淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2806201115295800
中文論文名稱 電混凝法處理分散性染料廢水
英文論文名稱 Treatment of Disperse Dyes Effluent by Electro-coagulation Process
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 王少君
研究生英文姓名 Shao-Chun Wang
學號 698480521
學位類別 碩士
語文別 中文
口試日期 2011-06-07
論文頁數 64頁
口試委員 指導教授-陳俊成
委員-章裕民
委員-李奇旺
中文關鍵字 電化學混凝  分散性染料  染整廢水 
英文關鍵字 Electrochemical coagulation  Disperse dyes  Textile waste water 
學科別分類 學科別應用科學環境工程
中文摘要 紡織工業染整廢水的高色度(Color)、高化學需氧量(COD)、變動率高的pH值、高溫度及高懸浮固體濃度造成嚴重的環境生態問題。分散性染料更會添入界面活性劑來增加其溶解度,使分散性染料廢水中的化學成份與結構更加複雜,而增加其處理的困難度。以傳統的物理、化學及生物方法處理,通常耗時、成本高、且容易造成二次汙染和處理效率不如預期等問題,本研究因此考慮探討以電化學技術處理分散性染料廢水。
過去許多電化學混凝法對染整廢水的去除皆是以水溶性較高的染料,例如反應性染料、酸性染料...等。本研究嘗試以電化學混凝法,比較鐵板與鋁板為陽極處理分散性染料廢水的色度與COD去除效率、濁度優劣並探討其操作參數與去除機制。
在本研究將鐵板與鋁板為犧牲陽極比較下,來進行直接電化學混凝法產生鹽類與膠羽來對有機分散性染料DR-60、DB-79去除之研究歸納如下:
1. 有機分散性染料的顆粒難溶於水並且分散在溶液之中,極容易黏附在容器壁及容器底部使得濃度會因為靜置一段時間稍微下降。
2. 電壓是決定有機分散性染料去除率最重要的操作條件。
3. 鐵板以1g5V需要反應10min色度去除率就可達到90%以上;而鋁板在1g5V、5min即可以達到99%以上的色度去除率。
4. 使用鐵、鋁板為陽極在相同的電壓、電解質濃度比較,不論是色度去除、化學需氧量去除、濁度去除、反應時間甚至是去除穩定性及電能消耗上,皆是鋁板優於鐵板。
5. 以鐵板為陽極處理對有機分散性染料DR-60比DB-79去除效率還要 高,但以鋁板來說對兩者的去除率沒有太明顯的差別。
英文摘要 Textile wastewaters are known to exhibit various pH, hot temperature, high biological and chemical(COD) oxygen demands and high concentrations of suspended
solids. Disperse dyes will be inserted in the surfactant to increase its solubility, the dispersion of wastewater in the chemical composition and structure of more complex, and increase its handling difficult. The traditional physical, chemical and biological means, and often time-consuming, costly, and likely to cause secondary pollution and efficiency problems as expected, this study, therefore, consider the technical treatment of the electrochemical dispersion of dye wastewater.

Over the past number of electrochemical coagulation removal of dyeing wastewater are based on high water-soluble dyes, such as reactive dyes, acid dyes ...et al. this study attempts to electrochemical coagulation, iron and aluminum as the anode compared dispersion of dye wastewater treatment and the cod removal efficiency of color, turbidity and to explore its advantages and disadvantages of operating parameters and removal mechanism.

In this study, iron and aluminum as the sacrificial anode comparison, the direct electrochemical coagulation to produce salts and organic floc to disperse dyes DR-60, DB-79 to remove the study are summarized as follows:
1. Organic disperse dyes insoluble in water and dispersed into the solution very easily adhere to the container wall and bottom of the container makes the concentration decreased slightly because of standing for some time.
2. The voltage is to determine the removal efficiency of organic dye dispersed the most important operating conditions.
3. Responsive to the needs iron to 1g5v 10min color removal rate can reach 90%; and aluminum in the 1g5v, 5min that can reach 99% color removal.
