§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2806200714111400
DOI 10.6846/TKU.2007.00918
論文名稱(中文) 回流效應對並流式薄膜質量交換器效率之影響
論文名稱(英文) Effect of Recycle on the Performance in parallel flow membrane Mass Exchangers
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 李國榮
研究生(英文) Guo-Long Lee
學號 694361527
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-06-21
論文頁數 86頁
口試委員 指導教授 - 葉和明
委員 - 蔡少偉
委員 - 何啟東
關鍵字(中) 薄膜透析
平板膜組
回流
平行流動
微孔薄膜
關鍵字(英) Membrane Dialysis
Rectangular module
Reflux
Parallel flow
Microporous membrane
第三語言關鍵字
學科別分類
中文摘要
關於平板薄膜透析操作之質傳問題在理論上可以類比於平板式熱交換器的熱傳方式。本文主要探討回流裝置的加入對於平板式薄膜透析系統的改善情形,薄膜透析的外回流效益是在並流的單行程雙相及雙行程的透餘相模式中研究下運作。藉由回流操作產生因流速增加所得到的可期效益中大量的效能增進是可以做到的。由於進料的再混合,回流操作克服了減少質量傳送驅動力(濃度差)會產生的負面效益。回流可以增加薄膜透析的效能,特別是對於具有大進料體積流率的流體,或者是高濃度的進料溶液。再者,雙行程操作比單行程更有效益,因為流速的增加會使質量傳送係數增加。
英文摘要
The effect of external recycle on the membrane dialysis with single pass in both phases on double pass in retentate phase, under parallel flow was investigated. Considerable improvement in performance is obtainable by using recycle operation to create the desirable effect of increasing the fluid velocity, which overcomes the undesirable effect of decreasing the concentration difference for mass-transfer due to the remixing at inlet. The recycle can enhance the performance of membrane dialysis, especially for higher volume flow rate or higher concentration of inlet solution. Further moer, double pass operation is more effective than the single pass because of the increase in fluid velocity, resulting in increasing the mass-transfer coefficient.
第三語言摘要
論文目次
目     錄

致謝………………………………………………………………… Ⅰ
中文摘要……………………………………………………………	Ⅱ
英文摘要……………………………………………………………	Ⅲ
目錄…………………………………………………………………	Ⅳ
圖目錄………………………………………………………………	Ⅶ
表目錄………………………………………………………………	Ⅹ

	
第一章 緒論………………………………………………………   1
1-1 前言……………………………………………………………  1
1-2 薄膜分離的驅動力……………………………………………  4
1-3 薄膜透析………………………………………………………  5
1-4 薄膜透析的應用………………………………………………	8
1-5研究目的………………………………………………………	9
第二章 文獻回顧…………………………………………………  10
第三章 理論分析…………………………………………………  15
3-1質量傳送係數……………………………………………	   17
3-2 平板薄膜透析系統………………………………………	   19
3-2.1 順流式平板薄膜透析系統……………………………	   21
3-2.2 逆流式平板薄膜透析系統……………………………	   23
3-3 外回流式平板薄膜透析系統………………………………	   26
3-4 透餘相雙行程平板薄膜透析系統…………………………	   27
3-4.1 透餘相先順後逆(A-B)操作…………………………       29
3-4.2 透餘相先逆流後順流(B-A)操作……………………	       34
3-5 透餘相雙行程外回流式平板薄膜透析系統………………	   36
3-5.1透餘相雙行程外回流式薄膜透析先順後逆(A-B)系統	   38
3-5.2透餘相雙行程外回流式薄膜透析先逆後順(B-A)系統	   39
	
第四章 結果與討論………………………………………………  41
4-1單行程外回流順-逆流透析系統之較………………………   42
4-1.1透餘相體積流率的影響………………………………	   42
4-1.2透析相體積流率的影響………………………………	   42
4-1.3 進料濃度的影響………………………………………	   43
4-2單行程順逆流與雙行程A-B、B-A型透析系統之比較	   44
4-2.1固定透析相體積流率…………………………………	   44
4-2.2透析相體積流率的影響………………………………	   44
4-2.3進料濃度的影響………………………………………	   45
4-3 回流比對總質傳量之影響…………………………………   46
4-3.1單行程順流與單行程逆流系統的比較………………	   47
4-3.2單行程與雙行程系統的比較…………………………	   47
	
