§ 瀏覽學位論文書目資料
系統識別號 U0002-2807200615013300
DOI 10.6846/TKU.2006.01190
論文名稱(中文) 樁基礎受液化和地盤側向流動之結構行為分析
論文名稱(英文) Structural Analysis for Pile Foundations Subjected to Soil Liquefaction and Lateral Spreading
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 土木工程學系博士班
系所名稱(英文) Department of Civil Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 94
學期 2
出版年 95
研究生(中文) 林伯勳
研究生(英文) Bor-Shiun Lin
學號 891310012
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2006-06-26
論文頁數 487頁
口試委員 指導教授 - 張德文
委員 - 陳正興
委員 - 黃俊鴻
委員 - 林三賢
委員 - 李維峰
委員 - 祝錫智
委員 - 吳朝賢
關鍵字(中) 樁基
波動方程
液化
流動地盤
關鍵字(英) pile foundations
wave equation
soil liquefaction
lateral spreading
第三語言關鍵字
學科別分類
中文摘要
樁基礎結構耐震行為常受工程界所重視,有關研究亦為土壤動力和土壤結構互制學域的重點項目之一。基樁之動力行為常用於有限元素分析法,由於該項方法相對複雜,資料準備和輸入均不易,故亦未能被普及運用;鑑於此,發展一簡易且具效率性動力分析程式遂有其必要性。本研究以樁基波動方程做為分析主軸,結合土壤液化與流動地盤之不同模擬方式,開發一套簡易動力分析程序EQWEAP,以有效地處置液化與流動地盤所衍生之工程問題,並與實際案例比較以了解基樁反應和結構破壞機制,供樁基礎設計分析參考。有關液化分析方面,本研究採用土質參數折減與孔隙水壓模式進行模擬,其優點在於能瞭解樁體與土體之同步性歷時反應,並適用於基礎結構物位於平坦地形之現場,地盤僅有液化而無流動之虞所造成的基礎反應。研究發現兩者所得樁身最大位移發生位置並不一致,前者發生於液化土層,後者則發生於地表,然所預測的位移量均在合理範圍,其中由於土質參數折減分析之土壤參數需進行經驗化評估,且與現場土壤之標準試驗貫入值有關,本研究仍建議以孔隙水壓模式分析進行模擬,以避免前項分析過於簡化和需土壤模數率定所可能產生的困擾。對於流動地盤之分析,本研究採用擬動態土壓力與傳統靜力法進行分析,其優點在於設定參數簡易且分析具有效率,不需進行自由場分析即可直接以波動方程進行求解。該項分析方式適用於鄰近河岸或水際線以及位於緩坡之樁基礎,以模擬遭受地盤流動影響之結構反應與破壞機制。研究發現兩者所得樁身最大位移量發生位置和整體樁身最大變形型式亦非完全一致,前者最大位移發生於樁底,後者最大位移則發生於樁頂,然最大位移亦均在合理範圍。其中擬動態土壓可納入時間和垂直地震影響因素,對於地震歷時中所產生的深層破壞或大範圍流動的影響,應能有效掌握;而靜力分析之土壓力和地盤反力等模式可有效地模擬地震所造成之淺層流動破壞影響。該項觀察與地盤流動之發生機制、地形因素有明顯關聯,分析者必須掌握現地質條件以決定使用方法。
英文摘要
Seismic behaviors of pile structures are vital for geotechnical engineering. With regard to this topic, researches are mainly involved with soil dynamic and soil structure interaction. Finite element method is often implemented to analyze dynamic pile response. Due to the complexity of methodology and data preparation, it would not be employed commonly. In view of the above points, it is necessary to develop a simplified and effective dynamic program. This study suggested a simplified dynamic procedure termed as EQWEAP, based on wave equation and incorporating with different models of soil liquefaction and lateral spreading. Case studies would be conducted to realize responses of piles and structural failure mechanism, and to provide some useful information in practice. 
In soil liquefaction analysis, this study adopted reduction factors and pore pressure model. Its advantages lie in monitoring the simultaneous responses of piles and soils and it could be applied where foundation structures located in level ground, which only liquefied and not occurred flow failure. It is found that maximum pile displacements of both methods took place unequally, but the predicted displacements consisted in rational ranges. The former occurred in liquefied soil layer, and the latter occurred at the pile head. Because the reduction factors model need the empirical assessment from SPT-N values to get the soil parameters, this study suggested the pore pressure model primarily to conduct soil liquefaction problems for avoiding the possible errors from the prior.
In lateral spreading analysis, the study adopted pseudo dynamic earth pressure and traditional static models. Those would not only simply define the parameters of soils and have an explicit numerical procedure to effectively obtain the solutions, but it could analyze the pile deformations directly by wave equation and not proceed the free field analysis. Those applied to simulate the mechanism of offshore pile foundations and pile foundations on the gentle slop subjected to lateral spreading. The positions of maximum pile displacement and the deformed shapes of the whole pile body from the both methods are not similar. The former occurred at the pile head, and the latter occurred at the pile tip. The former could include the time effects and vertical earthquake acceleration and could effectively master the deep failure of soil stratum or large lateral spreading range during earthquake. The latter could effectively simulate the shallow failure induced by lateral spreading after earthquake. These observations are related significantly to the occurrence of mechanism by lateral spreading and landforms in situ. The one should know well soil profiles to determine the proper method to analyze.
第三語言摘要
論文目次
中文摘要		                         一
英文摘要	                                  二
本文目錄	                                  I
表目錄	                                  V
圖目錄		                        VI
第一章	緒論		                1
1-1	研究動機與目的	                1
1-2	研究方法與內容	                2

第二章	文獻回顧	   	                5
2-1	前言		                5
2-2	土壤液化與地盤流動	    	       7
2-2-1	液化與地盤流動之破壞類型	       10
2-2-2	液化潛能評估法		       19
2-2-3	液化土質折減規範		       24
2-2-4	液化地盤變形計算		       26
2-3	樁基礎破壞類型與液化防治   	       37
2-3-1	樁基礎破壞類型		       37
2-3-2	樁基礎破壞模式與土壤互制作用       48
2-4	液化作用下樁基礎變形分析方法       51
2-4-1	模型試驗			        53
2-4-2	數值模擬			        58
2-5	基樁破壞機制分析		        69
2-5-1	壓力破壞			        69
2-5-2	剪力破壞			        71
2-5-3	彎矩破壞			        73
2-5-4	挫屈破壞			        83

第三章	樁基波動方程分析		        88
3-1	前言			        88
3-2	前期研究發展過程		        89
3-3	樁基波動方程式		        93
3-3-1	樁基振動反應分析		        93
3-3-1-1	控制方程式		        93
3-3-1-2	上部荷重型式		        99
3-3-2	樁基地震歷時分析-位法	       107
3-3-2-1	自由場分析		       108
3-3-2-2	控制方程式		       127
3-3-2-3	比較驗証			       132
3-3-3	樁基地震歷時分析-力法	       136
3-3-3-1	控制方程式		       137
3-3-3-2	注意事項			       141
3-4	土壤勁度與阻尼模式	     	       142
3-4-1	類比模式			       142
3-4-2	Novak動力阻抗函數		       143
3-4-3	t-z、q-z及p-y曲線模式    	       150
3-4-3-1	線性土壤彈簧模式		       151
3-4-3-2	非線性土壤彈簧模式		       153
3-4-4	轉換輻射阻尼		       158

第四章	液化分析模式與程序		       160
4-1 前言				       160
