淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2806201715281300
中文論文名稱 結構最佳設計力學於對應系統動力尖峰反應之極限載重研究
英文論文名稱 Mechanics of Optimal Structural Design for Extreme Loads to Peak System Responses
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 105
學期 2
出版年 106
研究生中文姓名 蔡昌旻
研究生英文姓名 Chang-Min Tsai
學號 605380012
學位類別 碩士
語文別 中文
口試日期 2017-06-12
論文頁數 196頁
口試委員 指導教授-王建凱
委員-呂良正
委員-羅元隆
中文關鍵字 結構最佳化  載重反應關聯法  Newmark分析 
英文關鍵字 Structural Optimization  Load-Response-Correlation Method  Newmark Analysis 
學科別分類 學科別應用科學土木工程及建築
中文摘要 載重反應關聯法(Load response correlation method,簡記為LRC法)是將結構承受之外力載重歷時等值為其極限靜力載重分佈,對應於此載重分佈之靜力位移場域,即為結構系統之動力尖峰變形反應。因此,由LRC力學理論,結構系統承載其外力載重歷時之特定等值極限靜力載重分佈下,以靜力結構分析結果即可得系統之動力尖峰位移反應,因而能較為便捷地求得結構系統於動力載重下的極值反應行為。
本論文研究成功地融合了LRC法與結構最佳化設計演算法,藉由本研究成果,靜力結構最佳化問題與設計方法,可通用地推廣至結構承受動力荷載的情況。另一方面,本論文之各結構最佳化演示例題中,除以靜力環境下的情況進行最佳化設計,且與其相對應文獻之分析與設計結果一一比較,以檢核本研究所提出融合LRC理論之最佳計算力學方法外,並使用有限元素套裝軟體ABAQUS對於結構設計進行動力分析,以驗證系統最佳設計結果之動力尖峰變形反應均符合設計限制條件。
綜合而論,本研究提出一創新之結構最佳設計方法,期能將計算力學於結構動力最佳化設計問題推展至新的層面。
英文摘要 Load response correlation (LRC) method is used to transform dynamic load distributions applied on structures into equivalent extreme static loads. Structural responses correlated to such equivalent static load distribution are called the dynamic peak responses of the structures. Hence, through LRC method, dynamic peak responses of structural system under the distribution of equivalent extreme static loads, which are transformed from loading history, are thus simply obtained by static analysis.
This study successfully integrated LRC method with structural optimization algorithm. With the proposed design scheme, static structural optimization problems can be extended to another scenario which structures are subjected to dynamic loads. In this thesis, for each optimization example, optimization was not only performed under static loading condition, but the result was compared with references to examine the effectiveness of the proposed method for integrating LRC method and optimization algorithm. In addition, a finite element analysis package- ABAQUS was applied to execute dynamic analysis on optimized structures in order to identify that the peak dynamic responses of the optimized structures meet the design constraints.
To sum up, this research proposed an innovative structural optimization method, anticipating it could provide computational mechanics with a new avenue toward engineering design problems.
論文目次 目錄
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究方法 3
1-4 論文章節及架構 5
第二章 理論與方法 6
