淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2807200500093500
中文論文名稱 在不良天候下之飛機性能參數化研究
英文論文名稱 A Study of Aircraft Performance Parameter under Adverse Weather Conditions
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 王正民
研究生英文姓名 Chen-Min Wang
學號 691370026
學位類別 碩士
語文別 英文
口試日期 2005-05-20
論文頁數 79頁
口試委員 指導教授-宛同
委員-劉登
委員-程邦達
中文關鍵字 低空風切  亂流  大雨  飛機積冰  飛行安全  飛機性能 
英文關鍵字 F-factor  Low Level Windshear  Turbulence  Heavy Rain  Ice Accretion  Aircraft Performance  Aviation Safety 
學科別分類 學科別應用科學航空太空
中文摘要 為人所週知的,某些天氣現象會對飛行安全造成相當大的危害,例如低空風切、亂流、大雨和飛機積冰等現象。本研究的目的是欲藉由低空風切危害參數F參數為媒介,對在不良天候下飛行的飛機,其性能將會出現何種程度的衰減進行瞭解。
首先,本文將先建立三維的低空風切風場及三維的F參數,然後將其所計算出來的結果與代表亂流的T參數相加。其次將大雨和積冰情形下使用空氣動力學方程式所解算出的飛機性能衰減量,將其換算成等效的F參數,並將其與前者相加,從而得知在此種天候下飛機性能的總衰減量。在三維F參數的建立上,由於考慮到側風對飛機的影響,將採用二維的F參數加上角動量的影響,做為三維F參數之方程式;而在亂流的部分,則使用自行創造的T參數,其原理為將飛機在風場中所受到的三維加速度和角加速度變化予以非單位參數化。在大雨和飛機積冰的部分,則採用前人所建立的計算流體力學方法解析飛機的空氣動力係數,將其衰減的飛機性能計算出來,並換算出其相對應的F參數值。最後再將飛機可能遭遇的惡劣天氣現象之等效F參數和T參數相加成為FT參數,並應用新發展的FW參數,以求得在同時面對多種惡劣天氣現象下,飛機所受到的影響總合,並進而探討多種惡劣天氣存在時,單獨天氣現象對飛機所造成影響之比重。
台灣位處於世界最大海洋和最大陸塊之交界處,其天氣現象較許多國家更富有變化,近年來亦有多起因惡劣天候所造成之空難事故,故對足以威脅飛行安全之天候現象進行量化性且系統性的研究實有其必要性存在;本論文針對部分對飛機有重大影響惡劣天氣現象進行研究,以期可藉此對我國之飛行安全有所幫助,並能減少國人生命財產損失。
英文摘要 It is well known that some meteorological phenomenon will cause sizable danger to aviation safety, for example: low level windshear, turbulence, ice accretion and heavy rain, etc. The purpose of this research is to find out, by using existing low level windshear F-factor as the medium, the degrees of performance degradation for aircraft flying under different adverse weather conditions.
First of all, the study will set up the low level windshear 3-D wind field (including the side wind) and 3-D F-factor, then tally up the result with turbulence T-factor developed by our research group earlier. Secondly, take the aircraft performance amount calculated from heavy rain and ice accretion by using existing CFD techniques; convert it to an equivalent F-factor value. Add it with the previous result would get us the total performance amount under these weather conditions. At the end, tally up the different F-factor and T-factor values from the four adverse weather conditions that the aircraft might face, forming FT-factor and the newly created FW-factor, which will lead to the total aircraft performance degraded values in various adverse weather conditions. It is believed that the FW-factor represents a measuring weighting parameter for each adverse weather condition, which might co-exist with each other.
Taiwan is located at the intersection of the world’s largest ocean and land, which makes its meteorological phenomena full of varieties than that in many countries. In recent years, there are several accidents caused by adverse weather conditions. Therefore, it is necessary to investigate the meteorological phenomena that might be threat to aviation safety. Through the combining efforts in flight dynamics, aerodynamics, performance parameter developments, this study represents a first try in quantifying different adverse weather influences on aircraft performance degradation. It is hoped that the research results will be useful to local aviation safety community and help to eliminate some of the loss in lives and properties.
論文目次 Contents