4. To use of iron, aluminum, at the same voltage as the anode, electrolyte concentration comparison, whether it is color removal, cod removal, turbidity removal, reaction time and even remove the stability and power consumption on are all better than the monolithic aluminum.
5. To iron as the anode on the organic disperse dyes DR-60 removal efficiency than the DB-79 is even higher, but the removal rate of aluminum is not too much of the two significant differences.
論文目次 目錄 1
表目錄 3
圖目錄 4
第一章 前言 7
1.1研究緣起 7
1.2研究目的 8
1.3研究範圍 8
第二章 文獻回顧 9
2.1染料 9
2.1.1染料的分類 9
2.1.2分散性染料之特性及結構 12
2.2 電化學技術於廢水處理上之應用 13
2.3電化學混凝技術之理論 15
2.3.1 電解原理 15
2.3.2 電化學混凝原理及程序 16
2.3.3 電極化學反應 17
2.3.4 法拉第定律及電流效率 20
2.4一般染整廢水處理方法 23
2.4.1物理處理方法 23
2.4.2化學處理方法 23
2.4.3生物處理方法 25
2.5電化學混凝法處理染整廢水 26
第三章 實驗方法 29
3.1 實驗材料、藥品及設備 29
3.1.1 實驗藥品 29
3.1.2反應槽與儀器規格 30
3.2 實驗方法 34
3.2.1實驗條件 35
3.2.2實驗流程 35
3.2.3電化學混凝直接法(Direct Electrochemical Method) 36
第四章 結果與討論 38
4.1鐵為陽極 39
4.1.1以電混凝法探討鐵鹽 39
4.1.2以電混凝將染料廢水去除 43
4.2鋁為陽極 49
4.2.1以電混凝探討鋁鹽 49
4.2.2以電混凝將染料廢水去除 51
4.2.3鋁板的電流效率 56
4.3 DR-60、DB-79與兩種極板之間去除率互相比較 57
4.4鋁板為陽極pH值與色度去除率的影響 60
4.5兩種不同極板的耗能比較 62
五、結論與建議 64
5.1結論 64
5.2建議 65
參考文獻 66

表目錄
表 1 將混凝劑沉降性做分類 ................................................ 35

圖目錄
圖 1 基本電解現象圖 ............................................................ 10
圖 2 鋁鹽膠羽之錯合物 ........................................................ 13
圖 3 簡易反應槽內電混凝反應示意圖 ................................ 13
圖 4分散性染料DR-60之化學結構式 ................................ 23
圖 5 分散性染料DB-79之化學結構式 ............................... 24
圖 6 實驗所用之電極板,總左至右分別為石墨板、鐵板、
鋁板 .................................................................................. 25
圖 7 電化學混凝反應槽 ........................................................ 26
圖 8 HACH DR-4000分光光度計 ..................................... 27
圖 9 以Imhoff cone觀察混凝劑沉降性 .............................. 28
圖 10 DR-60與DB-79的吸光值與濃度迴歸關係 .............. 33
圖 11 以鐵板為陽極各個條件之混凝劑體積與時間關係圖
........................................................................................... 34
圖 12將混凝劑從左至右個別分為劣、中、優 ................... 35
圖 13 將混凝劑靜至24小時後所測得的體積 .................... 36
圖 14顯微鏡放大40倍的混凝劑 ......................................... 37
圖 15 以鐵板為陽極的處理過程中的染料廢水導電度變化
........................................................................................... 38
圖 16電流與時間的變化情形 ............................................... 39
圖 17 pH與時間變化的情形 ................................................. 39
圖 18氧化還原電位與時間之關係 ....................................... 40
圖 19以鐵板為陽極對DR-60的色度去除效果 .................. 41
圖 20以鐵板處理DR-60化學需氧量的去除效果 .............. 42
圖 21以鐵板處理DR-60濁度的變化情形 .......................... 42
圖 22混凝劑(鐵鹽)將染料DR-60吸附後沉澱的情形 ....... 43
圖 23以鋁板為陽極各個條件所產生的膠羽以濁度表示 ... 45
圖 24反應過後膠羽散佈在電解液中 ................................... 45
圖 25放大100倍顯微鏡下的鋁鹽 ....................................... 46
圖 26以鋁板為陽極之電流變化 ........................................... 47
圖 27導電度的變化 ............................................................... 47