4-2	土質參數折減係數模式	       161
4-2-1	分析程序		    	       161
4-2-2	T-Y液化評估法	    	       163
4-2-3	等值土層模數計算		       167
4-3	孔隙水壓模式     	   	       171
4-3-1	分析程序		                171
4-3-2	孔隙水壓模擬	    	       173
4-3-3	液化程度研判		       181
4-3-4	迭代分析		  	       183

第五章	流動地盤分析模式與程序	       185
5-1 前言				       185
5-2	靜態土壓力與地盤反力模式	       186
5-2-1	JRA靜態土壓力法		       186
5-2-2	Tokimatsu與Asaka地盤反力法	       190
5-3	擬動態土壓力模式		       193
5-3-1	分析程序		 	       193
5-3-2	動態土壓力模式		       195
5-3-3	樁周身土壓力計算		       204

第六章	分析要點與參數研究		       209
6-1 分析要點			       209
6-2 參數研究			       231

第七章	案例比較與驗証		       252
7-1	前言			       252
7-2	液化案例			       253
7-2-1	案例1:  NHK Building	       253
7-2-2	案例2:  Niigata Family Court House 290
7-2-3	案例3:  Yachiyo Bridge	       332
7-3	流動地盤案例		       369
7-3-1	案例1:  Tank TA 72 	       369
7-3-2	案例2:  Pier 211 		       397
7-3-3	案例3:  Landing Road Bridge        424

第八章	分析方法評述		        452
8-1	分析適用性		        452
8-2	時間效能			        459

第九章	結論與建議		        461
9-1	結論			        461
9-2	展望			        465

參考文獻				        466

表目錄

表2-1		研判土層液化潛能之所需參數 (摘自 謝基政,2000)	20
表2-2		日本道路協會規範(1990)之土質參數折減係數DE	25
表2-3		日本道路協會規範(1996)之土質參數折減係數DE	25
表2-4		日本建築學會規範(1998)之土質參數折減係數DE	25
表2-5		基樁完整性調查結果表 (摘自 周鴻昇等人,2000)	42
表2-6		常用之土壤彈簧模式	67
表2-7		最小旋轉半徑計算表 (摘自Bhattacharya et al., 2004)	86
表3-1		前期研究之波動方程發展重點與相關貢獻	91
表3-2		時間效能比較表	123
表3-3		D(w)/w對應參數	159
表3-4		時域阻尼係數與其對應參數	159
表4-1		依地震規模之Cs建議值 (摘自 吳偉特,1997)	165
表4-2		土壤楊氏模數 之建議值	168
表4-3		一般常見土壤之楊氏模數範圍 (摘自 McCarthy, 1998)	169
表4-4		 建議值 (摘自 Seed and Idriss, 1970)	177
表5-1		依離水際線距離變化之修正係數	189
表5-2		非液化土層中流動力之修正係數 	189
表6-1		土壤之基本材料參數	210
表6-2		樁基的基本參數性質	210
表6-3		根據Bowles (1988)經驗式之等值剪力模數計算表	213
表6-4		根據JRA (1990)經驗式之等值剪力模數計算表	213
表6-5		動態土壓力係數之尖峰值	233
表6-6		動態尖峰土壓力係數之影響參數 (Kobe EW)	234
表6-7		動態尖峰土壓力係數之影響參數 (Kobe NS)	235
表6-8		動態尖峰土壓力係數之影響參數 (Chi-Chi EW)	236
表6-9		動態尖峰土壓力係數之影響參數 (Chi-Chi NS)	237
表7-1		土壤之基本材料參數(摘自 林三賢等人,2005)	254
表7-2		樁基的基本參數性質(摘自 林三賢等人,2005)	254
表7-3		波傳時間累積法計算表	262
表7-4		土壤之基本材料參數(摘自 梁慈婷,2001)	291
表7-5		樁基的基本參數性質(摘自 梁慈婷,2001)	291
表7-6		波傳時間累積法計算表	299
表7-7		土壤之基本材料參數(摘自 Lin et al,. 2005)	333
表7-8		樁基的基本參數性質(摘自 Lin et al,. 2005)	333
表7-9		波傳時間累積法計算表	342
表7-10		人工回填島之土壤參數表	370
表7-11		基樁材料性質參數	370
表7-12		Pier211現地土壤參數表	398
表7-13		基樁材料性質參數	398
表7-14		土壤之基本材料參數(摘自 林三賢等人,2005)	425
表7-15		樁基的基本參數性質(摘自Berrill et al,. 2001; 林三賢等人,2005)	425
表8-1		研究所使用之樁基礎耐震分析方法特色與適用範圍	458
表8-2		作業平台配置表	459
表8-3		分析時間效能表	460

圖目錄

圖1-1		研究流程圖	4
圖2-1		飽和砂土不排水試驗液化潛能狀態示意圖 (重繪自Castro, 1969)	8
圖2-2		砂湧與現場液化破壞示意圖 (摘自 鄭文隆和吳偉康,1985)	11
圖2-3		液化沈陷示意圖	11
圖2-4		現場液化破壞概況 (a)鋪面翻裂 (b)瓦斯管線挫屈及地表過度沈量	12
圖2-5		地層滑動示意圖 (摘自 鄭文隆和吳偉康,1985)	13
圖2-6		現場液化破壞概況	13
圖2-7		結構物傾倒示意圖與日本新潟破壞案例 (摘自 鄭文隆和吳偉康,1985;Seed and Idriss, 1982)	14
圖2-8		結構物上浮示意圖 (摘自 鄭文隆和吳偉康,1985)	14
圖2-9		側向壓過大造成破壞示意圖 (摘自 鄭文隆和吳偉康,1985)	15
圖2-10		日本神戶港碼頭破壞案例 (摘自 Tokimatsu et al, 1996)	15
圖2-11		台灣台中港碼頭破壞案例 (摘自 簡連貴等人,1999)	16
圖2-12		地盤流動破壞類型 (摘自 Seed et al., 2003)	17
圖2-13		液化評估法分類圖 (重繪自 翁作新等人,2004)	21
圖2-14		簡易震陷評估法 (摘自 Tokimatsu and Seed, 1987)	28
圖2-15		簡易震陷評估法 (摘自 Ishihara and Yoshimine,1992)	29
圖2-16		液化下陷量實際與預測值比較 (摘自 紀雲曜等人,2002)	31
圖2-17		液化後側向位移實際與預測值比較 (摘自 Hamada, 1994)	32
圖2-18		包尾山基樁傾斜破壞示意圖 (摘自 周鴻昇等人,2000)	41
圖2-19		地盤流動模式 (摘自 Yasuda, 2005)	43
圖2-20		水底高程差及離水際線的距離 (摘自 JRA, 1996)	43
圖2-21		橋樑沉箱下陷、傾斜示意圖 (摘自 林呈和孫洪福,2000)	44
圖2-22		橋樑上部結構破壞示意圖 (摘自 林呈和孫洪福,2000)	45
圖2-23		側向壓力造成樁基礎破壞示意圖 (摘自 林呈和孫洪福,2000)	46
圖2-24		側向移坍造成橋樑破壞示意圖 (摘自 林呈和孫洪福,2000)	47
圖2-25		側向移坍造成堤腳擋土牆樁基礎破壞示意圖 (摘自 林呈和孫洪福,2000)	47
圖2-26		基樁破壞示意圖 (摘自 Meyersohn, 1994)	48
圖2-27		液化地盤與樁基礎結構互制示意圖 (重繪自 Tokimatsu and Asaka, 1998)	50
圖2-28		液化分析流程圖 (摘自 Ishihara, 1993)	52
圖2-29		離心機試驗配置圖 (摘自 Kagawa et al., 1997)	54
圖2-30		地盤側向流動對樁基礎之變形試驗 (摘自 Abdoun and Dobry, 2002)	55
圖2-31		振動台試驗配置圖 (摘自 Tokimatsu et al., 2005)	56
圖2-32		試驗配置圖 (摘自 Rollins et al., 2005)	57
圖2-33		側向分配與樁身彎矩分佈圖 (摘自 Rollins et al., 2005)	57
圖2-34		Pile-3D 有限元素模擬示意圖 (摘自 Finn and Fujita, 2002)	60
圖2-35		數值分析與模型試驗比較圖 (摘自 Finn and Fujita, 2002)	60
圖2-36		FLAC運算程序	62
圖2-37		樁基與邊坡網格分割與分析結果之示意圖 (摘自 Moriwaki et al., 2005)	62
圖2-38		材料模式之三大相互條件示意圖	63
圖2-39		地盤流動下橋樑基礎與土壤之模擬圖 (摘自 Zha, 2005)	64
圖2-40		XSTABL分析結果 (摘自 Zha, 2005)	64
圖2-41		離散化之集中質塊系統 (摘自 Liyanapathirana and Poulos, 2005b)	68
圖2-42		溫氏基礎動力樑方法之示意圖 (摘自 Liyanapathirana and Poulos, 2005b)	68
圖2-43		箍筋圍束下混凝土應力與應變模式 (摘自 Kent and Park, 1971)	71
圖2-44		現場樁基之剪力破壞 (摘自 Priestley et al., 1996;Tokimatsu, 2003)	72
圖2-45		典型基樁之彎矩與曲率關係圖	74
圖2-46		鋼筋混凝土結構之損害分類圖 (摘自 Luo et al., 2002)	74
圖2-47		樁體彎曲特性三線性型模式	75
圖2-48		樁體彎曲特性雙線性型模式	75
圖2-49		Daido混凝土彎曲試驗法 (摘自 Meryersohn, 1994)	77
圖2-50		試樁之彎矩與曲率關係圖 (摘自 Meryersohn, 1994)	77
圖2-51		矩形斷面混凝土與鋼筋之彎矩曲率分析示意圖	79
圖2-52		樁基之等值線性分析模式 (摘自 Cubrinovski and Ishihara, 2004)	80
圖2-53		慣性矩 對彎矩-轉角關係的影響 (摘自 楊宗勳,2000)	81
圖2-54		現地案例示意圖 (摘自 林三賢等人,2005	82
圖2-55		數值結果比較 (摘自 林三賢等人,2005)	82
圖2-56		破壞機制模式 (摘自Bhattacharya et al., 2004)	83
圖2-57		工程設計中之樁長與樁徑關係圖 (摘自Bond, 1989)	85
圖2-58		蒐集案例之有效細長比 (摘自Bhattacharya et al., 2004)	85
圖2-59		有效樁長示意圖 (摘自Bhattacharya et al., 2004)	86
圖2-60		樁體挫屈破壞之試驗結果 (摘自 Knappett and Madabhushi, 2005)	87
圖3-1		垂直向單樁分析架構示意圖	95
圖3-2		側向單樁分析架構平衡示意圖	98
圖3-3		動態設計載重示意圖	99
圖3-4		樁尖位移歷時曲線與基樁載重實驗比較 (摘自 Lee et al., 1988)	101
圖3-5		樁頂位移歷時曲線與基樁載重實驗比較 (摘自 歐陽金福,1997)	102
圖3-6		靜動載重試樁設備圖 (摘自Geerling and Smiths, 1996)	104
圖3-7		靜動樁載重試驗之載重歷時圖 (摘自 林三賢等人,2000)	104
圖3-8		靜動載重作用下樁頂位移歷時曲線 (摘自 Brown et al., 2001)	105
圖3-9		群樁靜動載重試驗之載重歷時圖 (摘自 Mostafa and El Naggar, 2002)	105
圖3-10		諧和載重作用下樁頂位移歷時曲線 摘自 El Naggar and Bentley, 2000)	106
圖3-11		EQWEAP分析程序示意圖	107
圖3-12		自由場集中質塊分析分解模擬示意圖	109
圖3-13		地盤轉換理論分析法模型示意圖	111
圖3-14		地盤轉換函數分析流程圖	112
圖3-15		基線修正前之速度與位移之歷時圖	120
圖3-16		基線修正後之速度與位移之歷時圖	121
圖3-17		自由場分析有限元素幾何網格圖	123
圖3-18		Chi-Chi地震下自由場分析數值解比較	124
圖3-19		El centro地震下自由場分析數值解比較	125
