淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2806201209264100
中文論文名稱 結合科技接受模型與期望確認模型探討電子書之用後行為。
英文論文名稱 Integrating TAM and ECT to explore continued usage behavior of e-book
校院名稱 淡江大學
系所名稱(中) 企業管理學系碩士在職專班
系所名稱(英) Department of Business Administration
學年度 100
學期 2
出版年 101
研究生中文姓名 何彩鈴
研究生英文姓名 Tsai-Ling Ho
學號 799610166
學位類別 碩士
語文別 中文
口試日期 2012-05-26
論文頁數 62頁
口試委員 指導教授-吳坤山
共同指導教授-涂敏芬
委員-楊志德
委員-楊立人
中文關鍵字 e-book  期望確認模型  科技接受模型  使用成本 
英文關鍵字 e-book  Expectation Confirmation Model  Technology Acceptance Model  Usage cost 
學科別分類 學科別社會科學管理學
中文摘要 2001年郝明義先生於《網路與書》中自述:「書籍,是一種傳統型態的網路。
網路是一種新型態的書。」網路打破了知識的疆界,科技改變了閱讀習慣,時過11年了,新型態的書仍在演變中。現在,就我們所知的閱讀,其閱讀內容的型式早已打破紙本書閱讀的侷限。因此e-book的閱讀行為是否能全面取代,亦是分割多少比例的傳統紙本書的閱讀習慣,為本研究的主要動機。
本研究先針對期望確認模型與科技接受模型等國內外相關文獻,及其關係構面
逐一探討。經文獻探討後,本研究之研究架構採用Bhattacherjee(2001a)所提出的IS接受後持續採用模式為基礎,並結合Davies et al.(1989)的科技接受模式,探討消費者持續使用電子書的行為意圖。問卷調查對象以e-book用戶為主要研究對象,並針對回收的有效樣本數254份,進行敘述性統計、信效度分析及結構方程模型(Structural Equation Modeling, SEM)中之偏最小平方估計法(Partial Least Square, PLS)進行分析,其主要研究結果如下:
1.電子書用戶的期望確認程度對e-book的認知易用性、 認知有用性有顯著正向的影響。
2.電子書用戶的期望確認程度對e-book的使用滿意度有顯著的正向影響。
3.電子書用戶的認知易用性對e-book的認知有用性、使用滿意度有顯著的正向影
響。
4.電子書用戶對的認知有用性對e-book的使用滿意度、與持續使用意願有顯著的正向影響。
5.電子書用戶使用e-book的滿意度對持續使用意願有顯著的正向影響。
6.電子書的使用成本對持續使用意願有顯著的負向影響。
英文摘要 2001 Mr. Hao, Min-gyi Network book in the readme: "books, is a traditional type of network. The Internet is a new kind of book". Network to break the boundaries of knowledge, technology is changing reading habits, but when more than 11 years, new types of books are still evolving. Now, reading as we know, read the content type has long been to break the limitations of the paper book to read. E-book reading behavior can fully replace, is also split what percentage of the traditional paper book reading habits, the main motivation of this study.
In this study, against expectations confirmation theory and technology acceptance model, relevant literature and its relational dimension go into. It uses the research model of Expectancy Confirmation Model (ECM) and Technology Acceptance Model (TAM) to explore the behavior of consumers continue to use the e-book intentions. The study object of this research is e-books users. There are 254 valid questionnaires and the quantitative research method including descriptive statistics, validity analysis, reliability analysis, and structural equation modeling (Partial Least Square method) were then conducted for data analysis. The main empirical results are as followings:
1.Users’ expectation confirmation has a positive effect on the perceived ease of use, perceived usefulness of e-book.
2.Users’ expectation confirmation while using e-book has a positive effect on satisfaction.
3.Perceived ease of use while using e-book has a positive effect on perceived usefulness and satisfaction.
4.Perceived usefulness while using e-book has a positive effect on satisfaction and continuance intention.
5.Users’ satisfaction is positively associated with continuance intention.
6.Usage cost is negatively associated with continuance intention.