圖 28 pH值的變化 ................................................................. 48
圖 29氧化還原電位的變化 ................................................... 48
圖 30以鋁板為陽極對DR-60色度去除效果 ...................... 49
圖 31鋁板為陽極對DR-60化學需氧量的去除效果 .......... 50
圖 32以鋁板處理DR-60濁度的變化情形 .......................... 50
圖 33 鋁板為陽極的電流效率 .............................................. 51
圖 34在2g5V條件下以鐵板為陽極比較DR-60與DB-79之
色度去除率 ...................................................................... 52
圖 35 在2g5V條件下以鋁板為陽極比較DR-60與DB-79
之色度去除率 .................................................................. 53
圖 36在2g5V條件下以鐵板為陽極比較DR-60與DB-79之
濁度去除率 ...................................................................... 54
圖 37在2g5V條件下以鐵板為陽極比較DR-60與DB-79之
濁度去除率 ...................................................................... 54
圖 38 在2g5V條件下兩種極板對於DR-60的色度去除比較
........................................................................................... 55
圖 39 在2g5V條件下兩種極板對於DB-79的色度去除比較
........................................................................................... 55
圖 40 在0.5g5V的條件下pH值對色度去除率的影響 ..... 56
圖 41鐵板為陽極耗電量 ....................................................... 57
圖 42鋁板為陽極之耗電量 ................................................... 57
參考文獻 1. Merzouk, B., et al., Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. Chemical Engineering Journal, 2009. 149(1-3): p. 207-214.
2. 曾馮宏, 電化學與化學程序去除染整廢水色度之比較研究(Comparison of Dye Color removing with Electrochemical and Chemical Processes). 2006, 淡江大學水資源及環境工程學系碩士班.
3. 何志軒, 以化學法與電化學法氧化裂解有機反應性染料探討(Chemical and Electrochemical Oxidation for Organic Dye Decomposition). 2009, 淡江大學水資源暨環境工程研究所博士班.
4. Kim, T.-H., et al., Decolorization of disperse and reactive dyes by continuous electrocoagulation process. Desalination, 2002. 150(2): p. 165-175.
5. Yang, C.-L. and J. McGarrahan, Electrochemical coagulation for textile effluent decolorization. Journal of Hazardous Materials, 2005. 127(1-3): p. 40-47.
6. 黃建宏, 陰離子在電化學處理含重金屬廢水程序之影響研究. 2009, 淡江大學水資源及環境工程研究所.
7. Janssen, L.J.J. and L. Koene, The role of electrochemistry and electrochemical technology in environmental protection. Chemical Engineering Journal, 2002. 85(2-3): p. 137-146.
8. Chen, G., Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 2004. 38(1): p. 11-41.
9. Adhoum, N., et al., Treatment of electroplating
wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation. J. Hazard.Mater, 2004. 112: p. 207–213.
10. Ge, J., et al., New bipolar electrocoagulation-electroflotation process for the treatment of laundry wastewater. Separation and Purification Technology, 2004. 36(1): p. 33-39.
11. Larue, O., et al., Electrocoagulation and coagulation by iron of latex particles in aqueous suspensions. Separation and Purification Technology, 2003. 31(2): p. 177-192.
12. Chen, X., G. Chen, and P.L. Yue, Separation of pollutants fromrestaurant wastewater by electrocoagulation. Sep. Purif. Technol., 2000. 19: p. 65–76.