圖3-20		Kobe地震下自由場分析數值解比較	126
圖3-21		樁頂邊界節點編號 (a) 樁頂之節點編號 (b) 樁頂內緣第一點之節點編號	129
圖3-22		樁底邊界節點編號 (a) 樁底之節點編號 (b) 樁底內緣第一點之節點編號	129
圖3-23		三維有限元素幾何網格	133
圖3-24		Kobe水平南北向地震作用下不同數值分析方法比較(上圖為樁頂之絕對位移量,下圖為樁-土之相對位移量)	134
圖3-25		Kobe水平東西向地震作用下不同數值分析方法比較(上圖為樁頂之絕對位移量,下圖為樁-土之相對位移量)	135
圖3-26		基樁軸向振動示意圖 (摘自 Prakash and Puri, 1988)	145
圖3-27		Sw1 Sw2,Cw1和Cw2隨無因次頻率比ao之變化關係 (摘自 Novak, 1977)	146
圖3-28		近遠域模式之土壤-基樁之介面模式 (摘自 El Naggar and Novak, 1994)	154
圖3-29		近遠域影響半徑之示意圖	154
圖3-30		 隨著無因次振頻 之變化關係 (摘自 El Naggar and Novak, 1994)	155
圖3-31		近遠域分析模式 (摘自 El Naggar and Bentley, 2000)	157
圖3-32		 隨著無因次振頻 之變化關係 (摘自 El Naggar and Bentley, 2000)	157
圖4-1		土質參數折減係數分析流程	162
圖4-2		T-Y液化潛能評估法之分析流程	166
圖4-3		孔隙水壓模式分析流程	172
圖4-4		員林地區地壤受震土壤模數折減與孔隙水壓比之關係圖 (摘自 翁作新等人,2004)	174
圖4-5		不同相對密度下 與剪應變 之對應關係 (摘自 Seed and Idriss, 1970)	177
圖4-6		 與應變量關係 (相對密度為90%)	178
圖4-7		 與應變量關係 (相對密度為75%)	178
圖4-8		 與應變量關係 (相對密度為60%)	179
圖4-9		 與應變量關係 (相對密度為45%)	179
圖4-10		 與應變量關係 (相對密度為40%)	180
圖4-11		 與應變量關係 (相對密度為30%)	180
圖4-12		 與 之關係 (摘自Tokimatsu and Yoshmi, 1983)	182
圖5-1		流動力之計算模式(摘自 黃俊鴻和陳正興,1996)	188
圖5-2		地震時之最大反覆剪應變 (摘自 Tokimatsu and Asaka, 1998)	191
圖5-3		水際線距離和地盤最大變位之關係 (摘自 Tokimatsu and Asaka, 1998)	192
圖5-4		水際線距離和地盤變位之關係 (摘自 Tokimatsu and Asaka, 1998)	192
圖5-5		擬動態土壓力分析流程	194
圖5-6		應力狀態圖 (摘自 梁明義,1995)	197
圖5-7		地震破壞面 (摘自 梁明義,1995)	198
圖5-8		Coulomb承載力理論之破壞面 (摘自 梁明義,1995)	199
圖5-9		主動狀況下結構系統力平衡示意圖 (摘自Kramer, 1996)	200
圖5-10		被動狀況下結構系統力平衡示意圖 (摘自Kramer, 1996)	201
圖5-11		土壤與基礎系統之典型運動模式 (摘自 Zhang et al., 1998)	203
圖5-12		樁基礎受力示意圖 (重繪自 Tokimatsu, 2003)	204
圖5-13		液化下樁周土壤之垂直應力與水平應力關係圖 (摘自 Haigh and Madabhushi, 2005)	205
圖5-14		樁周身土壓力分佈圖	206
圖5-15		液化土壓受力寬度示意圖	207
圖6-1		基樁與地盤剖面圖	211
圖6-2		地震加速度歷時	211
圖6-3		根據Seed and Idriss (1970)經驗式所建立之土層剪力模數剖面	214
圖6-4		孔隙水壓力比與土質折減係數之深度分佈圖	214
圖6-5		樁身最大位移包絡線	215
圖6-6		樁身最大彎矩包絡線	216
圖6-7		樁身最大剪力包絡線	217
圖6-8		不同分析之樁身最大位移包絡線	220
圖6-9		不同分析之樁身最大彎矩包絡線	221
圖6-10		不同分析之樁身最大剪力包絡線	222
圖6-11		地盤加速度修正前後比較圖(地盤深度為20米) (a) 修正前 (b) 修正後	224
圖6-12		地盤加速度修正前後比較圖(地盤深度為40米) (a) 修正前 (b) 修正後	224
圖6-13		原始與修正地震記錄之樁身最大位移包絡線 (地盤深度為20米)	225
圖6-14		原始與修正地震記錄之樁身最大位移包絡線 (地盤深度為40米)	226
圖6-15		原始與修正地震記錄之樁身最大彎矩包絡線 (地盤深度為20米)	227
圖6-16		原始與修正地震記錄之樁身最大彎矩包絡線 (地盤深度為40米)	228
圖6-17		原始與修正地震記錄之樁身最大剪力包絡線 (地盤深度為20米)	229
圖6-18		原始與修正地震記錄之樁身最大剪力包絡線 (地盤深度為40米)	230
圖6-19		Kobe地震加速度歷時圖	238
圖6-20		Chi-Chi地震加速度歷時圖	239
圖6-21		Kobe水平東西向地震下動態土壓力係數歷時圖 (納入垂直向速度)	240
圖6-22		Kobe水平東西向地震下動態土壓力係數歷時圖(未納入垂直向速度)	241
圖6-23		Kobe水平南北向地震下動態土壓力係數歷時圖 (納入垂直向速度)	242
圖6-24		Kobe水平南北向地震下動態土壓力係數歷時圖 (未納入垂直向速度)	243
圖6-25		Chi-Chi水平東西向地震下動態土壓力係數歷時圖 (納入垂直向速度)	244
圖6-26		Chi-Chi水平東西向地震下動態土壓力係數歷時圖(未納入垂直向速度)	245
圖6-27		Chi-Chi水平南北向地震下動態土壓力係數歷時圖 (納入垂直向速度)	246
圖6-28		Chi-Chi水平南北向地震下動態土壓力係數歷時圖 (未納入垂直向速度)	247
圖6-29		Kobe水平東西向地震下動態尖峰土壓力係數之影響參數	248
圖6-30		Kobe水平南北向地震下動態尖峰土壓力係數之影響參數	249
圖6-31		Chi-Chi水平東西向地震下動態尖峰土壓力係數之影響參數	250
圖6-32		Chi-Chi水平南北向地震下動態尖峰土壓力係數之影響參數	251
圖7-1		液化後新潟地區永久位移量分佈圖 (摘自 Hamada, 1992)	255
圖7-2		樁基礎破壞模式及簡化分析模式 (NHK Building)	256
圖7-3		現場調查斷樁破壞示意圖 (摘自 Hamada, 1992)	257
圖7-4		新潟地震加速度歷時曲線圖 (測站:701 SMAC-A)	258
圖7-5		土壤抗液化安全係數與土質折減係數之深度分佈圖	261
圖7-6		自由場之地盤位移歷時反應 (樁頂至深度2米)	263
圖7-7		自由場之地盤位移歷時反應 (深度3米至5米)	264
圖7-8		自由場之地盤位移歷時反應 (深度6米至8米)	265
圖7-9		自由場之地盤位移歷時反應 (深度9米至11米)	266
圖7-10		液化地盤最大剪應變分佈曲線 (摘自 Miwa et al., 2006)	267
圖7-11		不同深度下樁體位移歷時反應	268
圖7-12		樁身最大位移包絡線	269
圖7-13		不同深度下樁體彎矩歷時反應	270
圖7-14		樁身最大彎矩包絡線	271
圖7-15		樁身位移與彎矩分佈曲線 (摘自 Meyersohn, 1994)	272
圖7-16		樁身位移與彎矩分佈曲線 (摘自 林三賢等人,2005)	272
圖7-17		不同深度下樁體剪力歷時反應	273
圖7-18		樁身最大剪力包絡線	274
圖7-19		土壤抗液化安全係數與孔隙水壓比之深度分佈圖	277
圖7-20		現地土層之剪力模數分佈	278
圖7-21		不同深度液化土層之超額孔隙水壓比歷時	279
圖7-22		自由場之地盤位移歷時反應 (樁頂至深度2米)	280
圖7-23		自由場之地盤位移歷時反應 (深度3米至深度5米)	281
圖7-24		自由場之地盤位移歷時反應 (深度6米至深度8米)	282
圖7-25		自由場之地盤位移歷時反應 (深度9米至深度11米)	283
圖7-26		不同深度下樁體位移歷時反應	284
圖7-27		樁身最大位移包絡線	285
圖7-28		不同深度下樁體彎矩歷時反應	286
圖7-29		樁身最大彎矩包絡線	287
圖7-30		不同深度下樁體剪力歷時反應	288
圖7-31		樁身最大剪力包絡線	289
圖7-32		NFCH大樓下方基樁分佈配置圖 (摘自 Hamada, 2002)	292
圖7-33		樁基礎破壞模式及簡化分析模式 (摘自 Hamada, 2002)	293
圖7-34		樁體破壞照片 (摘自 Hamada, 1992)	294
圖7-35		液化後新瀉地區永久位移量分佈圖 (摘自 Hamada, 1992)	295
圖7-36		土壤抗液化安全係數與土質折減係數之深度分佈圖	298
圖7-37		自由場之地盤位移歷時反應 (樁頂至深度2米)	300
圖7-38		自由場之地盤位移歷時反應 (深度3米至深度5米)	301
圖7-39		自由場之地盤位移歷時反應 (深度6米至深度8米)	302
圖7-40		自由場之地盤位移歷時反應 (深度8米至深度11米)	303
圖7-41		不同深度下樁體位移歷時反應 (No.1 Pile)	304
圖7-42		不同深度下樁體位移歷時反應 (No.2 Pile)	305
圖7-43		樁身最大位移包絡線 (a) No.1 Pile;(b) No.2 Pile	306
圖7-44		不同深度下樁體彎矩歷時反應 (No.1 Pile)	307
圖7-45		不同深度下樁體彎矩歷時反應 (No.2 Pile)	308
圖7-46		樁身最大彎矩分佈曲線 (a) No.1 Pile;(b) No.2 Pile	309
圖7-47		樁身位移與彎矩分佈曲線 (摘自 Meyersohn, 1994)	310
圖7-48		不同深度下樁體剪力歷時反應 (No.1 Pile)	311
圖7-49		不同深度下樁體剪力歷時反應 (No.2 Pile)	312
圖7-50		樁身最大剪力包絡線 (a) No.1 Pile;(b) No.2 Pile	313
圖7-51		土壤抗液化安全係數與孔隙水壓比之深度分佈圖	316
圖7-52		現地土層之剪力模數分佈	317
圖7-53		不同深度液化土層之超額孔隙水壓比歷時	318
圖7-54		自由場之地盤位移歷時反應 (樁頂至深度2米)	319
圖7-55		自由場之地盤位移歷時反應 (深度3米至深度5米)	320
圖7-56		自由場之地盤位移歷時反應 (深度6米至深度8米)	321
圖7-57		自由場之地盤位移歷時反應 (深度9米至深度11米)	322
圖7-58		不同深度下樁體位移歷時反應 (No.1 Pile)	323
圖7-59		不同深度下樁體位移歷時反應 (No.2 Pile)	324
圖7-60		樁身最大位移包絡線 (a) No.1 Pile;(b) No.2 Pile	325
圖7-61		不同深度下樁體彎矩歷時反應 (No.1 Pile)	326
圖7-62		不同深度下樁體彎矩歷時反應 (No.2 Pile)	327
圖7-63		樁身最大彎矩包絡線 (a) No.1 Pile;(b) No.2 Pile	328
圖7-64		不同深度下樁體剪力歷時反應 (No.1 Pile)	329
圖7-65		不同深度下樁體剪力歷時反應 (No.2 Pile)	330
圖7-66		樁身最大剪力包絡線 (a) No.1 Pile;(b) No.2 Pile	331
圖7-67		新潟地區沿岸橋樑分佈圖 (摘自Hamada, 1992)	334
圖7-68		Yachiyo大橋之下方基礎破壞示意圖	335
圖7-69		液化後Yachiyo 大橋鄰近永久位移量分佈圖 (摘自 Hamada, 1992)	336
圖7-70		Yachiyo大橋之Pier 2 破壞示意圖 (摘自 Hamada, 1992)	337
圖7-71		樁基礎破壞模式及土層分佈概況 (摘自 Hamada, 2002)	338
圖7-72		土壤抗液化安全係數與土質折減係數之深度分佈圖	341
圖7-73		自由場之地盤位移歷時反應 (地表至深度2米)	343
圖7-74		自由場之地盤位移歷時反應 (深度3米至深度6米)	344
圖7-75		自由場之地盤位移歷時反應 (深度6米至深度8米)	345
圖7-76		自由場之地盤位移歷時反應 (深度9米至深度11米)	346
圖7-77		不同深度下樁體位移歷時反應	347
圖7-78		樁身最大位移包絡線	348
圖7-79		不同深度下樁體彎矩歷時反應	349