2-1 結構最佳化設計簡介 6
2-2 結構最佳化設計演算法 7
2-3 最佳化分析方法與工具介紹 10
2-3-1 數學規劃法 11
2-3-2 有限元素套裝軟體 18
2-4 桁架結構分析 19
2-4-1 靜力分析 19
2-4-2 自然振動頻率 24
2-4-3 動力分析 26
第三章 載重反應關聯法 31
3-1 文獻回顧 31
3-2 理論推導 39
3-3 演算步驟 41
第四章 對應系統動力尖峰反應之結構最佳設計實例 44
4-1 尺寸最佳化設計 45
4-1-1 平面18根桿件桁架結構之尺寸最佳化設計 45
4-1-2 平面10根桿件桁架結構之尺寸最佳化設計 63
4-1-3 平面17根桿件桁架結構之尺寸最佳化設計 78
4-2 形狀最佳化設計 94
4-2-1 平面Michell桁架結構之形狀最佳化設計 94
4-2-2 平面18根桿件桁架結構之尺寸與形狀何最佳化設計 107
4-3 載重情況最佳化設計 123
4-3-1 空間22根桿件桁架結構之載重情況尺寸最佳化 123
4-3-2 空間25根桿件桁架結構之載重情況尺寸最佳化 146
4-3-3 平面37根桿件拱橋結構之載重情況形狀最佳化 168
第五章 結論與建議 181
5-1 結論 181
5-2 未來展望 182
參考文獻 183
附錄 A MATLAB fmincon函式示範例 195


圖目錄
圖 1-3-1 研究流程圖 3
圖 2-3-1 結構最佳化設計流程 11
圖 2-3-1 1 線性不等式限制條件下的最佳解 15
圖 2-3-1 2 線性等式和不等式限制條件下的最佳解 16
圖 2-3-1 3 邊界限制條件下的最佳解 17
圖 2-3-1 4 非線性限制條件下的最佳解 18
圖 2-4-1 1 區域座標系統之桿件節點力與位移示意圖 20
圖 2-4-1 2 桁架桿件與全域座標系統座標軸夾角示意圖 21
圖 2-4-3 1 Newmark 數值積分流程圖 30
圖 2-4-3 1 LRC法演算流程圖 43
圖 4-1-1 1 平面18根桿件桁架結構 46
圖 4-1-1 2 平面18根桿件桁架結構最佳化設計之迭代過程 49
圖 4-1-1 3最佳化平面18根桿件桁架結構比較圖 50
圖 4-1-1 4 18根桿件桁架結構之外力歷時 53
圖 4-1-1 5 平面18根桿件桁架結構節點11y方向位移歷時 56
圖 4-1-1 6 平面18根桿件桁架結構對於設計限制條件為正向極值反應之最佳化迭代過程 57
圖 4-1-1 7 平面18根桿件桁架結構對於設計限制條件為負向極值反應之最佳化迭代過程 57
圖 4-1-1 8 動力最佳化平面18根桿件桁架結構比較圖 58
圖 4-1-1 9 最佳化平面18根桿件桁架結構位移歷時之比較 59
圖 4-1-1 10 初始與最佳化平面18根桿件桁架結構 水平方向等值靜載重之比較 60
圖 4-1-1 11 初始與最佳化平面18根桿件桁架結構 垂直方向等值靜載重之比較 60
圖 4-1-2 1 平面10根桿件桁架結構 63
圖 4-1-2 2 平面10根桿件桁架結構迭代過程 66
圖 4-1-2 3 最佳化平面10根桿件桁架結構比較圖 67
圖 4-1-2 4 10根桿件桁架結構P1之外力歷時 70
圖 4-1-2 5 平面10根桿件桁架結構節點4位移歷時 73
圖 4-1-2 6 平面10根桿件桁架結構節點2位移歷時 73
圖 4-1-2 7 平面10根桿件桁架結構迭代過程 74
圖 4-1-2 8 最佳化平面10根桿件桁架結構比較圖 75
圖 4-1-3 1 平面17根桿件桁架結構 78
圖 4-1-3 2 平面17根桿件桁架結構迭代過程 81
圖 4-1-3 3 最佳化平面17根件桁架結構比較圖 82
圖 4-1-3 4 17根桿件桁架結構之外力歷時 86
圖 4-1-3 5 平面17根桿件桁架結構節點9位移歷時 89
圖 4-1-3 6 平面17根桿件桁架結構迭代過程 90
圖 4-1-3 7 最佳化平面17根桿件桁架結構比較圖 90
圖 4-2-1 1 平面Michell桁架結構 95
圖 4-2-1 2 平面Michell桁架結構迭代過程 97
圖 4-2-1 3 最佳化平面Michell桁架結構比較圖 98
圖 4-2-1 4 Michell桁架結構承受之外力歷時 101
圖 4-2-1 5 Michell桁架結構節點1y方向位移歷時 103
圖 4-2-1 6 Michell桁架結構正向極值反應迭代過程 104
圖 4-2-1 7 Michell桁架結構負向極值反應迭代過程 104
圖 4-2-1 8 動力最佳化平面Michell件桁架結構比較圖 105
圖 4-2-2 1 平面18根桿件桁架結構 107
圖 4-2-2 2 平面18根桿件桁架結構迭代過程 109
圖 4-2-2 3 最佳化平面18根桿件桁架結構比較圖 110
圖 4-2-2 4 18根桿件桁架結構之外力歷時 114
圖 4-2-2 5 平面18根桿件桁架結構節點1位移歷時 117
圖 4-2-2 6 平面18根桿件桁架結構正向極值反應迭代過程 118
圖 4-2-2 7 平面18根桿件桁架結構正向極值反應迭代過程 118
圖 4-2-2 8 動力最佳化平面22根桿件桁架結構比較圖 119
圖 4-3-1 1 空間22根桿件桁架結構 124
圖 4-3-1 2 空間22根桿件桁架結構迭代過程 127
圖 4-3-1 3 最佳化空間22根桿件桁架結構比較圖 128
圖 4-3-1 4 22根桿件桁架結構載重情況1之外力歷時 133
圖 4-3-1 5 22根桿件桁架結構載重情況2之外力歷時 134
圖 4-3-1 6 22根桿件桁架結構載重情況3之外力歷時 134
圖 4-3-1 7 空間22根桿件桁架結構載重情況1作用下節點1位移歷時 137
圖 4-3-1 8 空間22根桿件桁架結構載重情況2作用下節點1位移歷時 137