13. Sengil, I.A. and M. özacar, Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes. Journal of Hazardous Materials, 2006. 137(2): p. 1197-1205.
14. Kobya, M., E. Senturk, and M. Bayramoglu, Treatment of poultry slaughterhouse wastewaters by electrocoagulation. Journal of Hazardous Materials, 2006. 133(1-3): p. 172-176.
15. 謝爵呈, 切削油工業廢水之電化學處理程序研究. 2006, 淡江大學水資源及環境工程學系碩士班.
16. P.R. Kumar, S.C., K.C. Khilar, S.P. Mahajan, Removal of arsenic from water by electrocoagulation. Chemosphere, 2004. 55: p. 1245–1252.
17. N. Bektas, H.A., H. Inan, A. Dimoglo, Removal of phosphate fromaqueous solutions by electrocoagulation. J. Hazard. Mater., 2004. B 106: p. 101–105.
18. M. Murugananthan, G.B.R., S. Prabhakar, Removal of sulfide, sulphate and sulfite ions by electrocoagulation. J. Hazard. Mater. , 2004. B 109: p. 37–44.
19. A.E. Yilmaz, R.B., M.M. Kocakerim, B. Keskinler, The investigation of parameters affecting boron removal by electrocoagulationmethod. J. Hazard. Mater., 2005. B 125: p. 160–165.
20. N. Mameri, A.R.Y., H. Lounici, D. Belhocine, H. Grib, B. Bariou, Defluoridation of septentrional of Sahara water of North Africa by electrocoagulation process using bipolar aluminum electrodes. Wat. Res., 1998. 32: p. 1604–1612.
21. A.S. Koparal, U.B.O., Removal of nitrate fromwater by electroreduction and electrocoagulation. J. Hazard. Mater., 2002. B 89: p. 83–94.
22. P. Gao, X.C., F. Shen, G. Chen, Removal of chromium (VI) from wastewater by combined electrocoagulation–electroflotation without a filter. Sep. Purif. Technol., 2004. 43: p. 117–123.
23. Tang, A., Fundamentals of Electroanalytical Chemistry: By Paul M.S. Monk, Wiley, London, 359 pp.; ISBN 0 471 88036 1 (HB) 0 471 88140 6 (PB). Biosensors and Bioelectronics, 2003. 18(10): p. 1309-1310.
24. Mollah, M.Y.A., et al., Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 2004. 114(1-3): p. 199-210.
25. Hu, C.Y., S.L. Lo, and W.H. Kuan, Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes. Water Research, 2003. 37(18): p. 4513-4523.
26. Sanghi, R.a.B.B., Adsorption-Coagulation for the Decolorisation of Textile Dye Solutions. Water Quality Research Journal of Canada, 2003. 38 (3): p. 553-562.
27. 洪鴻斌, 使用H2O2/UV和 H2O2/UV/Fe2+程序處理難分解染料製成廢水(Treatment of Refractory Dyestuffs Wastewater Using H2O2/UV and H2O2/UV/Fe2+ Processes). 1977, 私立淡江大學水資源及環境工程學系.
28. 姜鳳玲, 試論染色廢水的生物處理技術. 蒙自師范高等專科學校學報 2003. 5(4): p. 28-31.
29. 樊毓新 and 周增炎, 染料廢水的處理方法現狀与發展前景 環境保護, 2002. 9: p. 22-26.
30. Amani-Ghadim, A.R., et al., Influence of anions on Reactive Red 43 removal in electrochemical coagulation process. Electrochimica Acta, 2011. 56(3): p. 1373-1380.
31. Zhuo, Q., et al., Catalytic decolorization of azo-stuff with electro-coagulation method assisted by cobalt phosphomolybdate modified kaolin. Journal of Hazardous Materials, 2007. 142(1-2): p. 81-87.
32. Jiang, J.-Q., et al., Laboratory study of electro-coagulation-flotation for water treatment. Water Research, 2002. 36(16): p. 4064-4078.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信