圖7-80		樁身最大彎矩包絡線	350
圖7-81		不同深度下樁體剪力歷時反應	351
圖7-82		樁身最大剪力包絡線	352
圖7-83		樁身位移與彎矩分佈曲線 (摘自 Lin et al., 2005)	353
圖7-84		土壤抗液化安全係數與土質折減係數之深度分佈圖	356
圖7-85		現地土層之剪力模數分佈	357
圖7-86		不同深度液化土層之超額孔隙水壓比歷時	358
圖7-87		自由場之地盤位移歷時反應 (樁頂表至深度2米)	359
圖7-88		自由場之地盤位移歷時反應 (深度3米至深度6米)	360
圖7-89		自由場之地盤位移歷時反應 (深度6米至深度8米)	361
圖7-90		自由場之地盤位移歷時反應 (深度9米至深度11米)	362
圖7-91		不同深度樁體位移歷時反應	363
圖7-92		樁身最大位移包絡線	364
圖7-93		不同深度樁體彎矩歷時反應	365
圖7-94		樁身最大彎矩分佈曲線	366
圖7-95		不同深度樁體剪力歷時反應	367
圖7-96		樁身最大剪力包絡線	368
圖7-97		Mikagehama Island地理位置圖 (摘自 Ishihara, 2003)	371
圖7-98		人工島上儲油槽Tank TA 72位置示意圖(摘自 Ishihara and Cubrinovski, 2004)	371
圖7-99		儲油槽結構剖面與土層分佈概況(摘自 Ishihara and Cubrinovski, 2004)	372
圖7-100		高強度預鑄混凝土樁之彎矩-曲率圖(摘自 Ishihara and Cubrinovski, 2004)	373
圖7-101		No.2基樁之側向位移及樁身損害示意圖	374
圖7-102		No.9基樁之側向位移及樁身損害示意圖	375
圖7-103		Kobe地震加速度歷時	378
圖7-104		土壤抗液化安全係數與土質折減係數之深度分佈圖	379
圖7-105		動態土壓力係數歷時圖	380
圖7-106		樁體位移歷時反應 (樁頂至深度4米)	381
圖7-107		樁體位移歷時反應 (深度6米至深度10米)	382
圖7-108		樁體位移歷時反應 (深度12米至深度16米)	383
圖7-109		樁體位移歷時反應 (深度18米至深度22米)	384
圖7-110		樁身最大位移包絡線	385
圖7-111		不同深度樁體彎矩歷時反應	386
圖7-112		樁身最大彎矩包絡線	387
圖7-113		不同深度樁體剪力歷時反應	388
圖7-114		樁身最大剪力包絡線	389
圖7-115		不同樁頂束制條件下樁身位移分佈曲線 (靜態土壓力法)	391
圖7-116		不同樁頂束制條件下樁身彎矩分佈曲線(靜態土壓力法)	392
圖7-117		不同樁頂束制條件下樁身剪力分佈曲線(靜態土壓力法)	393
圖7-118		不同樁頂束制條件下樁身位移分佈曲線 (地盤反力法)	394
圖7-119		不同樁頂束制條件下樁身彎矩分佈曲線(地盤反力法)	395
圖7-120		不同樁頂束制條件下樁身剪力分佈曲線(地盤反力法)	396
圖7-121		Osaka與Kobe之高速公路系統圖 (摘自 Ishihara, 2003)	399
圖7-122		Hanshin 公路破壞示意圖	400
圖7-123		地層高低輪廓示意圖 (摘自 Ishihara, 2003)	401
圖7-124		地表永久變位圖 (摘自 Ishihara, 2003)	401
圖7-125		碼頭結構與樁基系統示意圖 (摘自 Ishihara, 2003)	402
圖7-126		Pier 211之樁基彎矩與曲率關係圖 (摘自 Ishihara, 2003)	403
圖7-127		樁基損害示意圖 (摘自 Ishihara, 2003)	404
圖7-128		土壤抗液化安全係數與孔隙水壓比之深度分佈圖	407
圖7-129		樁體位移歷時反應 (樁頂至深度8米)	408
圖7-130		樁體位移歷時反應 (深度12米至深度20米)	409
圖7-131		樁體位移歷時反應 (深度24米至深度32米)	410
圖7-132		樁體位移歷時反應 (深度36米至深度44米)	411
圖7-133		樁身最大位移包絡線	412
圖7-134		不同深度樁體彎矩歷時反應	413
圖7-135		樁身最大彎矩包絡線	414
圖7-136		不同深度樁體剪力歷時反應	415
圖7-137		樁身最大剪力包絡線	416
圖7-138		不同樁頂束制條件下樁身位移分佈曲線 (靜態土壓力法)	418
圖7-139		不同樁頂束制條件下樁身彎矩分佈曲線 (靜態土壓力法)	419
圖7-140		不同樁頂束制條件下樁身剪力分佈曲線 (靜態土壓力法)	420
圖7-141		不同樁頂束制條件下樁身位移分佈曲線 (地盤反力法)	421
圖7-142		不同樁頂束制條件下樁身彎矩分佈曲線 (地盤反力法)	422
圖7-143		不同樁頂束制條件下樁身剪力分佈曲線 (地盤反力法)	423
圖7-144		Landing Road Bridge 地理位置圖(摘自 Berrill et al., 2001)	426
圖7-145		Edgecumbe地震之震央與震度分佈(摘自 Berrill et al., 2001)	426
圖7-146		Edgecumbe地震所造成地表之損害	427
圖7-147		Landing Road Bridge 橫跨於Whakatane 河(摘自 Berrill et al., 2001)	427
圖7-148		橋樑樁基結構細部圖 (摘自 Berrill et al., 2001)	428
圖7-149		Pier C 地理位置示意圖 (摘自 Berrill et al., 2001)	429
圖7-150		樁結構受地盤流動破壞示意圖 (摘自 Berrill et al., 2001)	429
圖7-151		Pier C 地理位置示意圖 (摘自 Berrill et al., 2001)	430
圖7-152		基腳與基樁連接處之破壞 (摘自 Berrill et al., 2001)	431
圖7-153		開挖基樁連裂縫示意圖 (摘自 Berrill et al., 2001)	431
圖7-154		Pier C下方土層SPT-N值隨深度分佈概況 (摘自 Berrill et al., 2001)	432
圖7-155		Edgecumbe地震加速度與動態土壓力係數歷時	435
圖7-156		土壤抗液化安全係數與孔隙水壓比之深度分佈圖	436
圖7-157		樁體位移歷時反應 (樁頂至深度2米)	437
圖7-158		樁體位移歷時反應 (深度3米至深度5米)	438
圖7-159		樁體位移歷時反應 (深度6米至深度8米)	439
圖7-160		樁身最大位移包絡線	440
圖7-161		不同深度下樁體彎矩反應歷時	441
圖7-162		樁身最大彎矩包絡線	442
圖7-163		不同深度下樁體剪力反應歷時	443
圖7-164		樁身最大剪力包絡線	444
圖7-165		不同樁頂束制條件下樁身位移分佈曲線(靜態土壓力法)	446
圖7-166		不同樁頂束制條件下樁身彎矩曲線(靜態土壓力法)	447
圖7-167		不同樁頂束制條件下樁身剪力分佈曲線(靜態土壓力法)	448
圖7-168		不同樁頂束制條件下樁身位移分佈曲線(地盤反力法)	449
圖7-169		不同樁頂束制條件下樁身彎矩分佈曲線(地盤反力法)	450
圖7-170		不同樁頂束制條件下樁身剪力分佈曲線(地盤反力法)	451
圖8-1		原始土層剖面之剪力模數	455
圖8-2		液化影響下土層剖面之剪力模數	455
參考文獻
1.	Abdoun, T. and Dobry, R., (2002) “Evaluation of pile foundation response to lateral spreading,” Soil Dynamics and Earthquake Engineering, Vol. 22, No. 9, pp. 1051-1058.
2.	Abound, T., Dobry, R. Thomas, D., O’Rourke and Goh., S. H. (2003), “Pile Response to Lateral Spreads: Centrifuge Modeling”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 10, pp. 869-878.
3.	Adachi, N., Miyamoto, Y., and Koyamada, K. (1998), “Shaking table test and lateral loading test for pile foundation in saturated sand”, Proceeding of centrifuge 98, Balkema, Rotterdam, pp. 289-208.
4.	Adachi, T., Iwai, S., Yasui, M. and Sato, Y. (1992), “Settlement and Inclination of Reinforced Concrete Buildings in Dagupan City Due to Liquefaction During the 1990 Philippine Earthquake”, Earthquake Engineering, Tenth World Conference, pp.147-152.
5.	American Concrete Institute (ACI) (1995), “Building Code Requirements for Structural Concrete”, ASCE, USA.
6.	Anandarajah, A. (2001), “Nonlinear Analyses of the Earthquake Behavior of a Single Pile Founded on Liquefiable Sand,” Procds., 10th International Conference on Computer Methods and Advances in Geomechanics, Tucson, Arizona, USA., pp. 1065-1069.
7.	API (1991), “Recommended Practice for Planning Designing and Constructing Engineering”, Clausthal: Trans. Tech. Publication.
8.	Armaleh, S. and Desai, C.S. (1987), “Loaded-Deformation Response of Axially Loaded Piles”, Journal of Geotechnical Engineering, ASCE, Vol. 113, No. 12, pp. 1483-1500.
9.	Arulanadan, K., Li, X.S. and Sivathasan, K. (2000), “Numerical Simulation of Liquefaction-induced Deformations, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 7, pp. 657-666.
10.	Banerjee, P.K. and Davies, T.G. (1978), “The Behavior of Axially and Laterally Loaded Piles Embedded in Non-homogeneous”, Geotechnique,. Vol. 28, No. 3, pp. 309-326.
11.	Bardet, J.P.,Mace, N., Tobita, T., and Hu, j. (1999), “Large-Scale Modeling of Liquefaction-Induced Fround Deformation. Part Ⅰ: A Four-Parameter MLR Model”, Proc., 7th Japan-US Workshop on Earthquake Resistance Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Technical Report, No. NCEER-99, Seattle.
12.	Bartlett, S.F. and Youd, T.L. (1995), “Empirical Prediction of Liquefaction-Induced Lateral Spreads”, Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 4, pp. 316-329.
