淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2807200913034100
中文論文名稱 Serratia marcescens TKU011發酵烏賊軟骨於生物活性物質生產之應用
英文論文名稱 Utilization of squid pen fermentation by Serratia marcescens TKU011 for the efficient production of bioactive materials
校院名稱 淡江大學
系所名稱(中) 生命科學研究所碩士班
系所名稱(英) Graduate Institute of Life Sciences
學年度 97
學期 2
出版年 98
研究生中文姓名 楊倩玟
研究生英文姓名 Chiann-Wen Yang
學號 696180388
學位類別 碩士
語文別 中文
口試日期 2009-07-15
論文頁數 56頁
口試委員 指導教授-王三郎
委員-王一雄
委員-顏裕鴻
中文關鍵字 Serratia marcescens  蛋白酶  幾丁聚醣酶  烏賊軟骨粉末 
英文關鍵字 Serratia marcescens  protease  chitosanase  squid pen wastes 
學科別分類 學科別醫學與生命科學生物學
中文摘要 Serratia marcescens TKU011係一株以蝦頭殼粉末作為唯一碳/氮源之蛋白酶及幾丁聚醣酶生產菌。本研究發現以烏賊軟骨粉末(SPP)作為碳/氮源時,TKU011生產蛋白酶及幾丁聚醣酶之較適條件為1%烏賊軟骨粉末、0.1% K2HPO4及0.05% MgSO4.7H2O,在25℃、pH 7之100 mL液態培養基振盪培養5天。延長培養基滅菌時間(在121℃下滅菌120分鐘)可得較佳之蛋白酶及幾丁聚醣酶活性。在培養基之不同滅菌時間條件下,所得發酵上清液經SDS-PAGE分析發現,酵素濃度隨滅菌時間延長而增加。自發酵物回收之烏賊粉末乾重,會隨著培養天數增加而逐漸減少,上清液可測得含有胜肽、寡糖。發酵上清液經清除DPPH自由基能力、還原力、螯合亞鐵離子能力及總酚量等測定抗氧化能力試驗,TKU011發酵SPP可生產抗氧化物質,這些抗氧化物質可能為胜肽、幾丁質及幾丁聚醣等化合物。將較適培養條件下發酵所得上清液經硫酸銨沉澱、DEAE-Sepharose及Phenyl Sepharose等層析步驟,可純化出二種幾丁質酶/幾丁聚醣酶(C1及C2),經SDS-PAGE測得分子量分別為49 kDa及66 kDa,將進一步探討酵素生化特性分析及基質特異性。
英文摘要 A protease- and chitosanase-producing strain, Serratia marcescens TKU011, was cultivated by using shrimp head shell powder (SHP) as the sole carbon/nitrogen source. In this study, the optimized condition for protease and chitosanase production using squid pen powder (SPP) as the carbon/nitrogen source was found to be when the culture was shaken at 25℃ for five days in 100 mL of medium (pH 7) containing 1% SPP, 0.1 % K2HPO4, 0.05% MgSO4.7H2O. In a prolonged autoclave (at 121℃ for 120 min), the protease and chitosanase activity were measured were better than others. The culture supernatants from various time of the medium in an autoclave by SDS-PAGE analysis was found that the enzyme concentration increased with an increase in heating time. The dry weight of the recovered squid pen decreased with an increase in cultivation. The peptides and oligosaccharides in the culture supernatants was determined. The antioxidative activity of the supernatant was derermind by DPPH radical-scavenging activity, reducing activity, total phenolic, Fe2+-Chelating activity. Two chitosanase( or chitinase) (C1,C2) were purified from the culture supernatant by chromatography procedures of DEAE-Sepharose and Phenyl Sepharose. The molecular mass of C1 and C2 determined by SDS-PAGE was approximately 49 kDa and 66 kDa, respectively. The substrate specificity and biochemical characterization of the enzymes were studied.
論文目次 封面內頁
簽名頁
授權頁
中文摘要I
英文摘要II
誌謝 III
目錄IV
圖目錄VII
表目錄VIII