論文目次 目錄 I
表目錄 III
圖目錄 IV
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究流程 5
第二章 文獻探討 6
第一節 電子書的市場發展現況 6
第二節 期望確認理論 13
第三節 資訊系統(INFORMATION SYSTEMS, IS)接受後持續採用模式 15
第四節 科技接受模型 17
第五節 使用成本 19
第三章 研究方法 21
第一節 研究架構 21
第二節 研究假設 22
第三節 研究變項與操作型定義與衡量 24
第四節 研究對象與範圍 28
第五節 統計分析 29
第四章 實證分析結果 31
第一節 預試分析 31
第二節 樣本結構分析 32
第三節 研究變項之因果關係 36
一、測量模型評估 36
第五章 結論與建議 43
第一節 研究結論與發現 43
第二節 管理意涵 45
第三節 後續研究建議 47
參考文獻 48
中文文獻 48
英文文獻 50
附錄一:前測問卷 57
附錄二:問卷 60


表目錄
表 2 1 科技接受模型(TAM)應用之相關研究整理 18
表 3 1 期望確認程度之衡量題項 24
表 3 2 認知有用性之衡量題項 25
表 3 3 認知易用性之衡量題項 26
表 3 4 滿意度之衡量題項 26
表 3 5 持續使用意願之衡量題項 27
表 3 6 實際使用之衡量題項 27
表 3 7 使用成本之衡量題項 28
表 4 1 各構面之Cronbach’s α值 32
表 4 2 性別統計 33
表 4 3 年齡統計 33
表 4 4 教育程度統計 34
表 4 5 每月可支配所得統計 34
表 4 6 行業別統計 34
表 4 7 每週使用電子書下載服務之次數統計 35
表 4 8 每週電子書閱讀時數統計 35
表 4 9 使用電子書頻率統計 36
表 4 10研究構面之信度效表 38
表 4 11負荷量-跨負荷量矩陣 39
表 4 12相關係數矩陣 40
表 4 13研究模型路徑分析結果表 42
表 5 1 研究假說彙整表 43


圖目錄
圖 1 1 2002-2011(1Q)美國電子書市場銷售金額 1
圖 1 2台灣電子書產業鏈現況發展 3
圖 1 3研究流程圖 5
圖 2 1電子書產業成長驅動力分析 7
圖 2 2北美三大電子書服務廠商營運模式 8
圖 2 3台灣民眾近半年平均購買電子書籍數量 11
圖 2 4一年購買書籍、雜誌和報紙的平均費用 12
圖 2 5電子書閱讀器重要的因素 12
圖 2 6 Oliver(1980)之期望確認理論架構圖 13
圖 2 7 Bhattacherjee(2001a)之IS接受後持續採用模式 16
圖 2 8 Davis(1989)之科技接受模型架構圖 17
圖 3 1本研究架構圖 21
圖 4 1本研究模型之路徑分析圖 42






















參考文獻 中文文獻
1.王東澤(2006)。電子書市場認知與消費傾向之探討。國立成功大學
高階管理碩士在職專班碩士論文。
2.王麗娜、周偉斌(2009)。专业电子书的消费者行为研究—化学工业出版社电子书读者调查问卷分析。科技與出版,第4期,48-50。
3.方富杉(2011)。電子書綜合研究報告。資策會產業情報研究所 (MIC)。
4.古亞薇(2011)。從Digital Book 2011及美國書展看電子書產業發展趨勢。資策會產業情報研究所(MIC)。
5.吳志強(2002)。數位內容差別取價對購買意願影響之研究-以文獻資料庫為例。台北科技大學商業自動化與管理研究所碩士論文。
6.李冠緯(2011)。Wii Fit 持續使用意願之探討:期望確認理論之應用。朝陽科技大學休閒事業管理系碩士論文。
7.林珮羚(2008)。影響行動音樂全曲下載使用意願之研究。銘傳大學傳播管理研究所在職專班碩士學位論文。
8.邱炯友(2000)。電子出版的歷史與未來。佛教圖書館館訊,第二十三期。
9.洪文瓊(1993)。迎接出版新紀元-電子出版品的革命性意義。出版流通,第23期,7-8。
10.徐靖琇 (2010)。關係慣性之前置因素與結果。東海大學國際貿易研究所碩
士論文。
11.陳怡君(2008)。以態度中介IS滿意度與持續使用之研究。 中央大學企業管理
研究所碩士論文。
12.陳國維(2009)。師徒效應對於ERP系統滿意度與持續使用意願影響之研究。
國立中央大學企業管理研究所碩士論文。
13.黃文楷(2007)。探討BLOG使用者持續採用行為之研究-以期望確認理論為
基礎。國立高雄第一科技大學資訊管理研究所碩士學位論文。
14.黃穗斌(2006)。線上音樂購買意願與定價策略之研究。銘傳大學傳播管理研
究所碩士學位論文。
15.劉宗偉、吳立偉、黃吉村(2007)。關係慣性與轉換障礙對「滿意度-顧客留
存」關係之影響-以金融服務業為例。管理學報,第二十四卷第六期,
671-687。
16.蔡明春、吳羿蓁 (2009)。宅配業顧客關係慣性與忠誠度之關係模式。中華
管理學報,第十卷第一期,1-18。
17.蕭至惠、張琡婍、蔡進發(2009)。影響消費者對電子書接受意願因素之研究。
電子商務研究,秋季第七卷,第三期,355-384。
18.蕭文龍、郭庭伊(2010)。部落客持續使用部落格之研究:以整合期望確認、