第五章 結論………………………………………………………  79
符號說明…………………………………………………………… 80
參考文獻…………………………………………………………… 82
	
	
圖   目   錄
圖 1-1  影響薄膜分離程序之因素及其應用範圍……………      3
圖 3-1. 薄膜透析示意圖…………………………………………    16
圖 3-2. 順流型下之平板質量交換器的薄膜透析示意圖………    20
圖 3-3. 逆流型下之平板質量交換器的薄膜透析示意圖………    20
圖 3-4. 回流操作下之逆流型平板質量交換器的薄膜透析示意圖  26
圖 3-5. 透餘相双行逆流型薄膜透析系統…………………………  29
圖 3-6. 透餘相双行程外回流式薄膜透析系統(A-B 型)…………  36
圖 3-7. 透餘相双行程外回流式薄膜透析系統(B-A型) …………  37
圖 4-1. 單行程順流式透餘相操作下質傳速率對回流比做圖……  49
圖 4-2. 單行程順流式透餘相操作下質傳速率對回流比做圖……  50
圖 4-3. 單行程逆流式透餘相操作下質傳速率對回流比做圖……  51
圖 4-4. 單行程逆流式透餘相操作下質傳速率對回流比做圖……  52
圖 4-5. 透餘相雙行程與外回流式操作質傳速率對回流比做圖…  53
圖 4-6. 透餘相雙行程與外回流式操作質傳速率對回流比做圖…  54
圖 4-7. 單行程順流式與不同透析相體積流率下質傳速率對回
        流比做圖…………………………………………………… 55
圖 4-8. 單行程順流式與不同透析相體積流率下對質傳速率之
        提高率做圖………………………………………………… 56
圖 4-9. 單行程逆流式與不同透析相體積流率下對質傳速率對	
        流比作圖…………………………………………………… 57
圖 4-10.單行程逆流式與不同透析相體積流率下對質傳速率之	
        高率作圖…………………………………………………… 58
圖 4-11.A-B or B-A 型與透析相體積流率對質傳速率對回流比
        作圖 …………………………………………………………59
圖 4-12.A-B or B-A 型對透析相體積流率對質傳速率之提高率…  60
圖 4-13.相同進料濃度及透析相體積流率下單行程逆流式對雙行
        程A-B 型質傳效率的不同………………………………	 61
圖 4-14.相同進料濃度及透析相體積流率下單行程逆流式對雙	
        程A-B型質傳速率的不同………………………………	62
圖 4-15.相同進料濃度及透析相體積流率下單行程逆流式對單行
        程順流式質傳速率的提高率不同………………………	63
圖 4-16.相同進料濃度及透析相體積流率下單行程逆流式對單	
        行程順流式質傳速率的不同……………………………	64
圖 4-17.相同進料濃度及透析相體積流率下單行程順流對A-B型
        質傳速率的提高率的不同………………………………	65
圖 4-18.相同進料濃度及透析相體積流率下單行程順流式對A-B
        型質傳速率的不同………………………………………	66
圖 4-19.單行程順流式進料濃度對質傳速率的影響……………	67
圖 4-20.單行程逆流式進料濃度對質傳速率的影響……………	68
圖 4-21. A-B or B-A 型進料濃度對質傳速率的影響…………	69
	