第一章 緒論1
第二章 文獻回顧2
2.1 幾丁質2
2.1.1 幾丁質之結構2
2.1.2 幾丁質之應用3
2.2 幾丁質酶3
2.3 幾丁聚醣酶4
2.4 Serratia marcescens8
2.4.1 基本特性8
2.4.2 S. marcescens之幾丁質酶8
2.4.3 S. marcescens之蛋白酶9
2.5 抗氧化11
2.5.1 抗氧化劑作用機制11
第三章 材料與方法13
3.1 實驗材料13
3.1.1 實驗菌株13
3.1.2 實驗材料13
3.1.3 實驗儀器14
3.2 懸浮態幾丁質之製備14
3.3 蛋白酶之活性測定15
3.4 幾丁聚醣酶之活性測定15
3.5 幾丁質酶之活性測定16
3.6 不同碳/氮源之比較16
3.7 不同滅菌時間之影響16
3.8 還原糖量之測定16
3.9 回收沉澱物乾重之測定17
3.10 酵素之純化分離17
3.10.1粗酵素液之製備17
3.10.2 離子交換樹脂層析法18
3.10.3 疏水性層析18
3.10.4 蛋白質電泳分析18
3.11 抗氧化特性分析19
3.11.1 DPPH自由基清除能力之測定19
3.11.2螯合亞鐵離子能力之測定20
3.11.3還原力之測定20
3.11.4總酚類化合物之定量分析21
第四章 結果與討論22
4.1培養條件22
4.1.1 碳/氮源之選擇22
4.1.2 烏賊軟骨粉末培養基之滅菌時間24
4.2 TKU011發酵烏賊軟骨粉末之產物分析29
4.3 同一滅菌時間以不同碳氮源作為培養基之比較32
4.4幾丁質酶/幾丁聚醣酶之純化分離36
4.4.1 綜合結果41
4.5 幾丁質酶/幾丁聚醣酶之分子量測定41
4.6 以TKU011發酵SPP所得上清液之抗氧化效果45
第五章 結論47
參考文獻48

圖目錄
圖2.1幾丁聚醣、纖維素及幾丁質之化學結構5
圖4.1 TKU011培養於SHP及SPP培養基所生產蛋白酶、幾丁聚醣酶及DPPH自由基清除能力之變化情形23
圖4.2 TKU011培養於不同滅菌時間之SPP培養基所生產蛋白酶、幾丁聚醣酶之變化情形25
圖4.3 TKU011培養於不同滅菌時間之SPP培養基所生產蛋白酶、幾丁聚醣酶之變化情形26
圖4.4 TKU011培養於不同滅菌時間之SPP所得上清液之電泳分析27
圖4.5 TKU011培養於滅菌120 min之SPP培養基所生產蛋白酶、幾丁聚醣酶之變化情形28
圖4.6 (A)所得發酵上清液中測得之蛋白質含量、還原糖量及回收殘餘SPP之乾重(B)回收烘乾殘餘粉末之照片30
圖4.7 TKU011發酵SPP培養基所產幾丁質酶之變化情形31
圖4.8 TKU011發酵不同碳氮源培養基所生產蛋白酶及幾丁聚醣酶之變化情形33
圖4.9 TKU011發酵不同碳氮源培養基所生產幾丁質酶之變化情形34
圖4.10 TKU011發酵不同碳氮源培養基所得上清液中還原糖量及清除DPPH自由基能力之變化情形35
圖4.11 S. marcescens TKU011所生產酵素之純化分離流程圖38
圖4.12 幾丁聚醣酶/幾丁質酶之DEAE-Sapharose CL-6B層析圖譜39
圖4.13 幾丁聚醣酶/幾丁質酶之Phenyl-Sepharose層析圖譜40
圖4.14 幾丁質酶/幾丁聚醣酶(C1,C2)於SDS-PAGE之分子量分析42
圖4.15 TKU011發酵SPP培養基所得上清液之抗氧化試驗結果46

表目錄
表2.1 幾丁質與幾丁聚醣的應用6
表2.2 幾丁質酶之分類7
表2.3 S. marcescens之幾丁質酶與幾丁質結合蛋白質10
表4.1 TKU011生產蛋白酶、幾丁質酶及幾丁聚醣酶之較適條件36
表4.2 S.marcescens TKU011幾丁質酶/聚醣酶C1之純化總表43
表4.3 S.marcescens TKU011幾丁質酶/聚醣酶C2之純化總表44


參考文獻 Austin, P.R., Zikakis, J.P., Saylor, W.W., 1982. Chitin and Chitosan. The Japanese Society of Chitin and Chitosan, Tottori, 233.