科技接受模式和個人因素觀點探討。銘傳大學資訊管理研究所碩士學位論
文。
19.楊梅(2009)。運用科技接受模型分析手機電子書閱讀行為。河南图书馆学刊,
第29卷第四期。

英文文獻
1.Anderson, E. W. and Sullivan, M. W.( 1993) .The antecedents and consequences of customer satisfaction for firms. Marketing Science, 12 (2), 125-143.
2.Anderson, E. W., Fornell, C. and Lehmann, R. R.(1994). Customer satisfaction, market share, and profitability: Findings from Sweden. Journal of Marketing, 58 (3), 53-66.
3.Anderson, R. E. and S. S. Srinivasan (2003). E-satisfaction and E-loyalty: Contingency framework. Psychology and Marketing, 20 (2), 123-138.
4.Anderson, J.C. and D. W. Gerbing (1988). Structural equation modeling in practice: A review and recommended two-step approach, Psychological Bulletin, 13(3), 411-423.
5.Assael , H. (1998). Consumer behavior and marketing action. Cincinnati, OH: Southwestern College Publishing.
6.Bansal Gaurav (2010). Continuing E-book use: Role of environmental consciousness, personality and past usage. University of Wisconsin.
7.Bagozzi, R. P. and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
8.Barclay, D. Higgins, C. A. and Thompson, R.L. (1995). The partial least squares (PLS) approach to causal modeling: personal computer adoption and use as an illustration. Technology Studies, 2(2), 285-309.
9.Bassellier Genevieve and Benbasat Izak (2004). Business competence of information technology professionals: conceptual development and influence on it-business partnerships. Journal MIS Quarterly, 28 (4), 321-321.
10.Beatty, S. E. and Smith, S. M. (1987). External search effort: an investigation across several product categories. Journal of Consumer Research, 14(1), 83-95.
11.Bearden William O. and Teel Jesse E. (1983). Selected determinants of consumer satisfaction and complaint reports. Journal of Marketing Research, 20, 21-28.
12.Bhattacherjee, A. (2001a). Understanding information systems continuance: An Expectation-Confirmation Model. MIS Quarterly, 25 (3), 321-321.
13.Bhattacherjee, A. (2001b). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32 (2), 201-214.
14.Bhattacherjee. A. and Premkumar,G. (2008). Explaining information technology usage: A test of competing models. Omega, 36 (1), 64-75.
15.Blackwell, R. D., Miniard, P. W. and Engel, J. F. ( 2001). Customer Behavior. New York: Dryden.