圖 4-3-1 9 空間22根桿件桁架結構載重情況3作用下節點1位移歷時 138
圖 4-3-1 10 空間22根桿件桁架結構正向極值反應迭代過程 139
圖 4-3-1 11 空間22根桿件桁架結構負向極值反應迭代過程 139
圖 4-3-1 12 動力最佳化空間22根桿件桁架結構比較圖 140
圖 4-3-2 1 空間25根桿件桁架結構 146
圖4-3-2 2 空間25根桿件桁結構架迭代過程 149
圖 4-3-2 3 最佳化空間25根桿件桁架結構比較圖 150
圖 4-3-2 4 25根桿件桁架結構載重情況1之外力歷時 156
圖 4-3-2 5 22根桿件桁架結構載重情況2之外力歷時 156
圖 4-3-2 6空間25根桿件桁架結構載重情況1作用下節點1位移歷時 159
圖 4-3-2 7 空間25根桿件桁架結構載重情況2作用下節點1位移歷時 160
圖 4-3-2 8 空間25根桿件桁架結構正向極值反應迭代過程 161
圖 4-3-2 9 空間25根桿件桁架結構負向極值反應迭代過程 161
圖 4-3-2 10 動力最佳化空間25根桿件桁架結構比較圖 162
圖 4-3-3 1 平面37根桿件拱橋結構 168
圖 4-3-3 2 平面37根桿件拱橋結構迭代過程 170
圖 4-3-3 3 最佳化平面37根桿件拱橋結構比較圖 171
圖 4-3-3 4 37根桿件桁架結構載重情況1之外力歷時 173
圖 4-3-3 5 37根桿件桁架結構載重情況2之外力歷時 174
圖 4-3-3 6 平面37根桿件桁架結構載重情況1作用下節點10位移歷時 176
圖 4-3-3 7平面37根桿件桁架結構載重情況2作用下節點10位移歷時 177
圖 4-3-3 8 平面37根桿件拱橋結構正向極值反應迭代過程 178
圖 4-3-3 9 平面37根桿件拱橋結構負向極值反應迭代過程 178
圖 4-3-3 10 動力最佳化平面37根桿件拱橋結構比較圖 179

表目錄
表 4-1-1 1 平面18根桿件桁架結構設計變數 46
表 4-1-1 2 平面18根桿件桁架結構設計條件 47
表 4-1-1 3 最佳化平面18根桿件桁架結構位移 50
表 4-1-1 4 最佳化平面18根桿件桁架結構 51
表 4-1-1 5 平面18根桿件桁架結構承載外力 52
表 4-1-1 6 平面18根桿件桁架結構外力歷時作用下正向和負向極值反應 54
表 4-1-1 7 平面18根桿件桁架結構模態 55
表 4-1-1 8 平面18根桿件桁架結構位移尖峰反應比較 56
表 4-1-1 9 正向極值反應限制條件之最佳化平面18根桿件桁架結構位移 59
表 4-1-1 10 負向極值反應限制條件之最佳化平面18根桿件桁架結構位移 59
表 4-1-1 11 初始與最佳化平面18根桿件桁架結構極值反應之比較 61
表 4-1-1 12 動力最佳化平面18根桿件桁架結構斷面尺寸 62
表 4-1-2 1 平面10根桿件桁架結構設計變數 64
表 4-1-2 2 平面10根桿件桁架結構設計條件 64
表 4-1-2 3 最佳化平面10根桿件桁架結構位移 67
表 4-1-2 4 最佳化平面10根桿件桁架結構應力 68
表 4-1-2 5 最佳化平面10根桿件桁架結構與文獻之比較 69
表 4-1-2 6 平面10根桿件桁架結構承載外力 70
表 4-1-2 7 平面10根桿件桁架結構各節點自由度之正向和負向極值反應 71
表 4-1-2 8 平面10根桿件桁架結構模態 72
表 4-1-2 9 平面10根桿件桁架結構由直接積分法與LRC法求得位移尖峰反應之比較 74
表 4-1-2 10 最佳化平面10根桿件桁架結構位移極值反應 75
表 4-1-2 11 最佳化平面10根桿件桁架結構應力 76
表 4-1-2 12 最佳化平面10根桿件桁架結構斷面資訊 77
表 4-1-3 1 平面17根桿件桁架結構設計變數 78
表 4-1-3 2 平面17根桿件桁架結構設計條件 79
表 4-1-3 3 最佳化平面17根桿件桁架結構位移 83
表 4-1-3 4 最佳化平面17根桿件桁架結構應力 84
表 4-1-3 5 最佳化平面17根桿件桁架結構與文獻之比較 85
表 4-1-3 6 平面17根桿件桁架結構承載外力資訊 86
表 4-1-3 7 平面17根桿件桁架結構外力作用下正向和負向極值反應 87
表 4-1-3 8 平面17根桿件桁架結構模態 88
表 4-1-3 9 平面17根桿件桁架結構位移尖峰反應比較 89
表 4-1-3 10 最佳化平面17根桿件桁架結構位移 91
表 4-1-3 11 最佳化平面17根桿件桁架結構應力 92
表 4-1-3 12 最佳化平面17根桿件桁架結構 93
表 4-2-1 1 Michell桁架結構座標設計變數 95
表 4-2-1 2 平面Michell桁架結構設計條件 96
表 4-2-1 3 最佳化平面Michell桁架結構位移 98
表 4-2-1 4 最佳化平面Michell桁架結構與文獻之比較 99
表 4-2-1 5 Michell桁架結構外力資訊 100
表 4-2-1 6 平面17根桿件桁架結構外力作用下正向和負向極值反應 101
表 4-2-1 7 Michell桁架結構模態 102
表 4-2-1 8 Michell桁架結構位移尖峰反應比較 103
表 4-2-1 9 最佳化平面Michell桁架結構位移 106
表 4-2-1 10 最佳化平面Michell桁架結構 106
表 4-2-2 1 平面18根桿件桁架結構設計條件 108
表 4-2-2 2 最佳化平面18根桿件桁架結構應力 111
表 4-2-2 3 最佳化平面18根桿件桁架結構位移 112
表 4-2-2 4 最佳化平面18根桿件桁架結構與文獻之比較 113
表 4-2-2 5 平面18根桿件桁架結構外力資訊 114