Bergamini, M.V.W., Markey, M.L., Bowman, M.L., 1989. Chitin and Chitosan. Elsevier Applied Science 713.

Brurberg , M.B., Eijsink, V.G.H., I Nes, N.F., 1994. Characterization of a chitinase gene (chiA) from Serratia marcescens BJL200 and one-step purification of the gene product. FEMS Microbiol Lett 124, 399-404.

Brurberg, M.B., Eijsink, V.G.H., Haandrikman, A.J., Venema, G., Nes, I.F., 1995. Chitinase B from Serratia marcescens BJL2OO is exported to the periplasm without processing. Microbiol 141, 123-31.

Chandrakran-chang , S., Hirano, S., Stevens, W.F., Rao, M.S., 1996. Chitin and Chitosan. Environmental Friendly and Versatile Biomaterials, AIT, Bangkok, 1996, 22.

Deshpande, M.V., 1986. Enzymatic degradation of chitin & its biological applications. J Sci Ind Res 45, 273-81.

Dinis, T.C., Madeira, V.M.C., Almeida, L., 1994. Action of phenolic derivatives (acetominophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers . Arch Biochem Biophys 315, 166-174

Eaves, G.N., Jeffries, C.D., 1963. Isolation and properties of an exocellular nuclease of Serratia marcescens. J Bacteriol 85, 273-8.

Fenton, D.M., EVELEIGH, D.E, 1981. Purification and Mode of Action of a Chitosanase from Penicillium islandicum. J Gen Microbiol 126, 151-65.

Flach, J., Pilet, P.E., Jolles, P., 1992. What's new in chitinase research? CMLS, 48, 701-16.

Fuchs, R.L., McPherson, S.A., Drahos, D.J., 1986. Cloning of a Serratia marcescens gene encoding chitinase. Appl Environ Microbiol 51, 504-9.

Fukamizo, T., 2000. Chitinolytic enzymes: catalysis, substrate binding, and their application. Curr Protein Pept Sci 1, 105-24.

Gal, S.W., Choi, J. Y., Kim, C.Y., Cheong, Y.H., Choi, Y.J., Lee, S.Y., Bahk, J.D., Cho, M.J., 1997. Cloning of the 52-kDa chitinase gene from Serratia marcescens KCTC2172 and its proteolytic cleavage into an active 35-kDa enzyme. FEMS Microbiol Lett 160, 151-8.

Gal, S.W., Choi, J.Y., Kim, C.Y., Cheong, Y.H., Choi, Y.J., Bahk, J.D., Lee, S.Y., Cho, M.J., 1997. Isolation and characterization of the 54-kDa and 22-kDa chitinase genes of Serratia marcescens KCTC2172. FEMS Microbiol Lett 151, 197-204.

Gao, Z., Huang, K., Yang, X., Xu, H., 1999. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta 1472, 643–50.

Giese, J., 1996. Fat, oil, and fat replacers. Food tech 50, 77-84.

Gooday, G.W., 1990. The ecology of chitin degradation. Adv Microb Ecol 11, 387–430.

Grimont, P.A.D, Grimont, F., 1978. The genus Serratia. Ann Rev Microbiol 32, 221-48.

Harpster, M.H., Dunsmuir, P., 1989. Necleotide sequence of the chitinase B gene of Serratia marcescens QMB1466. Nucleic Acids Res 17, 5395.

Harris, A.K.P., Williamson, N.R., Slater, H., Cox, A., Abbasi, S., Foulds, I., Simonsen, H.T., Leeper, F.J., Salmond, G.P.C., 2004. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain- dependent genome context variation. Microbiol 150, 3547-60.

Häse, C.C., Finkelstein, R.A., 1993. Bacterial extracellular zinc-containing metalloproteases. Microbiol Rev 57,823–37.

He, H., Chen, X., Sun, C., Zhang, Y., Gao, P., 2006. Preparation and functional evaluation of oligopeptide-enriched hydrolysate from shrimp (Acetes chinensis) treated with crude protease from Bacillus sp. SM98011. Biores Technol 97, 385-90.

Hejazi, A., and Falkiner, F.R., 1997. Serratia marcescens. J Med Microbiol 46, 903-12.

Henrissat, B., 1999. Classification of chitinase modules. Chitin and Chitinases, 137-54.