13.	Berrill, J.B., Christensen, S.A. Keena, R..P., Okada, W. and Perringa, J.R. (2001), “Case Study of Lateral Spreading Forces on Piled Foundation”, Geotechnique 51, No. 6, pp. 501-517.
14.	Bhattacharya, S., Bolton, M.D. and Madabhushi, S.P.G. (2005), “A Reconsideration of the Safety of Piled Bridge Foundation in Liquefiable Soils”, Soils and Foundations, JGS, Vol. 45, No. 4, pp. 13-25.
15.	Bhattacharya, S., Madabhushi, S.P.G. and Bolton, M.D.(2004) “An alternative Mechanism of Pile Failure in Liquefiable Deposits during Earthquakes”, Geotechnique, Vol. 54, No. 3, pp. 203-213.
16.	Bond, A.J. (1989), “Behaviour of Displacement Piles in Overconsolidated Clays,” Doctor’s dissertation, Imperial College, London..
17.	Bounlanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. and Abghari, A. (1999) “Seismic soil-pile-structure interaction experiments and analyses,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 9, pp. 750-759.
18.	Bowles, J.E.(1988),“Foundation Analysis and Design”, 4rd ed., Mcgraw-Hill Int. Book Co., New York..
19.	Brandenberg, S.J. and Boulanger, R.W., Kutter, B.L. and Chang, D. (2005), “Behavior of Pile Foundation in Laterally Spreading Ground during Centrifuge Tests”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 11, pp. 1378-1391.
20.	Brown, D.A., O’Neill, M.W., McVay, M., El Naggar, M.H. and Chakraborty, S. (2001), “Static and Dynamic Lateral Loading of Pile Groups”, National Cooperative Highway Research Program, National Academy Press, Washington, D.C..
21.	Budhu, M. and Ai-karni, A. (1993), “Seismic Bearing Capacity of Soils”, Geotechnique, Vol. 43, No. 1, pp.187-187.
22.	Casagrande, A. (1936), “Characteristic of Cohesionless Soils Affecting the Stability of Slope and Earth Fill”, Journal of the Boston Society of Civil Engineering, January, pp. 13-32.
23.	Castro, G. (1969), “Liquefaction of Sands”, Doctor’s dissertation, Harvard University, USA.
24.	Castro, G., and Poulos, S.J. (1977) “Factors Affecting Liquefaction and Cyclic Mobility”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp.501-516.
25.	Chang, D.W. (1995), “Preliminary Investigation of Using Transformed Damping Coefficients in Time Domain Analysis”, Proc., 7th Int. Conf. on Soil Dynamics and Earthquake Engineering, Greece, pp. 623-632.
26.	Chang, D.W. and Lin, B.S. (2003), “Wave Equation Analyses on Seismic Responses of Grouped Piles”, Procds., 12th Asian Regional Conf. on Soil Mechanics and Geotechnical Engineering, Singapore, August, pp. 581-586.
27.	Chang, D.W. and Wen, C.H. (2001), “Direct Wave Equation Analysis on Vertically Loaded Raft-Pile”, 10th International Conference on Computer Methods and Advances in Geomechanics, Tucson, Arizona, USA, pp. 1451-1456.
28.	Chang, D.W. and Yeh, S.H. (1999), “Time-domain Wave Equation Analyses of Single Piles Utilizing Transformed Radiation Damping”, Soils and Foundations, JGS, Vol. 39, No. 2, pp. 31-44.
29.	Chang, D.W., Roesset, J.M. and Wen, C.H. (2000), “A Time-domain Viscous Damping Model Based on Frequency-dependent Damping Ratios”, Soil Dynamics and Earthquake Engineering, Vol. 19, pp. 551-558.
30.	Chang, T.S., Tang, P.S., Lee, C.S. and Hwang, H. (1990), “Evaluation of Liquefaction Potential in Memphis and Shelby Country”, Technical Report Nceer-90-0018, National Center for Earthquake Engineering Research, Buffalo.
31.	Chang, Y.L. (1937) “Discussion on “lateral pile-loading tests,” by Feagin, Trans. ASCE, Paper No. 1959, pp. 272-278.
32.	Chaudhuri, D., Toprak, S., and O’Rourke, T.D. (1995), “Pile Response to Lateral Spread: a Benchmark Case”, Lifeline Earthquake Engineering, Procds., 4th U.S. Conference, San Francisco, California, pp. 1-8.
33.	Coyle, H. M. and Reese, L. C. (1966), ”Load Transfer for Axially Loaded Piles in Clay”, Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 92, No. SM-2, March, pp. 1-26.
34.	Curbrinovski, M and Ishihara, K. (2004), “Simplified Method for Analysis of Pile Undergoing Lateral Spreading in Liquefied Soils”, Soils and Foundations, JGS, Vol. 44, No. 5, pp. 119-133.
35.	Dobry, R., Abdoun, T., O’Rourke, T.D. and Goh, S.H. (2003), “Single Piles in Lateral Spreads Field Bending Moment Evaluation”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 10, pp. 879-889.
36.	Ebeling, R.M., and Morrison, E.E. (1993). “The Seismic Design of Waterfront RetainingStructures”, Office of Navy Technology and Department of the Army, NCEL Technical Report R-939, Naval Civil Engineering Laboratory, Port Hueneme, CA, 256 p.
37.	El Naggar, M.H. and Bentley, K.J. (2000), “Dynamic Analysis for Laterally Loaded Piles and Dynamic p-y curves”, Canadian Geotechnical Journal, Vol. 37, pp. 1166-1183.
38.	El Naggar, M.H. and Novak, M. (1994), “Nonlinear Axial Interaction in Pile Dynamics”, Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 4, pp. 130-138.
39.	El Hosri, M.S., Biarez, H. and Hicher, P.Y. (1984), “Liquefaction Characteristics of Silty Clay”, 8th World Conference on Earthquake Engineering, Prentice-Hall, NJ, Vol. 3, pp. 277-284.
40.	Eruocode 8 part5 (1998), Design Provisions for Earthquake Resistance of Structure-foundations, Retaining Structures and Geotechnical Aspects, European Committee for Standardization, Brussels.
41.	Finn, W.D.L. (1982), “Soil liquefaction studies in the People’s Republic of China”, Soil Mechanics-Transient and Cyclic Loads, Ch.22, pp. 609-626, John Wiley & Sons, Ltd.
42.	Finn, W.D.L. (1991), “Assessment of Liquefaction Potential and Post Liquefaction Behavior of Earth Structure: Development 1981-1991”, Proc. 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Vol. 2, pp. 1883-1850.
43.	Finn, W.D.L. and Fujita, N. (2002), “Piles in Liquefiable Soils: Seismic Analysis and Design Issue”, Soil Dynamics and Earthquake Engineering, Vo1. 22, pp. 731-742.
44.	Finn, W.D.L. and Thavaraj, T. (2001), “Practical Problems in Seismic Analysis of Bridge Pile Foundations”, Proc. 10th Int. Conf. Computer Methods and Adventures in Geomechanics, Tucson, Arizona, USA, pp. 1011-1018.
45.	Finn, W.D.L., Lee, K.W., and Martin, G.R. (1977), “An Effective Stress Model for Liquefaction”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. SM7, pp. 657-692.
46.	Finn, W.D.L., Thavaraj, T., Wilson, D.W., Boulanger, R. W.,and Kutter, B. (1999), “Seismic analysis of piles and pile groups in liquefiable sand, Proc., 7th  International Symposium on Numerical Models in Geomechanics, NUMOG VI, Graz, Austria, September, pp. 287-292.
47.	Geerling, J. and Smiths, M.J.H. (1996), “Prediction of load-displacements Characteristics of Piles From the Results of Dynamic/Kinetic Load Tests”, Application of Stress-Wave Theory to Pile: Test Results, Balkema, pp. 55-101.
48.	Hadush, S., Yashima, A., Uzuoka ,R., Moriguchi, S. and Sawada, K. (2001), “Liquefaction Induced Lateral Spread Analysis Using the CIP Method”, Computers and Geotechnics, Vol.28, No.8, pp. 549–574.
49.	Haigh S.K. and Madabhushi S.P.G. (2005) “The effects of pile flexibility on pile-loading in laterally spreading slops”, Proc. Int. Workshop Simulation and Seismic Performance of Pile Foundations in Liquefied and Laterally Spreading Ground, ASCE, 14 p.
50.	Hamada M.(1992), “Large Ground Deformations and Their Effects on Lifelines:1964 Niigata Earthquake,” in Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Vol. 1, Japanese Case Studies, Technical Report NCEER-92-0001, NCEER, Buffalo, NY, USA.
51.	Hamada, M. (1994), “Case Studies on Liquefaction-induced Ground Displacement during past earthquakes in Japan”, Prediction versus Performance in Geotechnical Engineering, Balkema, pp. 319-326.
52.	Hamada, M. and Wakamatsu, K. (1998), “A Study on Ground Displacement Caused by Soil Liquefaction”, JSCE, Journal of Geotechnical Engineering, No. 596/Ⅲ-43, pp. 189-208.
53.	Hamada, M., Isorama, R. and Wakamatsu, K. (1996), “Liquefaction-Induced Ground Displacement and Its Related Damage to Lifeline Facilities”, Special Issue of Soils and Foundations, pp. 81-97.
54.	Hamada, M., Towhata, I., Yasuda, S., and Isoyama, R. (1987), “Study of Permanent Ground Displacement Induced by Seismic Liquefaction”, Computer and Geotechnics, Vol. 4, pp. 197-220.
55.	Hazen, A. (1920), “Hydraulic-Fill Dams”, ASCE Transactions, Vol. 83, pp. 1713-1745.
56.	Hall, J.R. (1967). “Coupled Rocking and Sliding Oscillations of Rigid Circular Footings,’’ Proc., International Symposium on Wave Propagation and Dynamic Properties of Earth Materials, Albuquerque, New Mexico, pp. 139-148.
57.	Horne, J.C. (1996), “Effects of Liquefaction-induced Lateral Spreading on Pile Foundations”, Doctor’s dissertation, University of Washington, USA.
58.	Hwang, J., Kim C., Chung, C. and Kim, M. (2006), “Viscous Fluid Characteristics of Liquefied Soils and Behavior of Piles Subjected to Flow of Liquefied Soils”, Soil Dynamics and Earthquake Engineering, Vo1. 26, pp. 313-323.
59.	Idriss, I. M., and Seed H. B. (1968), “Seismic Response of Horizontal Soil Layers”, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.94, No. SM4, pp. 1003-1031.
60.	Idriss, I.M., Dobry, R. and Singh, R.D. (1978), “Nonlinear Behavior of Soft Clays During Cyclic Loading”, Journal of the Geotechnical Engineering Division, Vol. 104, No. GT12, pp. 1427-1447.
61.	Ishibashi, I. and Fang, Y. S., (1987), “Dynamic Earth Pressures with Different Wall Movement Modes”, Soils and Foundations, JGS, Vol. 27, No. 4, pp. 11-22.