中文摘要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・i
Abstract・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ii
Contents・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・iv
Table of Contents・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・vi
Figure of Contents・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・vii
Abbreviations・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・xi
Chapter 1 Introduction・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1
Chapter 2 Adverse Weather Phenomena・・・・・・・・・・・・・・・・・・・・・・・・・・5
2-1 Low Level Windshear・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・5
2-2 Turbulence・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・7
2-3 Ice Accretion・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・9
2-4 Heavy Rain・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
Chapter 3 Low Level Windshear and Turbulence Model・・・・・・・・・・・・12
3-1 2-D and 3-D F-factor・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・12
3-2 Turbulence T-factor・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・16
3-3 FT-factor・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17
3-4 FW-factor・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・20

Chapter 4 Ice Accretion and Heavy Rain Computation・・・・・・・・・・・・・23
4-1 Grid Generation and Flow Solver・・・・・・・・・・・・・・・・・・・・・・・23
4-2 Ice Accretion Analysis・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・25
4-3 Heavy Rain Analysis・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・26
Chapter 5 Results and Discussion・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・28
5-1 Equivalent F-factor Estimate Method・・・・・・・・・・・・・・・・・・・・28
5-2 Low Level Windshear・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・30
5-3 Turbulence・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・41
5-4 Heavy Rain・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・45
5-5 Ice Accretion・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・47
5-6 Low Level Windshear and Turbulence・・・・・・・・・・・・・・・・・・・・52
5-7 Low Level Windshear and Heavy Rain・・・・・・・・・・・・・・・・・・・59
5-8 Turbulence and Heavy Rain・・・・・・・・・・・・・・・・・・・・・・・・・・・・60
5-9 Turbulence and Ice Accretion・・・・・・・・・・・・・・・・・・・・・・・・・・・60
5-10 Low Level Windshear, Turbulence, and Heavy Rain・・・・・・・・61
5-11 Summary・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・61
Chapter 6 Conclusion・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・65
References・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・67
Appendix・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・70


Table of Contents

Table 5.1 Ice accretion simulation in different cases[3]・・・・・・・・・・・・47
Table 5.2 Rate of climb and equivalent F-factor in different weather
situation.・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・51
Table 5.3 F-factor, T-factor, FT-factor, and FW-factor in different
cases・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・62