Henrissat, B., Bairoch, A., 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316, 695-6.

Hirano, S., 1999. Chitin and chitosan as novel biotechnological materials. Polym Int 48, 732-4.

Hult, E.L., Katouno, F., Uchiyama, T., Watanabe, T., Sugiyama, J., 2005. Molecular directionality in crystalline β-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170. Biochem J 388, 851–6.

Imoto, T., Yagishita, K., 1971. A simple activity measurement by lysozyme. Agric Biol Chem 35, 1154-6.

Jannatipur, M., Soto-Gil, R.W., Childers, L.C., Zynskind J.W., 1987. Translocation of Vibrio harveyi N,N’-diacetylchitobiase to the outer membrane of Escherichia coli. J Bacteriol 169, 3785–91.

Je, J.Y., Kim, S.K., 2006. Reactive oxygen species scavenging activity of aminoderivatized chitosan with different degree of deacetylation. Bio Medl Chem 14, 5989–94.

Jones, J.D.G., Grady, K.L., Suslow, T.V. ,Bedbrook, J.R., 1986. Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO J 5, 467–73.

Julià, M.R., Pascual, E., Erra, P., 2000. Influence of the molecular mass of chitosan on shrink-resistance and dyeing properties of chitosantreated wool. JSDC 116, 62 –7.

Kafetzopoulos, D., Martinou, A., Bouriotis, V.,1993. Bioconversion of chitin to chitosan: Purification and characterization of chitin deacetylase from Mucor rouxii. Proc Natl Acad Sci 90, 2564-8.

Kang, D.W., Choi, H.K., Kweon, D.K., 1996. Polymer (Korea) 20, 989-95.

Kim, S.Y., Lee, Y.M., Lee, S.I.,1997. Preparation and evaluation of in vitro stability of lipid nanospheres containing vitamins A or E for cosmetic application, in: 24th International Sym- posium on Controlled Release of Bioactive Materials, Stockholm, Sweden, June 15–19.

Kim, H.S., Golyshin, P.N., Timmis, K.N., 2007. Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK. J Ind Microbiol Biotechnol 34,715–21.

Kless, H., Sitrit, Y., Chet, H., Oppenheim, A.B., 1989. Cloning of the gene coding for chitobiase of Serratia marcescens. Mol Gen Genet 217, 471-3.

Knorr, D. 1984. Use of chitinous polymers in food-a challenge for food research and development. Food Technol 38,85-97.

Knorr, D., 1991. Recovery and utilization of chitin and chitosan in food processing waste management. Food Technol 45,114-23.


Koga, D., Tsukamoto, T., Sueshige, N., Usumi, T., Ide, A., 1989. Kinetics of chitinase from yam, Dioscorea opposite thunb. Agric Biol Chem 3, 3121-6.

Kumar, M.N.V.R, 2000. A review of chitin and chitosan applications. Rea Funct Polym 46, 1-27.

Le, Y., Anand , S.C., Horrocks, A.R., 1996. Development of anti- bacterial polysaccharide fibers and their performance. European Conference on Advances in Wound Management .

Lee, Y.M., Kim, S.S., Cho, C.S., 1996. Wound covering materials of semi-interpenetrating polymer networks hydrogels composed of poly(ethylene glycol) diacrylate macromers and β-chitin and their release of silver sulfadiazine , in: 36th IUPAC International Symposium on Macromolecules, Seoul, Korea, 4–9.

Li, Y.C., Sun, X.J., BI, Y., GE, Y.H., Wang, Y., 2009. Antifungal activity of chitosan on fusarium sulphureum in relation to dry rot of potato tuber. Agric Sci in China 8, 597-604.

Lin, H.Y., Chou, C.C., 2004. Antioxidative activities of water-soluble disaccharide chitosan derivaties. Food Res Int 37, 883–9.

Mark, H.F., Bikales, N.M., Overberger, C.G., Menges, G., 1985. Encyclopedia of Polymer Science and Engineering Vol. 1, New York :Wiley,1, 20.

McKay, G., Blair, H.S., Gardner, J.R., 1989. Adsorption of dyes on chitin. I. Equilibrium studies. J Appl Polym Sci 27, 3043-57.

Minke, R., Blackwell, J., 1987. The Structure of α-chitin. J Mol Biol 120, 167-81.