62.	Ishibashi, I., Osada, M. and Uwabe, T. (1994), “Dynamic Lateral Pressures due to Saturated Backfills on Rigid Walls”, Journal of Geotehnical Engineering, Vol. 120, No. 10, pp. 1747-1767.
63.	Ishihara, K. (1993), “Liquefaction and Flow Failure During Earthquakes”, Geotechnique, Vol. 43, No. 3, pp. 315-415.
64.	Ishihara, K. (2003), “Liquefaction-induced Lateral Flow and Its effects on Foundation Piles”, 5th National Conference on Earthquake Engineering, Istanbul, Turkey, May, 28 p.
65.	Ishihara, K and Cubrinovski, M. (1998) “Soil-pile interaction in liquefied deposits undergoing lateral spreading, Geotechnical Hazards, edit. By Maric, Lisac and Szavits-Nossan, Balkeman, pp. 51-64.
66.	Ishihara, K. and Cubrinovski, M. (2004), “Case Studies on Pile Foundations undergoing Lateral Spreading in Liquefied Deposits”, Proceeding of 5th International Conference on Case Histories in Geotechnical Engineering, New York, Paper SOAP 5.
67.	Ishihara, K. and Towhata, I. (1982), “Dynamic Response Analysis of Level Ground Based on the Effective Stress Method”, Soils Mechanics-Transient and Cyclic Loads, Wiley, New York, pp. 133-171.
68.	Ishihara, K. and Yamasaki, F. (1980), “Cyclic Simple Shear Tests on Saturated Sand in Multi-directional Loading”, Soils and Foundations, JGS, Vol. 20, No. 1, pp. 45-59.
69.	Ishihara, K. and Yoshimine, M. (1992), “Evaluation of Settlements in Sand Deposits Following Liquefaction during Earthquake”, Soils and Foundations, Vol. 32, No. 1, pp. 173-188.
70.	Iwasaki, T., Areakawa, T., and Tokida, K. (1982), “Simplified Procedure for Assessing Soil Liquefaction during Earthquakes”, Proc. Of the Conference od Soil Dynamics and Earthquake Engineering, Southampton, pp. 925-939.
71.	Japanese Road Association (JRA) (1990), Specification for Highway Bridges, Part V, Seismic Design.
72.	Japanese Road Association (JRA) (1996), Specification for Highway Bridges, Part V, Seismic Design.
73.	Juirnarongrit, T. and Ashford, S.A. (2006), “Soil-Pile Response to Blast-induced Lateral Spreading Ⅱ: Analysis and Assessment of the P-Y Method”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, No. 2, pp. 163-172.
74.	Kagawa, T. (1991), “Dynamics Soil Reaction to Axially Loaded Piles”, Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 7, pp. 1001-1020.
75.	Kagawa, T. (1992), “Lateral Pile Response in Liquefying Sand”, Proc., 10th World Conference on Earthquake Engineering, Madrid, Spain, Paper No. 1761.
76.	Kagawa, T., Taji, Y., Sato, M., and Minowa, C. (1997), “Soil-Pile-Structure Interaction in Liquefying Sand from Large-Scale Shaking-Table Test and Centrifuge Test”, Seismic Analysis and Design for Soil-Pile-Structure Interaction, Geotechnical Special Publication No. 70, ASCE, pp. 69-84.
77.	Kent, D.C, and Park, R. (1971), “Flexural member with Confined Concrete”, Journal of the Structural Division, ASCE, Vol. 97, No. 7, pp. 1969-1990.
78.	Kim, S.I. (2003), “Liquefaction Potential in Moderate Earthquake Regions”, Procds., 12th Asian Regional Conf. on Soil Mechanics and Geotechnical Engineering, Singapore, August, pp.1109-1138.
79.	Klar, A., and Frydman, S. and Baker R. (2004), “Seismic Analysis of Infinite Pile Groups in Liquefiable Soil”, Soil Dynamics and Earthquake Engineering, Vo1. 24, pp. 565-575.
80.	Knappett, J. A. and Madabhshi, S. P. G (2005), “Modeling of liquefaction-induced instability in pile groups”, Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.
81.	Konder, R.L. (1963), “Hyperbolic Stress Strain Response: Cohesive Soils”, Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 89, pp. 115-143.
82.	Kraft, L. M., Ray, R.P. and Kagawa T. (1981), “Theoretical t-z Curves”, Journal of Geotechnical Engineering Division, ASCE, GT1, pp. 1543-1561.
83.	Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Prentice-Hall Inc.
84.	Lee, S. L., Chow, Y.K., Karunaratne, G.P., and Wong, K.Y. (1988), “Rational Wave Equation Model for Pile-Driving Analysis”, Journal of Geotechnical Engineering Division, Vol. 114, No.3, pp. 306-325.
85.	Li, X.S. and Ming, H.Y. (2000), “Unified Modeling of Flow Liquefaction and Cyclic Mobility”, Soil Dynamics and Earthquake Engineering, Vo1. 19, pp. 363-369.
86.	Li, X.S., Wang Z.L. and Shen, C.K. (1992), “SUMDES, a Nonlinear Procedure for Response Analysis of Horizontal-Layer Sites Subjected to Multi-Directional Earthquake Loading”, Report to the Department of Civil Engineering University of California, Davis.
87.	Liang, M. and Husein, A.I. (1993), “Simplified Dynamic Method for Pile-Driving Control”, Journal of Geotechnical Engineering, ASCE, Vol. 119, No. 4, pp. 694-713.
88.	Lin, S.S. (1997), “Use of Filamented Beam Elments for Bored Pile Analysis”, Journal of Structure Engineering, ASCE, pp. 1236-1244.
89.	Lin, S.S., Tseng Y. J., Chiang C.C. and Hung C.L. (2005), “Damage of Piles Caused by Laterally Spreading – Back Study of Three Cases”, Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.
90.	Liu, L. and Dorby, R. (1995), “Effect of Liquefaction on Lateral Response of Piles by Centrifuge Model Tests”, NCEER Bulletin, Vol. 9, No. 1, January, pp. 7-11.
91.	Liyanapathirana, D.S. and Poulos, H.G. (2005a), “Seismic Lateral Response of Piles in Liquefying Soil”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 12, pp. 1466-1479.
92.	Liyanapathirana, D.S. and Poulos, H.G. (2005b), “Pseudostatic Approach for Seismic Analysis of Piles in Liquefying Soil”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 12, pp. 1480-1487.
93.	Lok, T., Pestana, J., Meymand, P., Riemer, M. and Seed, R. (1998) “Numerical Modeling and Simulation of Seismic Soil-Pile-Superstructure Interaction Experiments”, Procds., 5th Caltrans Seismic Research Workshop, June, Sacramento, CA, USA.
94.	Long J. H. and Vanneste, G. (1994), “Effects of Cyclic Lateral Loads on Piles in Sand”, Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 1, pp. 225-244.
95.	Luo, X., Murono, Y. amd Nishimura, A. (2002), “Verifying Adequacy of the Seismic Deformation Method by Using Real Example of Earthquake Damage”, Soil Dynamics and Earthquake Engineering, Vo1. 22, pp. 17-28.
96.	Lysmer, J., and Richart, F.E.J. (1966). “Dynamic Response of Footings to Vertical Loading,’’ Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM1, pp. 65-91.
97.	MacGregor, J.G. (1988), “Reinforced Concrete: Mechanics and Design”, Prentice Hall, New Jersey, U.S.A.
98.	Madabhushi, S.P.G. and Zeng, X. (1998), “Seismic Response of Gravity Quay Walls Ⅱ: Numerical Modeling”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 5, pp. 418-427.
99.	Martin, G. R., Finn, W.D.L., and Seed, H. B. (1975), “Fundamentals of liquefaction under cyclic loading”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT5, pp. 423-438.
100.	Matlock, H. (1970), “Correlation or Design of Laterally Loaded Piles in Soft Clay”, Proc., 2nd Annual Offshore Technology Conference, Paper No. OTC 1204, Houston, Texas, pp. 557-594.
101.	Matlock, H. and Reese, L.C. (1960), “Generalized Solution for Laterally Loaded Piles”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol.86, No. SM5, pp. 1220-1246.
102.	Matsuzawa, H., Ishibashi, I, and Kawamura, M. (1985), “Dynamic soil and water pressure of submerged soils”, Journal of the Geotechnical Engineering, ASCE, Vol. 111, No. 10, pp. 1161-1176.
103.	McCarthy, D.F. (1998), “Essentials of Soil Mechanics and Foundations”, 5th ed., Prentice Hall, Inc., Upper Saddle River, New Jersey.
104.	Meyersohn, W.D. (1994), “Pile response to Liquefaction-induced lateral spread,” Doctor’s dissertation, Cornell University, USA.
105.	Miwa, S., Ikeda, T. and Sato, T. (2006), “Damage Process of Pile Foundation in Liquefied Ground during Strong Motion”, Soil Dynamics and Earthquake Engineering, Vo1. 26, pp. 325-336.
106.	Mononobe, N. and Matsu, H. (1929), “On the Determination of Earth Pressure during Earthquake”, Proceedings, World Engineering Congress, 9 p.
107.	Moriwaki, Y., Tan, P., and Choi, Y. (2005), “Nonlinear Analyses for Design of Piles in Liquefying Soils at Port Facilities”, Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.
108.	Mostafa, Y.E. and EI Nagger, M.H. (2002), “Dynamic Analysis of Laterally Loaded Pile Groups in Sand and Clay”, Canadian Geotechnical Journal, Vol. 39, pp.1358-1383.
109.	Nagase, H. and Ishihara, K. (1988), “Liquefaction-Induced Compaction and Settlement of Sand During Earthquakes”, Soils and Foundations, Vol28, No.1, pp. 65-76.
110.	National Earthquake Hazard Reduction Program (NEHRP) (2000), Commentary (Federal Emergency Management Agency, USA, 369) for Seismic Regulations of New Buildings and Other Structures.
111.	Nogami, T., Otani, J., Konagai, K. and Chen, H.L. (1992), “Nonlinear Soil-pile Interaction Model for Dynamic Laterally Motion,” Journal of Geotechnical Engineering, ASCE, Vol. 118, No.1, pp. 89-106.
112.	Novak, M. (1977), “Vertical Vibration of Floating Piles”, Journal of Engineering Mechanics Division, ASCE, 103(EM-1), pp.153-168.
113.	Novak, M. (1974), “Dynamic Stiffness and Damping of piles”, Canadian Geotechnical Journal, Vol. 11, pp. 574-598.
114.	Novak, M. and EI Sharnouby, B. (1983),“Stiffness and Damping Constants of Single piles”, Journal of Geotechnical Engineering Division, ASCE, Vol. 109, No. GT7, pp. 153-168.