表   目   錄
表 1-1. 用於人工腎臟的透析薄膜………………………………	 7
表 4-1. Dialysis rates in parallel-flow device with   
  &   in cocurrent flow…………………………………………    70
表 4-2. Dialysis rates in parallel-flow device with   
  &   in cocurrent flow…………………………………………    71
表 4-3. Dialysis rates in parallel-flow device with  ,
  &   in cocurrent flow…………………………………………    72
表 4-4. Dialysis rates in parallel-flow device with  ,
  &   in countercurrent flow…………………………………      73
表 4-5. Dialysis rates in parallel-flow device with  ,
  &   in countercurrent flow…………………………………      74
表 4-6. Dialysis rates in parallel-flow device with   &   
in countercurrent flow………………………………………	        75
表 4-7. Dialysis rates in parallel-flow device with   &   
in A-B & B-A type……………………………………………	    76
表 4-8. Dialysis rates in parallel-flow device with   & 
  in A-B & B-A type……………………………………………     77
表 4-9. Dialysis rates in parallel-flow device with   &   
in A-B & B-A type………………………………………………     78
參考文獻
參考文獻
1.Abbas M. and V. P. Tyagi, “Analysis of a Hollow-fibre Artificial Kidney Performing Simultaneous Dialysis and Ultrafiltration,” Chem. Eng. Sci., 42, 133 (1987)
2.A. Kiani, R.R. Bhave and K.K. Sirkar, “Solvent extraction with immobilized interfaces in a microporous hydrophobic membrane,” J. Membrane Sci., 20, 125 (1984)
3.Blatt W. F., A. Dravid, A. S. Michaels and L. Nelson, “ Solute Polarization and Cake Formation in Membrane Ultrafiltration: Causes, Consequences, and Control Techniques,” in Membrane Science and Technique, J. E. Flinn ed., Plenum Press, New York (1970)
4.Bowman R. A., A. C. Mueller and W. M. Nagle, “ Mean Temperature Difference in Design,” Trans, Am. Mech. Engrs., 62 283 (1940)
5.Bruining W. J., “A General Description of Flows and Pressures in Hollow Fiber Membrane Modules,” Chem. Eng. Sci., 44, 1441 (1989) 
6.Colton G. K., L. W. Henderson, C. A. Ford, and M. J. Lysaght, “ Kinetics of Hemodiafiltration. I. In vitro Transprot Characteristics of Hollow-Fiber Blood Ultrafilter,” J. Lab. Clin. Med., 85, 355 (1975) 
7.Cooney D. O., S. S. Kim and E. J. Davis, “ Analysis of Mass Transfer in Hemodialyzers of Laminar Blood Flow and Homogeneous Dialysate,” Chem. Eng. Sci., 29, 1731 (1974)
8.Franco Evangelista, “An Improved Analytical Method for the Design of Spriral-wound Modules,” Chem. Eng. J., 38, 33 (1988)
9.Grimsurd L., and A. L. Bavv, “ Velocity and Concentration Profiles for Laminar Flow of Newtonian Fluid in a Dialyzer,” Chem. Eng. Prog. Ser., 62(66), 20 (1966)
10.Gostoli C., and A. Gatta, “ Mass Transfer in a Hollow Fiber Dialyzer,” J. Membrane Sci. 6, 133 (1980)
11.Isao Noda, Dimabo G. Brown-West and Carl C. Gryte, “Effect of Flow Maldistribution on Hollow Fiber Dialysis-Experimental Studies,” J. Membrane Sci., 5, 209 (1979)
12.Jagannathan R. and U. R. Shettigar, “ Analysis of a Turblar Hemodialyser-Effect of Ultrafiltration and Dialysate Concentration,” Med. & Biol. & Comput. 15, 134 (1977) 
13.Jakob M., “Heat Transfer,” Wiley, New York, 2, 230 (1957) 
14.Joong Kon Park and Ho Nam Chang, “ Flow Distribution in the Fiber Lumen Side of a Hollow-Fiber Module,” AIChE. J., 32 1937 (1986)
15.Lipps B. J. , R. D. Stewart, H. A. Perkins, G. W. Howlmes, E. A. McLain, M. A. Rolfs, and P. D. Oja, “ The Hollow Fiber Artificial Kideny,” Trans. Amer. Soc. Artif, Intern. Organs., 13, 200 (1967)
16.Marcel Mulder, “Basic Principles of Membrane Technology” Kluwer Academic Publishers 
17.Masataka Tanigakc, Tetsuo Shiode, Shinsuke Okumi and Wataru Eguchi, “ Facilitated Transport of Zinc Chloride Through Hollow Fiber Supported Liquid Membrane. Part 3. Module Operation,” Sep. Sci., 30, 877 (1975)
18.Papenfuss H. D., J. F. Gross, and S. T. Thorson, “ An Analytical Study of Ultrafiltration in a Hollow Fiber Artificial Kident,”  AIChE J. , 25, 170 (1979)
19.Pillarella M.R., and Zydney, A.L., “Theoretical Analysis of the Effect of Convective Flow on Solute Transport and Insulin Release in a Hollow Fiber Bioartificial Pancreas,” J. Biornech. Eng., 112, 220 (1990)
20.Popvich R. P., T. G. Christopher and A. L. Babb, “The Effect of Membrane Diffusion and Ultrafiltration Properties on Hemodialyzer Design and Performance,” Chem. Eng. Symp. Ser. 67, 105 (1971)
21.Porter M. C., “Handbook of Industrial Membrane Technology, Noyes Publications,” New Jersey, 175, 1 (1990)
22.Sakai K., ”Determination of Pore Size and Pore Size Distribution 2. Dialysis Membranes,” J. Membrane Sci. 96, 91 (1994)
23.Sikar Kamalesh K., P. L. T. Brian, R. E. Fisher and Lawrence Drensner, “ Salt Concentration at Phase Boundaries in Desalination by Revere Osmosis,” Ind. Eng. Chem. Fundamentals, 4, 113 (1965)
24.Tharakan John P. and Pao C. Chau, “Operation and Pressure Distribution of Immobilized Cell Hollow Fiber Bioreactors,” Bioeng., 28, 1064 (1986)
25.Velde Vandrt C. and E. F. Leonard, “Theoretical Assessment of the Effect of Flow Maldistributions on the Mass Transfer Efficiency of Artifical Orange,” Med. & Biol. Eng. & Comput., 23, 224 (1985)