Miyamoto, K., Nukui, E., Hirose, M., Nagai, F., Sato, T., Inamori, Y., Tsujibo, H., 2002a. A metalloprotease (MprIII) involved in the chitinolytic system of a marine bacterium, Alteromonas sp. strain O-7. Appl Environ Microbiol 68, 5563–70.

Miyamoto, K., Nukui, E., Itoh, H., Sato, T., Kobayashi, T., Imada, C., Watanabe, E., Inamori, Y., Tsujibo, H., 2002b. Molecular analysis of the gene encoding a novel chitin-binding protease from Alteromonas sp. strain O-7 and its role in the chitinolytic system. J Bacteriol 184, 1865–72.

Miyoshi, S.I., Shinoda, S., 2000. Microbial metalloproteases and pathogenesis. Microbes Infect 2, 91−8.

Monaghan, R.L., Eveleigh, D.E., Tewari, R.P., Reese, E.T., 1973. Chitosanase, a novel enzyme. Nat New Biol 245,78-80.

Monreal, J., Reese, E., 1969. The chitinase of Serratia marcescens. Can J Microbiol 15, 689-96.

Muzzarelli, R.A.A., 1997. Human enzymatic activities related to the therapeutical administration of chitin derivatives. Cell Mol Biol Life Sci 53, 131-40.

Nanjo, F., Sakai, K., Ishilawa, M., Isobe, K., Usui, T., 1989. Properties and transglycosylation reaction of a chitinase from Nocardia orientalis. Agric Biol Chem 53, 2189-95.

Ohtakara, A., Izume, M., Mitsutomi, M., 1999. Action of Microbial chitinase on chitosan with different degrees of deacetylation. Agric Biol Chem 52, 3181-2.

Ohtakara, A., Matsunaga, H., Mitsutomi, M., 1990. Action pattern of Streptomyces griseus chitinase on partially N-acetylated chitosan. Agric Biol Chem 54, 3191-9.

Oyaizu, M., 1986, Antioxidative activities of browning reaction prepared from glucosamine. Jpn J Nutr 44, 307-15.

Perrakis, A., Tews, I., Dauter, Z., Oppenheim, A.B., Chet, I., Wilson, K.S., Vorgias, C.E., 1994. Crystal structure of a bacterial chitinase at 2.3 Å resolution. Structure 2, 1169-80.

Rathke, T.D., Hodson, S.M., 1994. Review of chitin and chitosan as fibre and film formers. Poly Rev 34, 375-437.

Sakiyama, T., Chu, C.H., Fuji, T., Yano, T., 1993. Preparation of polyelectrolyte complex gel from chitosan and k-carrageenan and its pH sensitivity swelling. J Appl Polym Sci 50, 2021-5.

Schickler, H., Haran, S., Oppenheim, A.B., Chet, I., 1993. Cloned chitinases and their role in biological control of plant pathogenic fungi. In: Chitin Envwzology, 375-82. Edited by Muzzarelli, R. A. A. Ancona, Italy : European Chitin Society.

Shahidi, F., Janitha, P.K., Wanasundara, P.D., 1992. Phenolic antioxidants. Crit Rev Food Sci Nut 32, 67-103.

Shimahara, K., Takiguchi, Y., Ohkouchi, K., Kitamura, K., Okada O., 1984. Chemical composition and some properties of crustacean chitin prepared by use of proteolytic activity of Pseudomonas maltophilia LC102. In J. P. Zikakis (ed.), Chitin, chitosan and related enzymes, 239–55.

Shimosaka, M., Nogawa, M., Ohno, Y., Okazaki, M., 1993. Chitosanase from the plant pathogenic fungus, Fusarium solani f. sp. phaseoli-Purification and some properties. Biosci, Biotechnol, Biochem 2, 231-5.

Soto-Gil, R.W., Zyskind, J.W. 1989. N,N'-diacetylchitobiase of Vibrio harveyi. Primary structure, processing, and evolutionary relationships. J Biol Chem 264, 14778-83.

Stinnes, A. , Sandford , D.A., 1991. Biomedical Applications of High Purity Chitosan — Physical. Chemical and Bioactive Properties. ACS Symposium Series 467, 430-5.

Sunaga, S., Li, H., Sato, Y., Nakagawa, Y., Matsuyama, T., 2004. Identification and characterization of the pswP Gene required for the parallel production of prodigiosin and Serrawettin W1 in Serratia marcescens.Microbiol immunol 48, 723-8.