115.	Novak, M. and Sheta, M. (1980), “Approximate Approach to Contact Effects of Piles”, Proc. of a Specialty Conference on Dynamic Response of Pile Foundations: Analytical Aspects, ASCE, Hollywood, pp. 53-79.
116.	Novak, M., Nogami, T. and Aboul-Ella, F. (1978), “Dynamic Soil Reaction for Plane Strain Case”, Journal of the Engineering Mechanics Divison, ASCE, Vol. 104, pp. 633-649
117.	Okabe, S. (1924), “General Theory on Earth Pressure and Seismic Stability of Retaining Walls and Dams’’, J. Japan Soc. of Civil Engineering, Vol. 10, No. 6, (in Japanese).
118.	O’Neill, M.W. (1983), “Group Action in Offshore Piles’’, Geotechnical Practice in Offshore Engineering, ASCE, pp. 25-64.
119.	Park, S. and Byme, P.M. (2005), “Multi-plane Model for Soil Liquefaction”, Geo-Frontiers 2005, ASCE, pp. 2577-2592.
120.	Prakash, S. and Kumar, S. (1996), “Nonlinear Lateral Pile Deflection in Sands”, Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 2, pp. 130-138.
121.	Prakash, S. and Puri, V. K. (1988), “Foundations for Machines: Analysis and Design”, John Wiley and Sons, Canada, pp. 438-458.
122.	Priestley, M.J. N., Seible F. and Calvi, G.M. (1996), “Seismic Design and Retrofit of Bridges”, John Wiley & Sons, Inc.
123.	Poulos, H.G. (1989), “Cyclic Axial Loading Analysis of Piles in Sand”, Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 6, pp. 836-852.
124.	Poulos, H.G. and Davis, E.H. (1980), “Pile Foundation Analysis and Design”, John Wiley and Sons, New York.
125.	Randolph, M.K. (1991), “Analysis of The Dynamics of Pile Driving”, Chapter in Development in Soil Mechanics and Foundation Engineering: Vol.4 – Advanced Geotechnical Analyses, Elsevier, pp.2 23-271.
126.	Randolph, M.P. and Worth, C.P. (1978), “Analysis of Deformation of Vertically Loaded Piles”, Journal of Geotechnical Engineering, ASCE, GT12, pp. 1465-1488.
127.	Rauch, A.F. and Martin, J.R. II (2000), “EPOLLS Model for Predicting Average Displacements of Lateral Spreads”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 113, No. GT8, pp. 861-878.
128.	Reese, L.C. (1983), “Executive Summary, Behavior of Piles and Pile Groups Under Lateral Load’’ U. S. Department of Transportation Federal Highway Administration Office of Research Washington, D.C., pp. 444.
129.	Reese, L.C. (1997), “Analysis of Laterally Loaded Piles in Weak Rock”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 11, pp. 1010-1017.
130.	Reese, L.C. and Van Impe, W.F. (2001) Single Piles and Pile Groups Under Lateral Loading, Balkema, 463 p.
131.	Reese, L.C., Cox, W.R. and Koop, F.D. (1974) “Analysis of Laterally Loaded Pile in Sand”, Proc. Offshore Technology Conf., Houston, TX, pp. 473-483.
132.	Richard, R., Elms, D.G. and Budhu, M. (1990), “Soil Fluidization and Foundation behavior’, Proc. 2nd International Conference Recent Advance in Geotechnical Engineering and Soil Dynamics, Rolla 1, pp. 719-223.
133.	Richard, R., Elms, D. G. and Budhu, M. (1993), “Seismic Bearing Capacity and Settlement of Foundations”, Journal of Geotechnical Engineering Division, ASCE, Vol. 119, No. 4, pp. 662-674.
134.	Roesset, J.M. (1977), “Soil amplification of earthquake”, Numerical Methods in Geotechnical Engineering, McGraw-Hill, pp. 639-682.
135.	Rollins, K.M., Gerber, T.M., Lane, J.D. and Ashford, S.A. (2005), “Lateral Resistance of a Full-Scale Pile Group in Liquefied Sand”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 1, pp. 115-125.
136.	Schnabel, P.B., Lysmer, J., and Seed, H.B. (1972), “SHAKE: a Computer Program for Earthquake Response Analysis of Horizontally Layered Sites”, Report No. EERC 72-12, Earthquake Engineering Research Center, University of California, Berkeley.
137.	Schmertmann, J.H. (1970), “Static Cone to Compute Static Settlement Over Sand”, Journal of the Soil Mech. and Found., Proceedings of the American Society of Civil Engineers, Vol. 96, No. 3, pp. 1011-1041.
138.	Seed, H.B. (1976), “Some Aspect of Sand Liquefaction under Cyclic Loading”, Proc., Conference on Behavior of Offshore Structures, Norwegian Institute of Technology, Oslo.
139.	Seed, H.B. and Lee, K.L. (1966), “Liquefaction of Saturation Sands during Cyclic Loading”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM6, pp. 105-134.
140.	Seed, H.B., and Idriss, I.M. (1970), “Soil Moduli and Damping Factors for Dynamic Response Analysis”, Report No. EERC 75-29, Earthquake Engineering Research Center, University of California, Berkeley, California.
141.	Seed, H.B. and Idriss, I.M. (1982), Ground Motions and Soil Liquefaction during Earthquakes, Earthquake Engineering Research Institute, California.
142.	Seed, H.B. and Reese, L.C. (1957), “The Action of Soft Clay along Friction Piles”, Transactions of ASCE, Vol. 122, pp. 731-754.
143.	Seed, H.B., Riemer, M.F., Cetin, K.O, Sancio, R.B., Moss, R.E.S, Bay, J.D., Kammerer, A.M., Kayen, R.E., Wu, J., Faris, A. and Pestana, J.M (2003), Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framework, Report No. EERC 2003-06, Earthquake Engineering Research Center, University of California, Berkeley.
144.	Shengcong, F. and Tatsnoka, F. (1984), “Soil liquefaction During Haicheng and Tangshan Earthquake in China: a Review", Soils and Foundations, Vol.24, No.4, pp.11-29.Lee, K. and Albraisa, A. (1974), “Earthquake-Induced Settlements in Saturated Sands”, Journal of Geotechnical Engineering Division, ASCE, Vol.100, GT4, pp.387-405.
145.	Silver, M.L. and Seed, H.B. (1971) “Volume Changes in Sands during Cyclic Loading”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1171-1182.
146.	Sivathasan, K., Paulino, G.H., Li, X. S. and Arulanandan, K. (1998), “Validation of Site Characterization Method for the Study of Dynamic Pore Pressure Response”, Proceedings of the 1998 Conference on Geotechnical Earthquake Engineering and Soil Dynamics Ⅲ,Part 1, ASCE, pp. 469-481.
147.	Smith, E.A.L. (1960), “Pile Driving Analysis by the Wave equation”, Journal of Soil Mechanics and Foundation Divisions, ASCE, Vol. 6, No. SM4, pp. 35-61.
148.	Soubra, A.H. and Regenass, P. (2000), “Three-dimensional Passive Earth Pressure by Kinematical Approach”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 11, pp. 969-978.
149.	Stokoe, K.H., Roesset, J.M., Bierschwale, J.G. and Aouad, M. (1988), “Liquefaction Potential of Sand from Shear Wave Velocity”, Proceedings, 9th World Conference on Earthquake Engineering, Tokyo, Vol. 3, pp. 213-218.
150.	Takahashi, K., Omote, S., Ohta, T., Ikeura, T. and Noda, S. (1988), “Observation of Earthquake Strong-Motion with Deep Borehole Comparison of Seismic Motion in the Base Rock and Those on the Out-cropping”, Earthquake engineering, 9th World Conference, Tokyo-Kyoto, Japan, Vol. 8, pp. 181-186.
151.	Terzaghi, K. (1925), Erdbaumechanik auf bodenphysicalischer Grundlage, Leipzig, Deuticke.
152.	Terzaghi, K. (1955), “Evaluation of Coefficients of Subgrade Reaction”, Geotechnique, Vol. 5, pp. 297-326.
153.	Terzaghi, K., and Peck, R.B. (1967), “Soil Mechanics in Engineering Pracice”, 2nd ed., Wiley, New York..
154.	Tokimatsu, K. (1999), “Performance of pile foundations in laterally spreading soils”, Procds, 2nd Int. Conf. Earthquake Geotechnical Engineering, Vol. 3, pp. 957-964.
155.	Tokimatsu, K. (2003), “Behavior and Design of Pile Foundations Subjected to Earthquakes”, Procds., 12th Asian Regional Conf. on Soil Mechanics and Geotechnical Engineering, Singapore, August.
156.	Tokimatsu, K., and Asaka, Y. (1998), “Effects of Liquefaction-Induced Ground Displacement on Pile Performance in the 1995 Hyogoken-Nambu Earthquake,” Soils and Foundations, Special Issue, No. 2, pp. 163-178.
157.	Tokimatsu, K., and Seed, H.B. (1987), “Evaluation of Settlements in Sands due to Earthquake Shaking”, Journal of Geotechnical Engineering Division, ASCE, Vol. 113, No. GT8, pp. 861-878.
158.	Tokimatus, K. and Suzuki, H. (2004), “Pore Water Pressure Response around Pile and Its Effects on P-Y Behavior during Soil Liquefaction”, Soils and Foundations, Vol. 44, No. 6, pp.101-110.
159.	Tokimatsu K. and Yoshimi Y. (1993), “Empirical Correlation of Soil Liquefaction Based on SPT N-Value and Fines Content”, Soil and Foundations, JSSMFE, Vol. 23, No.4, pp. 56-74.
160.	Tokimatsu, K., Mizuno, H. and Kakurai, M. (1996), “Building Damage Associated with Geotechnical Problem”, Soils and Foundations, Special Issue on Geotechnical Aspect of the January 17 1995 Hyogoken-Nambu Earthquake, pp. 219-234.
161.	Tokimatus, K., Suzuki, H. and Sato, M. (2005), “Effects of Inertial and Kinematic Interaction on Seismic Behavior of Pile with embedded Foundation”, Soil Dynamics and Earthquake Engineering, Vo1. 25, pp. 753-762.
162.	Toyota, H., Towhata, I., Imamura, S. and Kudo, K. (2004), “Shaking Table Tests on Flow Dynamics in Liquefied Slope”, Soils and Foundations, Vol. 44, No. 5, pp. 67-84.
163.	Uchida, A. and Tokimatsu, K. (2005) “Comparison of current Japanese design for pile foundations in liquefiable and laterally spreading ground”, Proc. Int. Workshop Simulation and Seismic Performance of Pile Foundations in Liquefied and Laterally Spreading Ground, ASCE, 10 p.
164.	Ueng, T. S., Lin, M. L., Lee I. Y., Chu, C. M., and Lin J. S. (2002), “Dynamic Characteristics of Soils in Yuan-Lin Liquefaction Area”, Journal of the Chinese Institute of Engineers, Vol. 25, No.5, pp. 555-565.