Figure of Contents

Figure 2.1 Straight flight through a low level windshear [6]・・・・・・・・・・6
Figure 3.1 Geometry of low level windshear encounter[6]・・・・・・・・・・・13
Figure 3.2 Instantaneous F-factor for Delta flight 191[9]・・・・・・・・・・・・18
Figure 3.3 Averaged F-factor for Delta flight 191[9]・・・・・・・・・・・・・・・19
Figure 4.1 Linear analysis diagrams [3]・・・・・・・・・・・・・・・・・・・・・・・・・26
Figure 4.2 Flow field linear analysis in control volume (NACA 0012
M = 0.3, α= 4°) [3]・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・26
Figure 5.1 Effect of low level windshear on climb performance[23]・・・29
Figure 5.2 Low level windshear wind field velocity profile・・・・・・・・・・31
Figure 5.3 Vertical flight path in steady low level windshear・・・・・32
Figure 5.4 Lateral flight path in steady low level windshear・・・・・・32
Figure 5.5 2-D F-factor in steady low level windshear・・・・・・・・・・・・・・34
Figure 5.6 3-D F-factor in steady low level windshear・・・・・・・・・・・・・・34
Figure 5.7 FW-factor in steady low level windshear・・・・・・・・・・・・・・・・35
Figure 5.8 Low level windshear wind field velocity profile at t=0 sec・・36
Figure 5.9 Low level windshear wind field velocity profile at t=10 sec・36
Figure 5.10 Low level windshear wind field velocity profile at t=20 sec・・
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
Figure 5.11 Vertical flight path in unsteady low level windshear from
central axis・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
Figure 5.12 The vertical flight path in unsteady low level windshear from
flank・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・38
Figure 5.13 2-D F-factor in unsteady low level windshear from central
axis・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・38
Figure 5.14 2-D F-factor in unsteady low level windshear from flank・・39
Figure 5.15 3-D F-factor in unsteady low level windshear from central
axis・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・39
Figure 5.16 3-D F-factor in unsteady low level windshear from flank・・40
Figure 5.17 FW-factor in unsteady low level windshear from central axis・
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・40
Figure 5.18 FW-factor in unsteady low level windshear from flank・・・・41
Figure 5.19 Turbulence -factor・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・42
Figure 5.20 Turbulence -factor・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・43
Figure 5.21 Turbulence -factor・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・43
Figure 5.22 Turbulence total T-factor・・・・・・・・・・・・・・・・・・・・・・・・・・・44
Figure 5.23 Turbulence FW-factor・・・・・・・・・・・・・・・・・・・・・・・・・・・・・44
Figure 5.24 LWC=30 g/m3, lift coefficient vs. angle of attack[4]・・・・・45
Figure 5.25 LWC=30 g/m3, drag coefficient vs. angle of attack[4]・・・・46
Figure 5.26 Ice shape after 5 min. and 16.7 min. for
case 1[3] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・48
Figure 5.27 Ice shape after 15 and 22 min. for case 2[3]・・・・・49
Figure 5.28 Lift coefficient comparison with clean and original
iced airfoil Case 1[3]・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・49
Figure 5.29 Drag coefficient comparison with clean and
original iced airfoil for case 1[3]・・・・・・・・・・・・・・・・・・・・50
Figure 5.30 Lift coefficient comparison between clean and iced airfoil for
case 2[3]・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・50
Figure 5.31 Drag coefficient comparison between clean and iced airfoil
for case 2[3]・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・51
Figure 5.32 The wind velocity profile in low level windshear and
turbulence・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・53
Figure 5.33 Vertical flight path in low level windshear and
turbulence・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・53
Figure 5.34 2-D F-factor in low level windshear and turbulence・・・・・・55
Figure 5.35 3-D F-factor in low level windshear and turbulence・・・・・・55
Figure 5.36 T1-factor in low level windshear and turbulence・・・・・・・・・56
Figure 5.37 T2-factor in low level windshear and turbulence・・・・・・・・・56
Figure 5.38 T3-factor in low level windshear and turbulence・・・・・・・・・57
Figure 5.39 Total T-factor in low level windshear and turbulence・・・・・57
Figure 5.40 FT-factor in low level windshear and turbulence・・・・・・・・58
Figure 5.41 FW-factor in low level windshear and turbulence・・・・・・・・58