16.BISG (2009). Consumer attitudes toward ebook reading. A USA census-based survey. New York: Book Industry Study Group.
17.Cardozo, R. N. (1965). An Experimental Study of Consumer Effort, Expectation and Satisfaction. Journal of Marketing Research, 2, 44-49.
18.Carlsson, F. and A. Lofgren (2006). Airline Choice, Switching Costs and Frequent Flyer Programmers. Applied Economics, 38, 1469-1475.
19.Cheung, M. K. and Limayem, M. (2005). Drivers of University student’s continued Use of Advanced Internet-Based Learning Technologies. Bled e-Conference, Slovenia, 6, 6-8.
20.Chin, W.W. (1998). Issues and opinion on structural equation modeling. MIS Quarterly, 22(1), 7-16.
21.Chin, W. W. and Newsted, P. R. (1999). Structural Equation Modeling analysis with Small Samples Using Partial Least Squares. In Rick Hoyle (Ed.), Statistical Strategies for Small Sample Research, Sage Publications, pp. 307-341.
22.Cheung, C. M. K. and Lee, M. K. O. (2010). A theoretical model of intentional social action in online social networks. Decision Support Systems, 49(1), 24-30.
23.Chen, L. D., Gillenson, M. L. and Sherrell, D. L. (2002). Enticing Online Consumers: An Extended Technology Acceptance Perspective. Information & Management, 39(8), 705-719.
24.Chou S and Chen P (2009). The influence of individual differences on continuance intentions of enterprise resource planning. International Journal of Human–Computer Studies. 67(6), 484–96.
25.Churchill, G. and Surprenant, C.(1982). An Investigation into the Determinants of Consumer Satisfaction. Journal of Marketing Research, 19, (4), 491-504.
26.Compeau and Higgins (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19, 189.
27.Cyert, R.M. and March, J.G. (1963). A behavioral theory of the firm. Englewood Cliffs. 348 N.J.: Prentice-Hall.
28.Davis, F. D., Bagozzi, R. P. and Warshaw P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 25, 982-1003.
29.Dewi Tojib and Yelena Tsarenko (2011). Post-adoption modeling of advanced mobile service use. Journal of Business Research, 10, 1-7.
30.Gefen, D. Straub, D.W. and Boudreau, M.C. (2000). Structural equation modeling and regression: Guidelines for research practices. Communication of the Association for Information Systems, 7(4), 1-79.
31.Gefen, D. and Straub D. W. (2005). A practical guide to factorial validity using PlS-graph: tutorial and annotated example, Communications of the Association for Information Systems, 16(5), 91-109.
32.Fornell, C. and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18 (1), 39-50.
33.Fornell, C. (1982). Two Structural Equation Models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19 (4), 440-452.
34.Fornell, C. and Cha, J. (1994). Partial least squares. In R. P. Bagozzi (Ed.) , Advanced Methods of Marketing Research (pp. 52-78), Oxford: Blackwell.
35.Fu J.R. (2006). Visual PLS—Partial Least Square (PLS) regression—An enhanced GUI for LVPLS (PLS 1.8PC) Version 1.04. National Kaohsiung University of Applied Sciences, Taiwan, ROC.
36.Hackbarth G, Grover V, and Yi MY (2003). Computer playfulness and anxiety. Information & Management, 40(3), 221–32.
37.Hagel, J. III., and Armstrong, A. G. (1997).The real value of online communities. Harvard Business Review, 23, 134-141.
38.Hair, J. F., Anderson, R. E., Tatham, R. L. and Black, W. C. (1998). Multivariate Date Analysis International Edition (5th ed), N. J.: Prentice-Hall.
39.Hair, J. F., Black, W. C., Babin, B. J. and Anderson, R. E. (2010). Multivariate Data Analysis. Upper Saddle River, NJ: Prentice-Hall.
40.Hawkins D. T. (2000). A Major Publishing Revolution - Part 1.Online, 24, 14-28.