表 4-2-2 6 平面18根桿件桁架結構外力作用下正向和負向極值反應 115
表 4-2-2 7 平面18根桿件桁架結構模態 116
表 4-2-2 8 平面18桿件桁架結構位移尖峰反應比較 117
表 4-2-2 9 正向極值反應最佳化平面18根桿件桁架結構應力 120
表 4-2-2 10 負向極值反應最佳化平面18根桿件桁架結構應力 121
表 4-2-2 11 動力最佳化平面18根桿件桁架結構 122
表 4-3-1 1 空間22根桿件桁結構架節點座標及設計變數組合 125
表 4-3-1 2 空間22根桿件桁架結構設計條件 126
表 4-3-1 3 最佳化空間22根桿件桁架結構位移 129
表 4-3-1 4 最佳化空間22根桿件桁架結構應力 130
表 4-3-1 5 最佳化空間22根桿件桁架結構與文獻之比較 131
表 4-3-1 6 空間22根桿件桁架結構外力資訊 132
表 4-3-1 7 空間22根桿件桁架結構外力作用下正向和負向極值反應 135
表 4-3-1 8 空間22根桿件桁架結構模態 136
表 4-3-1 9 空間22根桿件桁架結構載重情況1作用下位移尖峰反應比較 137
表 4-3-1 10 空間22根桿件桁架結構載重情況2作用下位移尖峰反應比較 138
表 4-3-1 11 空間22根桿件桁架結構載重情況3作用下位移尖峰反應比較 138
表 4-3-1 12 正向極值反應最佳化空間22根桿件桁架結構位移 141
表 4-3-1 13 負向極值反應最佳化空間22根桿件桁架結構位移 142
表 4-3-1 14 正向極值反應最佳化空間22根桿件桁架結構應力 143
表 4-3-1 15 負向極值反應最佳化空間22根桿件桁架結構應力 144
表 4-3-1 16 動力最佳化空間22根桿件桁架結構 145
表 4-3-2 1 空間25根桿件桁架結構節點座標及設計變數組合 147
表 4-3-2 2 空間25根桿件桁架結構設計條件 148
表 4-3-2 3 最佳化空間25根桿件桁架結構位移 151
表 4-3-2 4 最佳化空間25根桿件桁架結構應力 152
表 4-3-2 5 最佳化空間25根桿件桁架結構與文獻之比較 154
表 4-3-2 6 空間25根桿件桁架結構外力資訊 155
表 4-3-2 7 空間25根桿件桁架結構外力歷時作用下正向和負向極值反應 157
表 4-3-2 8 空間25根桿件桁架結構模態 158
表 4-3-2 9 空間25根桿件桁架結構載重情況1作用下位移尖峰反應比較 159
表 4-3-2 10 空間25根桿件桁架結構載重情況2作用下位移尖峰反應比較 160
表 4-3-2 11 正向極值反應最佳化空間25根桿件桁架結構位移 163
表 4-3-2 12 負向極值反應最佳化空間25根桿件桁架結構位移 164
表 4-3-2 13 正向極值反應最佳化空間25根桿件桁架結構應力 165
表 4-3-2 14 負向極值反應最佳化空間25根桿件桁架結構應力 166
表 4-3-2 15 動力最佳化空間25根桿件桁架結構 167
表 4-3-3 1 平面37根桿件拱橋結構設計變數組合 168
表 4-3-3 2 平面37根桿件拱橋結構設計條件 169
表 4-3-3 3 最佳化平面37根桿件拱橋結構位移 172
表 4-3-3 4 最佳化平面37根桿件拱橋結構與文獻之比較 172
表 4-3-3 5 平面37根桿件拱橋結構外力資訊 173
表 4-3-3 6 平面37根桿件拱橋結構外力作用下正向和負向極值反應 174
表 4-3-3 7 平面37根桿件拱橋結構模態 175
表 4-3-3 8 平面37根桿件拱橋結構載重情況1作用下位移尖峰反應比較 176
表 4-3-3 9 面37根桿件拱橋結構載重情況2作用下位移尖峰反應比較 177
表 4-3-3 10 正向極值反應最佳化平面37根桿件拱橋結構位移 180
表 4-3-3 11 負向極值反應最佳化平面37根桿件拱橋結構位移 180
表 4-3-3 12 動力最佳化平面37根桿件桁架結構 180

參考文獻 Adeli, H., & Kamal, O. (1986). Efficient optimization of space trusses. Computers and Structures, 24(3), 501-511. doi:10.1016/0045-7949(86)90327-5
Adeli, H., & Kumar, S. (1995). Distributed genetic algorithm for structural optimization. Journal of Aerospace Engineering, 8(3), 156-163. doi:10.1061/(ASCE)0893-1321(1995)8:3(156)
Akl, W., El-Sabbagh, A., Al-Mitani, K., & Baz, A. (2009). Topology optimization of a plate coupled with acoustic cavity. International Journal of Solids and Structures, 46(10), 2060-2074.
Ananthasuresh, G., Kota, S., & Gianchandani, Y. (1994). A methodical approach to the design of compliant micromechanisms. Paper presented at the Solid-State Sensor and Actuator Workshop, , 1994 189-192.
Arora, J. S. (1989). Introduction to optimum design. Singapore: McGraw-Hill.