Suzuki, K., Sugawara, N., Suzuki, M., Uchiyama, T., Katouno, F., Nikaidou, N., Watanabe, T., 2002. Chitinase A, B and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem 66, 1075-83.

Suzuki, K., Suzuki, M., Taiyoji, M., Nikaidou, N. , Watanabe, T., 1998. Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170. Biosci Biotechnol Biochem 62, 128–35.

Suzuki, K., Taiyoji, M., Sugawara, N., Nikaidou, N., Henrissat, B., Watanabe, T., 1999. The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem J 343, 587-96.

Szosland, B., East, G.C., 1995. The dry spinning of dibutyrylchitin fibres. J Appl Polym Sci 58, 2459-66.

Tews, I., Vincentelli, R., Vorgias C.E., 1996. N-Acetylglucosaminidase (chitobiase) from Serratia marcescens: gene sequence, and protein production and purification in Escherichia coli. Gene 170, 63-7.

Tronsmo, A., Harman, G.E., 1993. Detection and quantification of N-acetyl-β-D-ghcosamhidase, chitobiosidase and endochitinase in solutions and on gels. Anal Biocbem 208, 74-9.

Vaaje-Kolstad, G., Horn, S.J., Aalten, D.M.F.V., Synstad, B., Eijsink , V.G.H., 2005. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280, 28492–7.

Wadstein , J., Thom, E., Heldman, E., Gudmunsson , S., Lilja, B., 2000. Biopolymer L 112, a chitosan with fat binding properties and potential as a weight reducing agent: a review of in vitro and in vivo experiments, in: R.A.A. Muzzarelli (Ed.), Chitosan Per os: From Dietary Supplement To Drug Carrier, Grottammare, Italy.

Wang, S.L., Kao, T.Y., Wang, C.L., Yen, Y.H., Chern, M.K., Chen, Y.H., 2006a. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme Microb Technol 39, 724-31.

Wang, S.L., Peng, J.H. , Liang, T.W., Liu, K.C., 2008a. Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr Res 343, 1316 –1323.

Wang, S.L., Lin, C.L., Liang, T.W., Liu, K.C., Kuo, Y.H., 2009a. Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants. Biores Technol 100, 316-23.

Wang, S.L., Wu, P.C., Liang, T.W., 2009b. Utilization of squid pen for the efficient production of chitosanase and antioxidant through prolonged autoclave treatment. Carbohydr Res 344, 979-84.

Watanabe, T., Kimura, K., Sumiya, T., Nikaidou, N., Suzuki, K., Suzuk,i M., Taiyoji, M., Ferrer, S., Regue, M., 1997. Genetic analysis of the chitinase system of Serratia marcescens 2170. J Bacteriol 179, 7111-17.

Williams, R.P., Qadri, S.M.H., 1980. The pigment of Serratia. The Genus Serratia.

Xing, R., Yu, H., Liu, S., Zhang, W., Zhang, Q., Li, Z., Li, P., 2004. Antioxidant activity of differently regioselective chitosan sulfates in vitro. Bioorg Med Chem 13, 1387-92.

Xu, M.Z., Lee, W.S., Han, J.M., Oh, H.W., Park, D.S., Tian, G.R., Jeong, T.S., Park, H.Y., 2006. Antioxidant and anti-inflammatory activities of N-acetyldopamine dimers from Periostracum Cicadae. Bio Med Chem 14 ,7826–34.

Yen, G. C., Hsieh, C. L., 1998. Antioxidant activity of extracts from du- zhong (Eucommia ulmoides) toward various lipid peroxidation models in vitro. J Agric Food Chem 46, 3952-7.

Yi , W., Wu, X., Cao, R., Song, H., Ma, L., 2009. Biological evaluations of novel vitamin C esters as mushroom tyrosinase inhibitors and antioxidants. Food Chem 117, 381–6.

Yu, C., Lee, A. M., Bassler, B. L., Roseman S., 1991. Chitin utilization by marine bacteria. A physiological function for bacterial adhesion to immobilized carbohydrates. J Biol Chem 25, 24260–7.

Zikakis, J.P., Spreen, K.A., Austin, P.R., 1984. Chitin, Chitosan and Related Enzymes. Academic Press 57.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-29公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信