26.Wakeman J. G., S. Nakao and C. A. Smolders, “ Flux Limitation in Ultrafiltration: Osomtic Pressure Model and Gel Layer Model,” J. Membrane Sci., 20, 115 (1984)
27.Yang Ming-Chien and Cussler, ”Artifical Gills,” J. Membrane Sci., 42, 273 (1989)
28.Yang Ming –Chien and Cussler, “Design Hollow-Fiber contactors,’ AIChE. J., 32, 1910 (1986)
29.Yeh H.M. and Huang C.M., “ Solvent Extraction in Multipass Parallel-Flow Mass Exchangers of Microporous Hollow-Fiber Modules,” J. Membrane Sci., 103, 135 (1995)
30.Yeh H.M., Peng Y.Y. and Chen Y.K., “ Solvent Extraction through a Double-Pass Parallel-Plate Membrane Channel with Recycle,” J. Membrane Sci., 163, 177 (1999)
31.Yeh H.M. and Hsu Yu-Shu, ”Analysis of Membrane Extraction thrugh Retangular Mass Exchangers,” 54, 897 (1999)
32.Yeh H.M. and Chem Y.K., “Membrane Extraction through Cross-Flow Rectangular Modules,” 170, 235 (2000)
33.Yeh H.M. and Chen C.L., Peng Y.Y., Chen C.H., “Effects of Recycle Type on Solvent Extraction Through a Parallel-Plate Membrane Module,” J. Membrane Sci., 183, 109 (2001)
34.Yeh H.M. and Chen C.H., “Recycle effects on solvent extraction through concurrent-flow parallel-plate membrane modules,” J. Membrane Sci., 190, 35 (2001)
35.Yeh H.M. and Hung C.R., Yueh T.Y., “Effect of barrier location on solvent extraction in double-pass parallel-plate membrane modules with recycle,” J. Membrane Sci., 227, 71 (2003)
36.Yeh H.M. and Cheng H.H., Hsieh M.J., “Membrane Extraction through Cross-Flow Rectangular Modules,” Chem. Eng. Sci., 57, 2457 (2002)
37.郭文正和曾添文, “薄膜分離”, 高立圖書公司, 1988
38.蘇志宏, “流動方式對薄膜質傳裝置性能之影響,” 淡江大學化學工程研究所碩士論文, 2001
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信