Atkinson, K. E. (1989). An introduction to numerical analysis (2nd ed ed.) Wiley. Retrieved from http://ci.nii.ac.jp/ncid/BA06815441
Avriel, M. (2003). Nonlinear programming : Analysis and methods Dover. Retrieved from http://ci.nii.ac.jp/ncid/BA68099036
Bendse, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2), 197-224.
Bendse, M. (1989). Optimal shape design as a material distribution problem. Structural Optimization, 1(4), 193-202. doi:10.1007/BF01650949
Bendse, M. P., & Sigmund, O. (2004). Topology optimization: Theory, methods, and applications (2nd ed.) Springer Berlin Heidelberg. Retrieved from https://books.google.com.tw/books?id=NGmtmMhVe2sC
Bradley, S. P., Hax, A. C., & Magnanti, T. L. (1977). Applied mathe-matical programming Addison-Wesley Pub. Co. Retrieved from http://ci.nii.ac.jp/ncid/BA03704105
Bruggi, M., & Venini, P. (2007). Topology optimization of incom-pressible media using mixed finite elements. Computer Methods in Applied Mechanics and Engineering, 196(33), 3151-3164.
Choi, J. S., & Yoo, J. (2008). Structural optimization of ferromagnetic materials based on the magnetic reluctivity for magnetic field problems. Computer Methods in Applied Mechanics and Engi-neering, 197(49), 4193-4206.
Choi, W. S., & Park, G. J. (2002). Structural optimization using equivalent static loads at all time intervals. Computer Methods in Applied Mechanics and Engineering, 191(19-20), 2077-2094.
Díaaz, A. R., & Kikuchi, N. (1992). Solutions to shape and topology eigenvalue optimization problems using a homogenization method. International Journal for Numerical Methods in Engineering, 35(7), 1487-1502.
Dobbs, M. W., & Felton, L. P. (1969). Optimization of truss geometry. Journal of the Structural Division, 95(10), 2105-2118.
Dobbs, M., & Nelson, R. (1976). Application of optimality criteria to automated structural design. AIAA Journal, 14(10), 1436-1443.
DORIGO, M. (1992). Optimization, learning and natural algorithms. Italian PhD dissertationPolitecnico Di MilanoMilan, Retrieved from http://ci.nii.ac.jp/naid/10030608019/en/
Dorn, W., Gomory, R., & Greenberg, H. (1964). Automatic design of optimal structures. Journal De Mecanique, 3, 25-52.
Du, J., & Olhoff, N. (2007a). Minimization of sound radiation from vibrating bi-material structures using topology optimization. Structural and Multidisciplinary Optimization, 33(4), 305-321.
Du, J., & Olhoff, N. (2007b). Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Structural and Multidiscipli-nary Optimization, 34(2), 91-110. doi:10.1007/s00158-007-0101-y
Fadel, G. M., & Cimtalay, S. (1993). Automatic evaluation of move-limits in structural optimization. Structural Optimization, 6(4), 233-237. doi:10.1007/BF01743381
Felix, J. E. (1981). Shape optimization of trusses subject to strength, displacement, and frequency constraints.(Master).
Geem, Z. W., Kim, J. H., & Loganathan, G. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60-68.
Gellatly, R. A., & Berke, L. (1971). Optimal structural design. Wright-Patterson, 70(165)
Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5), 533-549.
Hadidi, A., Azad, S. K., & Azad, S. K. (2010). Structural optimization using artificial bee colony algorithm. Paper presented at the 2nd International Conference on Engineering Optimization, 6-9.
Haslinger, J., Hillebrand, A., Kärkkäinen, T., & Miettinen, M. (2002). Optimization of conducting structures by using the homogenization method. Structural and Multidisciplinary Optimization, 24(2), 125-140.
Hassani, B., & Hinton, E. (1998a). A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations. Computers & Structures, 69(6), 719-738.
Hassani, B., & Hinton, E. (1998b). A review of homogenization and topology optimization III—topology optimization using optimality criteria. Computers & Structures, 69(6), 739-756.
Hassani, B., & Hinton, E. (1998c). A review of homogenization and topology optimization i—homogenization theory for media with periodic structure. Computers & Structures, 69(6), 707-717.
Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems NBS.
Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and ar-tificial intelligence University of Michigan Press.
Huang, X., & Xie, M. (2010). Evolutionary topology optimization of continuum structures: Methods and applications Wiley. Retrieved from https://books.google.com.tw/books?id=oNqwqj2u3FoC
Huang, X., & Xie, Y. M. (2007). Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elements in Analysis and Design, 43(14), 1039-1049. doi:https://doi.org/10.1016/j.finel.2007.06.006
Iga, A., Nishiwaki, S., Izui, K., & Yoshimura, M. (2009). Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection. International Journal of Heat and Mass Transfer, 52(11), 2721-2732.
Imai, K., & Schmit Jr., L. A. (1981). Configuration optimization of trusses. ASCE J Struct Div, 107(5), 745-756.
Jang, H., Lee, H., Lee, J., & Park, G. (2012). Dynamic response to-pology optimization in the time domain using equivalent static loads. AIAA Journal, 50(1), 226-234.
Jensen, J. S. (2009). Space–time topology optimization for one-dimensional wave propagation. Computer Methods in Applied Mechanics and Engineering, 198(5), 705-715.
Jog, C. S., Haber, R. B., & Bendse, M. P. (1994). Topology design with optimized, self‐adaptive materials. International Journal for Numerical Methods in Engineering, 37(8), 1323-1350.
