strongly Charged lyophobic sols and of the adhesion of strongly charged particles In solutions of electrolytes”, Acta Physicochimca URSS, 43, 1-4, (1941) pp.733-762
18. Verwey, E. J. W. and J. Th. G. Overbeek ,Theory of the stability of lyophobic colloids, Elsevier, Amsterdam. (1948).
19. Wonczak, S. and R. Strey, “Confirmation of Classical Nucleation Theory by Monte Carlo Simulations in the 3-Dimensional Ising Model at Low Temperature”, J. Chem. Phys., 113, 5 (2000).pp.1976-1980.
20. N. H. Fletcher, “Size effect in heterogeneous nucleation,” J. Chem. Phys., 29(1958).pp.572-576.
21. Liu, X. Y., “A New Kinetic Model for Three-Dimensional Heterogeneous Nucleation”, J. Chem. Phys., 111, 4(1999) pp.1628-1635.
22. Clontz, N. A. and W. L. McCabe, “Contact Nucleation of Magnesium Sulfate Heptahydrate”, AIChE Symp. Ser., 110, 67 (1971).pp.6
23. Johnson, R. T., R. W. Rousseau and W. L. McCabe, “Factors Affecting Contact Nucleation”, AIChE Symp. Ser., 68,121 (1972).pp.31.
24. Strickland-Constable, R. F., “Kinetics and Mechanism of Crystallization’’ Academic Press, New York, (1968) pp.112.
25. Sung, C. Y., J. Estrin and G. R. Youngquist, “Secondary Nucleation of MgSO4 by Fluid Shear”, AIChE J, 19, 5(1973).pp.957-962
26. Denk, E. G. and G. D. Botsaris, “Fundamental Studies in Secondary Nucleation from Solution”, J. Cryst. Growth, 13/14, (1972).pp.493-499
27. Garabedian, H. and R. F. Strick-Constable, “Collision Breeding of Crystal Nuclei: Sodium Chlorate”, J. Cryst. Growth, 13/14, (1972).pp. 506-509.
28. Youngquist, G. R. and A. D. Randolph, “Secondary Nucleation in a Class II System: Ammonium Sulfate-Water”, AIChE J., 18, 2 (1972).pp.421-429
29. J. W. Gibbs: The Scientific Papers of J. Willard Gibbs, Vol.1: Thermodynamics, Dover Publications, New York, (1961).
30. Noyes, A. A. and Whitney, W. R.,”The rate of solution of solid substances in their own solutions”, J. Amer. Chem. Soc., 19, 3, (1897). pp. 930-934.
31. Frank, F.C.”On the equations of motion of crystal dislocations”, Proceedings of the Physical Society. Section A 62, 2, (1949) pp. 131-134.
32. Gilmer, G.H., Bennema, P., “Simulation of crystal growth with surface diffusion” Journal of Applied Physics 43, 4 (1972) pp. 1347-1360.
33. Garside, J. “The concept of effectiveness factors in crystal growth.” Chem. Eng. Sci., 26, (1971) pp.1425-1431.
34. Senol, D. and Myerson, A.S., “Effect of Impurities on Occlusion During Crystallization from Solution.” AIChE, vol. 78, 215, (1982). pp. 37-41.
35. Cooke, E. G.,” The effect of additives on the crystal form of sodium chloride.” In: J. L. RAU (Editor), Proceedings of the Second Symposium on Salt, 2. Northern Ohio Geol. SOC., Cleveland, Ohio, (1966).pp. 259-268.
36. Harano, Y.and Yamamato, H."Impurity Effect of some Amino Acids on Formation and Growth of L-Glutamic Acid Nuclei by Secondary Nucleation in Agitated Solution", Journal of Chemical Engineering of Japan, 14 , 1(1981).pp.59-64.
37. Falini, G., M. Gazzano, A. Ripamonti, “Crystallization of Calcium Carbonate in Presence of Magnesium and Polyelectrolytes”, J. Crystal Growth, 137, 3-4 (1994).pp.577-584.
38. Söhnel O. and J. W. Mullin, “Precipitation of Calcium Carbonate”, J. Cryst. Growth, 60, 2 (1982).pp.239-250
39. Van der Leeden, M.C., Van Rosmalen, G.M.“Aspects of additives in precipitation processes: Performance of polycarboxylates in gypsum growth prevention “Desalination, 66, (1987) pp.185-200.
40. Buckley, H.E.”Habit modification in crystals as a result of the introduction of impurities during growth” Discussions of the Faraday Society 5, (1949) pp. 243-254.
41. 陳寶祺,「微溶物系之沉澱與結晶」, 國立台灣大學化學工程研究所博士論文,(1992)pp.26.
42. Balluffi, Allen and Carter ,Kinetics Of Materials 1Ed (2005)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-08-02公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信