參考文獻 References

[1] Bowles, R. L., “Windshear Detection, Warning, and Flight Guidance”, NASA CP 10004, 1987.
[2] Wan, T., and F. Payne, “An Unsteady Vortex Ring Model for Microburst Simulation”, AIAA Paper 89-0811, 1989.
[3] Wan, T., and Y. C. Chu, “Airplane’s Trajectory Analysis under the Influence of Low Level Wind Shear”, Transactions of the AASRC, Vol. 31, No.1, pp. 1-10, March, 1999.
[4] Huang, H. F., “Clear Air Turbulence Avoidance Strategy via Genetic Algorithm & Neural Network Methods”, M.S. Thesis, Tamkang University, 2002.
[5] Lee, J. J., “Aerodynamic Performance Analysis under the Ice Accretion Conditions”, M.S. Thesis, Tamkang University, 2003.
[6] Wu, S. W., “Aerodynamic Performance Analysis under the Influence of Heavy Rain”, M.S. Thesis, Tamkang University, 2003.
[7] Proctor, Fred H., David A. Hinton, and Roland L. Bowles, “A Windshear Hazard Index”, Preprints of 9th Conference on Aviation, Paper 7.7, pp. 482-487, 2000.
[8] Visser, H. G., “Optimal Lateral-escape Maneuvers for Microburst Encounters During Final Approach”, Journal of Guidance, Control, and Dynamics, Vol. 17, 1994.
[9] Vicroy, D. D., “Assessment of Microburst Model for Downdraft Estimation”, Journal of Aircraft, Vol. 29, 1992.
[10] Department of Transportation, FAA, “Windshear Training Aid”, U.S. Department of Transportation, Washington, D.C., 1987.
[11] Visser, H. G., “Effect of Downburst on Flight Safety”, Proceedings of the 20th ICAS, pp. 317-336, 1996.
[12] Department of Transportation, FAA, “Airborne Windshear Warning and Escape Guidance System for Transport Airplanes”, TSO-C117a, 1996.
[13] Byron, B., “Clear Air Turbulence”, Asia-Pacific Air Safety, June 1998, BASI, Australia.
[14] Trammell, A., “Enroute Turbulence Avoidance Procedures”, AIAA Paper 89-0739, 1989.
[15] Wan, T., and C. C. Chen, “Flying Quality Study under the Influence of Clear Air Turbulence”, Proceedings of the 22th ICAS, Harrogate, U.K., 2000.
[16] Lester, P. F., Aviation Weather, Jeppesen Sanderson, 1995.
[17] Thomas, S. K., R. P. Cassoni, and C. D. MacAuthur, “Aircraft Anti-Icing and De-Icing Techniques and Modeling”, J. of Aircraft, Vol. 33, No. 5, 1996.
[18] “NASA Will Study Heavy Rain Effect on Wing Aerodynamics”, Aviation Week & Space Technology, Feb. 13, 1989.
[19] Thompson, B. E., and J. Jang, “Aerodynamic Efficiency of Wings in Rain”, J. of Aircraft, Vol. 33, No. 6, 1996.
[20] Rouwhorst, W. F. J. A., and H. Haverdings, “Some Results of Piloted Simulator Investigations on Windshear Detection System and Display Concepts”, Proceedings of the 20th ICAS, Sorrento, Napoli, Italy, 1996.
[21] Mclean, D., Automatic Flight Control Systems, Prentice Hall International, 1990.
[22] Wan, T., and H. F. Huang, “Clear Air Turbulence Strategy Analysis via Genetic Algorithm and Neural Network Methods”, AIAA Paper 2002-0941, 2002.
[23] Vicroy, D. D., “The Aerodynamic Effect of Heavy Rain on Airplane Performance”, AIAA Paper 1990-3131, 1990.
[24] Wan, T., and J. J. Chen, “On the Unstructured Grid Generation via the Modified Bowyer’s Scheme”, Transactions of AASRC, Vol. 28, No. 3, pp.203-208, 1996.
[25] Wan, T., and F. Yip, “The Study of 3-D Unstructured Grid Generation with Bowyer’s Scheme”, Transactions of AASRC, Vol. 29, No. 1, pp. 55-63, 1997.
[26] Wan, T., and S. W. Wu, “Aerodynamic Analysis under Influence of Heavy Rain”, Proceedings of the 24th ICAS, Yokohoma, Japan, 2004.
[27] Dunham, R. E. Jr., “The Potential Influence of Rain on Airfoil Performance”, Von Karman Institute for Fluid Dynamics, 1987.
[28] Markowitz, A. M., “Raindrop Size Distribution Expression”, J. of Applied Meteorology, Vol. 15, pp. 1029-1031, 1976.
[29] Wan, T., T. C. Yuan, and J. J. Lee, “Numerical Prediction of the Airfoil Ice Accretion Growth”, Proceedings of the 23th ICAS, Toronto, Canada, 2002.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-08-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-08-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信