JOG, C. S. (2002). Topology design of structures subjected to periodic loading doi:http://dx.doi.org/10.1006/jsvi.2001.4075
John, K. V., Ramakrishnan, C. V., & Sharma, K. G. (1987). Minimum weight design of trusses using improved move limit method of sequential linear programming. Computers and Structures, 27(5), 583-591. doi:10.1016/0045-7949(87)90073-3
Kamat, M. P. (1993). Progress in astronautics and aeronautics: Struc-tural optimization: Status and promise Aiaa.
Kang, Z., Zhang, X., Jiang, S., & Cheng, G. (2012). On topology op-timization of damping layer in shell structures under harmonic ex-citations. Structural and Multidisciplinary Optimization, 46(1), 51-67.
Kasperski, M. (1992). Extreme wind load distributions for linear and nonlinear design. Engineering Structures, 14(1), 27-34.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization (PSO). Paper presented at the Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1942-1948.
Khan, M. R., Willmert, K. D., & Thornton, W. A. (1979). An opti-mality criterion method for large-scale structures. AIAA Journal, 17(7), 753-761. doi:10.2514/3.61214
Khot, N. S., & Berke, L. (1984). Structural optimization using opti-mality criteria methods. Paper presented at the 47-74.
Kim, Y., & Park, G. (2010). Nonlinear dynamic response structural optimization using equivalent static loads. Computer Methods in Applied Mechanics and Engineering, 199(9–12), 660-676. doi:https://doi.org/10.1016/j.cma.2009.10.014
Kirkpatrick, S., Gelatt, C. D.,Jr, & Vecchi, M. P. (1983). Optimization by simulated annealing. Science (New York, N.Y.), 220(4598), 671-680. doi:220/4598/671 [pii]
Koohestani, K., & Kazemzadeh Azad, S. (2009). An adaptive re-al-coded genetic algorithm for size and shape optimization of truss structures. Paper presented at the Proceedings of the First Interna-tional Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, Civil-Comp Press, Stirlingshire, UK, Paper, , 13
Kosaka, I., & Swan, C. C. (1999). A symmetry reduction method for continuum structural topology optimization. Computers & Struc-tures, 70(1), 47-61. doi:https://doi.org/10.1016/S0045-7949(98)00158-8
Krog, L. A., & Olhoff, N. (1999). Optimum topology and reinforce-ment design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Computers & Structures, 72(4), 535-563.
Lamberti, L., & Pappalettere, C. (2000). Comparison of the numerical efficiency of different sequential linear programming based algo-rithms for structural optimisation problems. Computers and Structures, 76(6), 713-728.
Lamberti, L., & Pappalettere, C. (2003). Move limits definition in structural optimization with sequential linear programming. part II: Numerical examples. Computers and Structures, 81(4), 215-238. doi:10.1016/S0045-7949(02)00443-1
Lee, J. S., Kim, J. E., & Kim, Y. Y. (2007). Damage detection by the topology design formulation using modal parameters. International Journal for Numerical Methods in Engineering, 69(7), 1480-1498.
Lee, K. S., & Geem, Z. W. (2004a). A new structural optimization method based on the harmony search algorithm. Computers & Structures, 82(9), 781-798.
Lee, K. S., & Geem, Z. W. (2004b). A new structural optimization method based on the harmony search algorithm. Computers and Structures, 82(9-10), 781-798. doi:10.1016/j.compstruc.2004.01.002
Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 194(36–38), 3902-3933. doi:http://dx.doi.org/10.1016/j.cma.2004.09.007
Li, Q., Steven, G. P., Querin, O. M., & Xie, Y. (1999). Shape and to-pology design for heat conduction by evolutionary structural op-timization. International Journal of Heat and Mass Transfer, 42(17), 3361-3371.
Li, L. J., Huang, Z. B., Liu, F., & Wu, Q. H. (2007). A heuristic particle swarm optimizer for optimization of pin connected structures. Computers & Structures, 85(7–8), 340-349. doi:http://dx.doi.org/10.1016/j.compstruc.2006.11.020
Liu, H., Zhang, W., & Zhu, J. (2013). Structural topology optimization and frequency influence analysis under harmonic force excitations. Chin J Theor Appl Mech, 45(4), 588-597.
Liu, H., Zhang, W., & Gao, T. (2015). A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Structural and Multidisciplinary Opti-mization, 51(6), 1321-1333.
Ma, Z., Kikuchi, N., & Hagiwara, I. (1993). Structural topology and shape optimization for a frequency response problem. Computa-tional Mechanics, 13(3), 157-174.
Ma, Z., Kikuchi, N., & Cheng, H. (1995). Topological design for vi-brating structures doi:http://dx.doi.org/10.1016/0045-7825(94)00714-X
Maute, K., & Allen, M. (2004). Conceptual design of aeroelastic structures by topology optimization. Structural and Multidiscipli-nary Optimization, 27(1), 27-42.
Michell, A. G. M. (1904). The limits of economy of material in frame-structures. London Edinburgh Dublin PhilosMag J of Sci, 8(47), 589-597. Retrieved from http://ci.nii.ac.jp/naid/10011067801/en/
Mijar, A. R., Swan, C. C., Arora, J. S., & Kosaka, I. (1998). Contin-uum topology optimization for concept design of frame bracing systems. Journal of Structural Engineering, 124(5), 541-550.