41.Hayashi A., Chen C., Ryan T., and Wu J. (2004).The role of social presence and moderating role of computer self efficacy in predicting the continuance usage of e-learning systems. Journal of Information Systems Education, 15(2), 139–54.
42.Hulland J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195-204.
43.Kang Y., Wang M., and Lin R. (2009). Usability evaluation of e-books. Displays 30: 49–52.
44.Kim H., Chan H., and Chan Y. (2007). A balanced thinking–feelings model of information systems continuance. International Journal of Human–Computer Studies, 65(6), 511–25.
45.Kuo, Y.F., Wu, C.M., and Deng, W.J.(2009). The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services. Computers in Human Behaviour, 25 (4), 887–896.
46.Legris P, Ingham J, and Collerette P (2003). Why do people use it? Information and Management , 40(3), 191–204.
47.Liang Ting-Peng and Yeh Yi-Hsuan (2011). Effect of use contexts on the continuous use of mobile services:The case of mobile games. Pers Ubiquit Compu, 15, 187–196.
48.Limayem, Hirt and Cheung (2007). How habit limits the predictive power of intentuion: the case of information systems continuance. Journal MIS Quarterly, 31(4).
49.Lin C.S., Wu S., and Tsai R.J. (2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information & Management, 42(5), 683–93.
50.Locke, E. A. (1976). The nature and causes of job satisfaction. In M. D.Dunnette (Ed.), in Handbook of Industrial and Organizational Psychology, 1297-1349.
51.Lu, Y., Deng, Z., and Wang, B. (2010). Exploring factors affecting Chinese consumers’ usage of short message service for personal communication. Information Systems Journal, 20 (2), 183-208.
52.Marios Koufaris (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Zicklin School of Business, Baruch College, New York .
53.McKinney, V., Yoon, K. and Zahedi F.(2002). The measurement of web-customer satisfaction: An expectation and disconfirmation approach. Information Systems Research, 13 (3), 296-315.
54.Medina, M. Q. and Chaparro, J. P. (2007/2008). The impact of the human element in the information systems quality for decision making and user satisfaction. The Journal of Computer Information Systems, 48(2), 44-53.
55.Moez Limayem and Christy M.K. Cheung (2008).Understanding information systems continuance: The case of Internet-based learning technologies. Information & Management, 45(4), 227-232.
56.Mondi M, Woods P, and Rafi A (2008). A uses and gratification expectancy model to pre¬dict students’ perceived e-learning experience. Educational Technology & Society, 11(2), 241–61.
57.Moon, J. W. and Kim, Y. G. (2001). Extending the TAM for the world wide web context. Information & Management, 38(4), 217-230.
58.Nunnally J.C. (1978). Psychometric Theory. New York: Mcgraw-Hill.
59.Oliver R. L. (1977). Effect of expectation and disconfirmation on post exposure product evaluations - an Alternative Interpretation. Journal of Applied Psychology, 62(4), 480.
60.Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research , 17(4), 460-469
61.Oliver, R. L. (1981). Measurement and evaluation of satisfaction process in retail settings. Journal of Retailing, 57(3), 25-48.
62.Oliver, R. L. (1993). Cognitive, affective, and attribute bases of the satisfaction response. Journal of Consumer Research, 20(12).
63.Oliver, R. L. (1999). Whence consumer loyalty? Journal of Marketing, 63, 33-44.
64.Oliver, R. L. and Bearden, W. O. (1985). Disconfirmation processes and consumer evaluations in product usage. Journal of Business Research, 13(3), 235-246.
65.Oliver, R. L., and DeSarbo, W. S. (1988). Response determinants in satisfaction Judgment. Journal of Consumer Research, 14(4), 495-507.
66.Ouellette, J. A. and Wood, W. (1998). Habit and intention in everyday life: the multiple processes by which past behavior predicts future behavior. Psychological Bulletin, 124(1), 54-74.
67.Pavlou, P. A., and Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. MIS Quarterly, 30(1), 115-143.
68.Ping, R. A. (1994). Does satisfaction moderate the association between alternative attractiveness and exit intention in a marketing channel? Journal of the Academy of Marketing Science, 22(4), 364-371.