165.	URL:http:// gees.usc.edu/GEES/RecentEQ/Colima2003/c-liq.html.
166.	URL:http://gees.usc.edu/GEES/RecentEQ/Japan2004/Reports/Bardet_October30/October30.html.
167.	Wang, S., Kutter, B.L., Chacko, J.M., Wilson, D.W., Boulanger, R.W. and Abghari, A. (1998), “Nonlinear Seismic Soil-Pile-Structure Interaction”, Earthquake Spectra, EERI, Vol. 14, No. 2, Okland, CA, pp. 337-396.
168.	Weaver, T.J., Ashford S.A. and Rollins K.M. (2005), “Response of 0.6 m Cast-in Steel-Shell Pile in Liquefied Soil under Lateral Loading”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 1, pp. 94-102.
169.	Wilson, D. W., Boulanger, R. W. and Kutter, B.L. (2000), “Observed Seismic Lateral Resistance of Liquefying Sand”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 10, pp. 898-906.
170.	Yasuda, S. (2004), “Development of Countermeasure Methods against Liquefaction-induced Flow after the 1995 Hyogoken-Nambu Earthquake in Japan”, 1st Taiwan-Japan Joint Workshop on Geotechnical Hazard from Large Earthquakes and Heavy Rainfall, Taiwan.
171.	Yao, S. and Nogami, T. (1994), “Lateral Cyclic Response of Piles in Viscoelastic Winkler Subgrade”, Journal of Engineering Mechanic, Vol. 120, No. 4, pp. 758-775.
172.	Yao, S., Kobayashi, K., Yoshida, N. and Matsuo, H. (2004), “Interactive Behavior of Soil-Pile-Superstructure System in Transient State to Liquefaction by Means of Large Shake Table Tests”, Soil Dynamics and Earthquake Engineering, Vo1. 24, pp. 397-409.
173.	Youd, T.L., Hansen, C.M. and Bartlett, S.F. (1997) “Revised MLR equations for predicting lateral spread displacement, “ Procds. 7th US-Japan workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Soil Liquefaction, August 15-17, Seattle, WA.
174.	Youd, T.L., Hansen, C.M. and Barlett, S.F. (2002), “Revise mutilinear Regression Equations for Predication of Lateral Spread Displacemnet”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 128, No. 12, pp. 1007-1017.
175.	Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Harder, L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson Ⅲ, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertsn, P. K., Seed, R. B., and Stokoe Ⅱ, K. H. (2001), “Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils”, Journal of the Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 10, pp. 817-833.
176.	Zha, J. (2005), “Lateral Spreading on Bridge Piles”, Workshop on Simulation and Seismic Performance of Pile Foundation in Liquefied and Laterally Spreading Ground, University of California, Davis, March.
177.	Zhang, J. M., Shamoto, Y., and Tokimatsu, K. (1998), “Seismic Earth Pressure for Retaining Walls under Any Lateral Displacement”, Soils and Foundations, Vol. 38, No. 2, pp. 143-163.
178.	中興工程顧問社 (1993),“土壤液化潛能評估方法研期末報告第一冊(分析評估報告)”,交通部高速鐵路工程籌備處研究報告。
179.	日本建築學會 (1988),建築基礎構造設計指針。
180.	日本土質工學會 (1993),液化對策之調查、設計與施工。
181.	王世權 (2001),“垂直地震樁基之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
182.	王志煒 (2002),“側向地震樁基之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
183.	內政部營建署 (2004),建築物耐震設計規範及解說。
184.	江承家 (2004),“土壤測潰對混凝土樁之影響分析”,碩士論文,海洋大學土木工程研究所,台灣,基隆。
185.	呂彥龍 (1994),“轉換遲滯阻尼於軸向樁壓之應用研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
186.	李崇正,吳秉儒,熊大綱 (2000),“以離心模型的震動台驗探討沈箱碼頭的側向擴展”,地工技術雜誌,第八十二期,第5-20頁。
187.	李佳翰 (2001),“沈箱式碼頭受震引致土壤液化之數值模擬”,碩士論文,中央大學應用地質研究所,台灣,中壢
188.	邱建銘 (2000),“以剪力波速評估員林地區液化及其地層動態反應研究”,碩士論文,台灣大學土木工程研究所,台灣,台北。
189.	范嘉程 (2001),“高樓建築物基礎工程於地震時之分析考慮”,地工技術,第84期,第5-18頁。
190.	巫秀星 (2005),“液化土壤模數折減下樁基動力反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
191.	吳偉特 (1979),“台灣砂性土壤液化潛能之初步研究”,土木水利,第六卷,第二期,第39-70頁。
192.	吳宗達 (2003),“樁基波動方程分析之視窗化研究與應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
193.	周功台,李志剛,廖瑞堂,俞清瀚,余榮生,郭漢興,黃富國,鄭清江 (2000),“液化區基礎修復補強工法對策說明書”,台北市大地工程技師公會,台北。
194.	周鴻昇,楊清源,謝百鍾,余明山,高耀宏 (2000),“南投地區地工震災調查與分析”,地工技術,第81期,第69-84頁。
195.	林光宗 (1998),“群樁互制效應對基樁反應之影響”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
196.	林新哲 (1998),“考慮混凝土開裂之場鑄樁側向載重分析”,碩士論文,台灣科技大學土木工程研究所,台灣,台北。
197.	林三賢,葉樹機,張有恆 (2000), “靜動樁載重試驗之承載力評估”,地工技術雜誌,第80期,第17-26頁。
198.	林呈,孫洪福(2000),“見證921集集大地震(下):災害成因與因應對策”,美商麥格羅‧希爾國際股份有限公司。
199.	林成川 (2002),“921集集大地震霧峰地區土壤側潰”,碩士論文,中興大學土木工程研究所,台灣,台中。
200.	林伯勳 (2002),“群樁受垂直向及側向載重之非線性行為分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
201.	林冠吾 (2003),“層狀土壤中之樁基承載力及變形行為”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
202.	林伯勳,巫秀星,張德文 (2005),“液化土壤模數拆減下樁基反應分析”,第十一屆大地工程研討會論文集,第E02頁。
203.	紀雲曜 (1997),“高雄縣永安沿液地區沖積層下陷及其潛能評估方法之研究”,博士論文,成功大學土木工程研究所,台灣,台南。
204.	紀雲曜,歐麗婷,陳怡睿 (2002), “土壤液化造成地層下陷量之評估”,地層下陷管理與對策研討會論文集,第 6-1-24頁,工研院能資所,新竹。
205.	翁贊鈞 (2003),“員林地區傾斜地盤二維有效應力分析”,碩士論文,台灣大學土木工程研究所,台灣,台北。
206.	翁作新,陳正興,黃俊鴻 (2004),“國內土壤受震液化問題之檢討”,地工技術雜誌,第100期,第63-78頁。
207.	馬志睿 (2001),“沈箱式碼頭受震反應之數值模擬”,碩士論文,中央大學土木工程研究所,台灣,中壢。
208.	梁明義 (1995),“土壤的地震承載力研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
209.	梁慈婷 (2000),“土壤液化對混凝土之影響”,碩士論文,海洋大學土木工程研究所,台灣,基隆。
210.	張一郎 (2000),“波動方程式分析於群樁側向反應之應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
211.	張德文,林伯勳 (2003),“含樁帽及互制影響之樁基礎波動方程分析”,地工技術雜誌,第九十五期,第49-60頁。
212.	張德文,林伯勳,巫秀星 (2005),“橋樑樁基礎地震反應之液化和地盤流動分析”,2005兩岸鐵道工程技術與營運管理學術研討會,台灣,淡水,12月,第15~28頁。
213.	陳怡睿 (1998),“砂質土層地震荷重行為之模擬與分析”,長榮學報,第2卷,第1期,第47-62頁。
214.	國家地震工程研究中心 (2005),土壤液化對交通結構物之影響及液化潛能評估方法與災害分析模式之研究 (2/2)。
215.	溫展華 (2000),“垂直群樁反應數值解比較研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
216.	黃富國 (1996),“土壤液化之危害度分析”,博士論文,台灣大學土木工程研究所,台灣,台北。
217.	黃俊鴻,陳正興 (1998),“土壤液化評估規範之回顧與前瞻”,地工技術,第70期,第23-44頁。
218.	黃俊鴻 (2000),“液化地盤中樁基礎之耐震設計”,地工技術雜誌,第八十二期,第65-78頁。
219.	黃筱卿 (2002),“員林地區土壤液化之地盤反應分析”,碩士論文,台灣大學土木工程研究所,台灣,台北。
220.	黃俊鴻 (2002),“由集集地震液化案例探討液化評估方法本土適用性之研究”,國道新建工程研究報告。
221.	黃安斌,林志平,紀雲曜,古志生,蔡錦松,李德河,林炳森 (2005),“台灣中西部粉土細砂液化行為分析”,地工技術雜誌,第103期,第5-30頁。
222.	葉興鴻 (1996),“轉換輻射阻尼於基樁軸向、側向行為之模擬與應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
223.	葉健輝 (2006),“液化地盤樁基之靜力分析模式研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
224.	賈志揚 (2004),“波動方程分析網際網路化視窗程式之開發”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
225.	楊宗勳 (2000),“地震對混凝土樁之影響分析”,碩士論文,海洋大學土木工程研究所,台灣,基隆。
226.	廖文正 (1995),“非線性彈簧及阻尼於震動分析之應用”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
227.	廖日昇(1999),“岩石工程要義:山崩與地陷”,科技圖書。
228.	鄭文隆,吳偉康 (1985),“土壤液化之災害型態與現地研判”,地工技術雜誌,第九期,第91-103頁。
229.	鄭世豪 (2004),“簡易橋墩基礎之地震反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
230.	劉祉祥 (1999),“垂直載重群樁之波動方程式時域解”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
231.	盧見志,鍾賢慶,黃永和 (2005),“橋樑非維性側推分析”,2005兩岸鐵道工程技術與營運管理學術研討會,台灣,12月,第207~221頁。
232.	歐陽金福 (1997),“垂直載重基樁土壤彈簧勁度與阻尼模式研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
233.	謝基政 (2000),“南投地區土壤液化評估方法之研究”,碩士論文,中興大學土木工程研究所,台灣,台中。
234.	謝旭昇,蔡琪駿,盧之偉 (2005),“考慮土壤液化之筏式基礎設計”,地工技術雜誌,第一百零三期,第31-42頁。
235.	簡連貴,賴聖耀,林敏清 (1999),“921集集大地震對台中港灣段設施災損調與評估”,土木水利,第二十六卷,第三期,第65-76頁。
236.	蘇順帆 (2001),“群樁基礎互制行為研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。
論文全文使用權限
校內
校內紙本論文立即公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信