Murat, F., & Tartar, L. (1985). Optimality conditions and homogeni-zation. Research Notes in Mathematics, 127, 1-8.
Niemann, H., Morlier, J., Shahdin, A., & Gourinat, Y. (2010). Damage localization using experimental modal parameters and topology optimization. Mechanical Systems and Signal Processing, 24(3), 636-652.
Nishiwaki, S., Frecker, M. I., Min, S., & Kikuchi, N. (1998). Topology optimization of compliant mechanisms using the homogenization method. Int J Numer Methods Eng, 42(3), 535-559.
Olhoff, N., Bendse, M. P., & Rasmussen, J. (1991). On CAD-integrated structural topology and design optimization. Computer Methods in Applied Mechanics and Engineering, 89(1-3), 259-279.
Olhoff, N., & Du, J. (2005). Topological design of continuum struc-tures subjected to forced vibration. Proceedings of 6th World Congresses of Structural and Multidisciplinary Optimization, Rio De Janeiro, Brazil,
Olhoff, N., & Du, J. (2014). Topological design for minimum dynamic compliance of structures under forced vibration. Topology opti-mization in structural and continuum mechanics (pp. 325-339) Springer.
Pedersen, N. L. (2000). Maximization of eigenvalues using topology optimization. Structural and Multidisciplinary Optimization, 20(1), 2-11. doi:10.1007/s001580050130
Prager, W., & Rozvany, G. (1977). Optimal layout of grillages. Journal of Structural Mechanics, 5(1), 1-18.
Rahami, H., Kaveh, A., & Gholipour, Y. (2008). Sizing, geometry and topology optimization of trusses via force method and genetic al-gorithm. Engineering Structures, 30(9), 2360-2369. doi:http://dx.doi.org/10.1016/j.engstruct.2008.01.012
Rajeev, S., & Krishnamoorthy, C. S. (1997). Genetic algorithms-based methodologies for design optimization of trusses. Journal of Structural Engineering, 123(3), 350-358.
Rizzi, P. (1976). Optimization of multi-constrained structures based on optimality criteria. Paper presented at the Conference on AI-AA/ASME/SAE 17th Structures, Structural Dynamics, and Materials, King of Prussia, PA,
Rozvany, G. I. (2009). A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization, 37(3), 217-237.
Rozvany, G. I. (1981). Optimality criteria for grids, shells and arches. Optimization of Distributed Parameter Structures, 1, 112-151.
Rozvany, G. (2001). Aims, scope, methods, history and unified ter-minology of computer-aided topology optimization in structural mechanics. Structural and Multidisciplinary Optimization, 21(2), 90-108.
Rozvany, G., & Wang, C. (1982). Extensions of prager's layout theory. Paper presented at the Optimization Methods in Structural Design, 103.
Saka, M. P. (1990). Optimum design of pin-jointed steel structures with practical applications. Journal of Structural Engineering (United States), 116(10), 2599-2620. doi:10.1061/(ASCE)0733-9445(1990)116:10(2599)
Schittkowski, K. (1981). The nonlinear programming method of wilson, han, and powell with an augmented lagrangian type line search function, part 1: Convergence analysis; part 2: An efficient im-plementation with least squares subproblems. Numerische Math-ematik, 5, 485-500.
Schmit, L., & Miura, H. (1976). Approximation concepts for efficient structural analysis. Nasa Cr, 2552
SCHMIT, L. A., & FARSHI, B. (1974). Some approximation concepts for structural synthesis. AIAA Journal, 12(5), 692-699. doi:10.2514/3.49321
Sethian, J. A., & Wiegmann, A. (2000). Structural boundary design via level set and immersed interface methods doi:http://dx.doi.org/10.1006/jcph.2000.6581
Sheu, C. Y., & Schmit, L. A., Jr. (1972). Minimum weight design of elastic redundant trusses under multiple static loading conditions. AIAA Journal, 10(2), 155-162. doi:10.2514/3.50078
Shu, L., Ma, Z., & Fang, Z. (2009). Topology-boundary optimization of coupled structural-acoustic systems. Paper presented at the ASME 2009 International Mechanical Engineering Congress and Exposition, 471-478.
Shu, L., Wang, M. Y., Fang, Z., Ma, Z., & Wei, P. (2011). Level set based structural topology optimization for minimizing frequency response. Journal of Sound and Vibration, 330(24), 5820-5834. doi:https://doi.org/10.1016/j.jsv.2011.07.026
Sigmund, O. (1994). Design of materials structures using topology op-timization Department of Solid Mechanics, Technical University of Denmark.
Sigmund, O. (1997). On the design of compliant mechanisms using topology optimization. Journal of Structural Mechanics, 25(4), 493-524.
Sleesongsom, S., & Bureerat, S. (2013). New conceptual design of aeroelastic wing structures by multi-objective optimization. Engi-neering Optimization, 45(1), 107-122.
Soh, C. K., & Yang, J. (1996). Fuzzy controlled genetic algorithm search for shape optimization. Journal of Computing in Civil En-gineering, 10(2), 143-150.