69.Westbrook, R. A. (1987). Product/consumption-based affective responses and post-purchase processes. Journal of Marketing Research, 24 (3), 258.
70.Ranaweera, C. and Neely A. (2003). Some moderating effects on the service quality-customer retention link. International Journal of Operations and Production Management, 23(2), 230-248.
71.Rai A., Lang S.S., and Welker R.B. (2002). Assessing the validity of IS success models. Information Systems Research, 13(1), 50–69.
72.Roca JC, Chiu C, and Martinez FJ (2006). Understanding e-learning continuance intention. International Journal of Human Computer Studies, 64(8), 683–96.
73.Sang, S., Lee, J. D. and Lee, J. (2010). E-government adoption in cambodia: A partial least squares approach. Transforming Government: People, Process, and Policy, 4(2), 138-157.
74.Shaver, M. A. (1995). Application of pricing theory in studies of pricing
behavior and rate strategy in the newspaper industry. Journal of Media Economics, 8, 49-60.
75.Shaiu Wen-Lung, Huang Li-Chun and Shih Chia-Hui (2011). Understanding continuance intention of blog users: A perspective of flow and expectation confirmation theory. Journal of Convergence Information Technology, 6(4), 306-317.
76.Shin Dong-He (2010). Understanding e-book users: Uses and gratification
expectancy model. Sung kyun kwan University, South Korea.
77.Shih BY, Chen CY, Chou WC (2011). Obstacle avoidance using a path correction method for autonomous control of a biped intelligent robot. J. Vibration and Control, DOI: 10.1177/1077546310372004.
78.Spreng R. A, S.B. Mac Kenzie and R.W. Olshavsky (1996). A reexamination of the determinants of consumer satisfaction. Journal of Marketing, 60(3), 15.
79.Sonmez, S. F., and Graefe A. R. (1998). Determining future travel behavior from past travel experience and perceptions of risk and safety. Journal of Travel Research, 37(4), 171-177.
80.Szajna, B. and Scamell, R. W.(1993). The effects of Information system user expectations on their performance and perceptions. MIS Quarterly, 7(4), 493-516.
81.Taylor and Francis (2011). An empirical examination of users' post-adoption behaviour of mobile services. Behaviour & Information Technology Tamkang University.
82.Thatcher Jason Bennett and Perrewe Pamela L.(2002). An empirical examination of individual traits as antecedents to computer anxiety and computer self-efficacy. MIS Quarterly, 26, 381-396.
83.Tse, D. K., and Wilton P. C. (1988). Models of consumer satisfaction formation: An extension. Marketing Research, 25(2), 204-212.
84.Van der Heijden, H.(2003). Factors influencing the usage of websites: The case of a generic portal in the Netherlands. Information & Management, 40(6), 541-549.
85.Vicki McKinney, Kanghyun Yoon and Zahedi (2001). Web-customer satisfaction: An expectation and disconfirmation approach. Information System Research, 13 (3), 296-315.
86.Westbrook Robert A. and Oliver Richard L. (1991). The dimensionality of consumption emotion patterns and consumer satisfaction. Journal of Consumer Research, 18(1), 84.
87.William O. and Jesse E. Teel (1983). Selected determinants of consumer satisfaction and complaint reports. Journal of Marketing, 20(1), 21-18.
88.Wu, J.H. and Wang, S.C. (2005). What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Information & Management, 42 (5), 719–729.
89.Young Mee Shin, Seung Chang Lee, Bongsik Shin and Ho Geun Lee (2010). Examining influencing factors of post-adoption usage of mobile internet: focus on the user perception of supplier-side attributes. Information Systems Frontier, 12 (5), 595-606.
90.Zeithamel Valarie A., Berry Leonard L. and Parasuraman A.(1996). The behavioral consequences of service quality. Journal of Marketing, 60, 31-46.
91.Zhou Tao (2011). An empirical examination of users' post-adoption behavior of mobile services. Behaviour & Information Technology, 30(2), 241-250.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-07-03起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信