Stander, N., Snyman, J. A., & Coster, J. E. (1995). On the robustness and efficiency of the SAM algorithm for structural optimization. International Journal for Numerical Methods in Engineering, 38(1), 119-135. doi:10.1002/nme.1620380108
Stromberg, L. L., Beghini, A., Baker, W. F., & Paulino, G. H. (2011). Application of layout and topology optimization using pattern gradation for the conceptual design of buildings. Structural and Multidisciplinary Optimization, 43(2), 165-180.
Sunar, M., & Belegundu, A. (1991). Trust region methods for struc-tural optimization using exact second order sensitivity. Interna-tional Journal for Numerical Methods in Engineering, 32(2), 275-293.
Sutradhar, A., Paulino, G. H., Miller, M. J., & Nguyen, T. H. (2010). Topological optimization for designing patient-specific large cra-niofacial segmental bone replacements. Proceedings of the National Academy of Sciences of the United States of America, 107(30), 13222-13227. doi:10.1073/pnas.1001208107 [doi]
Suzuki, K., & Kikuchi, N. (1991). A homogenization method for shape and topology optimization. Computer Methods in Applied Me-chanics and Engineering, 93(3), 291-318.
Swan, C., & Arora, J. S. (1997). Topology design of material layout in structured composites of high stiffness and strength. Structural and Multidisciplinary Optimization, 13(1), 45-59.
Swan, C. C., & Kosaka, I. (1997). Voigt-reuss topology optimization for structures with linear elastic material behaviours. International Journal for Numerical Methods in Engineering, 40(16), 3033-3057.
Templeman, A., & Winterbottom, S. (1973). Structural design appli-cations of geometric programming. Paper presented at the AGARD Second Symp. on Structural Optimization 16 P(SEE N 74-15596 06-32),
Tenek, L. H., & Hagiwara, I. (1994). Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming. JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, 37(4), 667-677.
Vanderplaats, G. N., & Salajegheh, E. (1989). New approximation method for stress constraints in structural synthesis. AIAA Journal, 27(3), 352-358. doi:10.2514/3.10119
Venkayya, V. B. (1971). Design of optimum structures. Computers & Structures, 1(1), 265-309. doi:http://dx.doi.org/10.1016/0045-7949(71)90013-7
Wang, D., Zhang, W. H., & Jiang, J. S. (2002). Truss shape optimiza-tion with multiple displacement constraints. Computer Methods in Applied Mechanics and Engineering, 191(33), 3597-3612. doi:10.1016/S0045-7825(02)00297-9
Wang, M. Y., Wang, X., & Guo, D. (2003). A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192(1–2), 227-246. doi:https://doi.org/10.1016/S0045-7825(02)00559-5
Xie, Y. M., & Steven, G. P. (1993). A simple evolutionary procedure for structural optimization doi:http://dx.doi.org/10.1016/0045-7949(93)90035-C
Xie, Y. M., & Steven, G. P. (1996). Evolutionary structural optimization for dynamic problems doi:http://dx.doi.org/10.1016/0045-7949(95)00235-9
Xie, Y. M., & Steven, G. P. (1997). In Xie Y. M., Steven G. P. (Eds.), Evolutionary structural optimization. London: Springer. Retrieved from http://dx.doi.org/10.1007/978-1-4471-0985-3_2
Xu, S., & Grandhi, R. V. (1998). Effective two-point function ap-proximation for design optimization. AIAA Journal, 36(12), 2269-2275.
Yang, J. (1996). Development of genetic algorithm-based approach for structural optimization (Ph.D. thesis. Singapore: Nanyang Tech-nology University).
Yang, R., & Chahande, A. (1995). Automotive applications of topol-ogy optimization. Structural and Multidisciplinary Optimization, 9(3), 245-249.
Yang, X., Xie, Y., Steven, G., & Querin, O. (1999). Topology opti-mization for frequencies using an evolutionary method. Journal of Structural Engineering, 125(12), 1432-1438.
Yang, J., & Soh, C. K. (1997). Structural optimization by genetic al-gorithms with tournament selection. Journal of Computing in Civil Engineering, 11(3), 195-200.
Yoon, G. H., & Sigmund, O. (2008). A monolithic approach for to-pology optimization of electrostatically actuated devices. Computer Methods in Applied Mechanics and Engineering, 197(45), 4062-4075.
Yoon, G. H., Jensen, J. S., & Sigmund, O. (2007). Topology optimi-zation of acoustic-structure interaction problems using a mixed fi-nite element formulation. International Journal for Numerical Methods in Engineering, 70(9), 1049-1075. doi:10.1002/nme.1900
Zhang, X., & Kang, Z. (2013). Topology optimization of damping layers for minimizing sound radiation of shell structures. Journal of Sound and Vibration, 332(10), 2500-2519.
Zhang, X., & Kang, Z. (2014). Topology optimization of piezoelectric layers in plates with active vibration control. Journal of Intelligent Material Systems and Structures, 25(6), 697-712.
Zhao, J., & Wang, C. (2015). Dynamic response topology optimization in the time domain using model reduction method. Structural and Multidisciplinary Optimization, 53(1), 101-114.
Zhou, M., & Rozvany, G. (1991). The COC algorithm, part II: Topo-logical, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 89(1-3), 309-336.
Zhou, M., & Rozvany, G. (2001). On the validity of ESO type methods in topology optimization. Structural and Multidisciplinary Opti-mization, 21(1), 80-83.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-07-05公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-07-05起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信