淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2806200614465700
中文論文名稱 多層彎繞縮小化超寬頻單極天線設計
英文論文名稱 Design of meander miniature monopole antennas in multi-layered FR4 board for ultra wideband application
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 簡上竹
研究生英文姓名 Sang-Zu Chien
學號 693350091
學位類別 碩士
語文別 中文
口試日期 2006-06-15
論文頁數 84頁
口試委員 指導教授-李慶烈
委員-丘建青
委員-楊成發
委員-李慶烈
中文關鍵字 平面  單極天線  超寬頻  縮小化 
英文關鍵字 Planar  Monopole antenna  Ultra wide band  miniature 
學科別分類 學科別應用科學電機及電子
中文摘要 本篇論文探討一符合FCC要求3.1GHz ~ 10.6GHz超寬頻(UWB)單極小天線之設計。前人探討平面式超寬頻單極天線一直受限於H-平面輻射場型不均勻(non-isotropic)的缺點,本研究從簡單方形單極天線的特性分析,衍生出單極天線寬頻匹配的原理,並提出兩個技巧,以完成平面式超寬頻單極天線結構的縮小化設計及改善H-平面輻射場型特性的目的。其一是適當設計gap的形狀以達到寬頻匹配目的,並進一步發展成Triangular型結構以改善H-平面輻射場型;其二則提出將金屬單極多層彎繞使天線同時達成寬頻及縮小化的目的,同時有效的改善H-平面輻射場型的不均勻特性。本研究設計的三種天線實例,在最佳化後,其金屬單極的寬度皆小於10mm,而接地面的寬度皆在20mm左右,比起簡單方形單極天線,新結構的尺寸明顯縮小許多。最後進行天線實作和時域及頻域特性的量測,量測的天線特性包含S參數、系統轉換函數以及時域波形,模擬和量測結果的一致性印證了這些實例的實用性。
英文摘要 The goal of this thesis is to design a compact fully planar antenna that satisfies the ultra wide band (UWB) (3.1GHz~10.6GHz) released by the Federal Communication Committee (FCC). The applicatons of planar UWB monopole antennas are limited due to the non-isotropic property of the H-plane radiation patterns. This research starts with the investigation of the characteristics for a simple square monopole antenna of the planar type, by which the concept of introducing certain parallel capacitance to achieve broadband matching is obtained. Two techniques are proposed to realized the compact design of the planar UWB monopole antennas and to improve the isotropic characteristics of the H-plane radiation patterns.
One technique is to design the gap shape between the monopole and the ground plane to achieve for broadband matching, in addition, a triangular shape for the monopole is employed to improve the isotropic characteristics of the H-plane radiation pattern. The other is to utilize a meander monopole in a multi-layered printed circuit board environment to achieve the goals of the broadband matching and miniaturization, simultaneously. Meanwhile, the characteristics of the H-plane radiation patterns are improved at the same time. Three designs are tested in this research, it is found that, after optimization, the patch widths are all less than 10mm, and the ground widths are all about 20mm. The overall sizes of the new structures are much smaller than that of the simple square monopole antenna. Finally the antenna prototypes are fabricated and the antenna characteristics are measured in both the time domain and the frequency domain. The antenna characteristics measured includes the S parameter, the radiation patterns, the system transfer function and the time domain waveform, etc. The consistency between the simulated results and the measurement results confirm the practicability of these techniques.
論文目次 第一章 序論..........................................1
1.1 簡介..............................................1
1.2 研究目的..........................................1
1.3 論文架構..........................................5
第二章 平面寬頻單極天線設計..........................7
2.1 設計原理分析......................................7
2.2 傳統寬頻天線的演化...............................10
2.3 全平面正方形單極天線初始結構的計算...............12
2.4 天線接地面和金屬貼片的結構參數原理分析...........14
第三章 天線設計與量測...............................26
3.1 設計gap的形狀以達到寬頻匹配的天線結構............26
3.1.1 改善輻射場型的設計方法........................28
3.2 多層彎繞金屬單極(monopole)超寬頻天線之設計......30
3.2.1 一次彎繞(Single meander)結構(兩層金屬)....30
3.2.2 二次彎繞(Double meander)結構(三層金屬)....33
3.3 饋入線看到的有效負載阻抗之比較..................34
3.4 天線輻射場型之量測..............................35
3.5 UWB天線系統 之大小及相位之量測..................36
3.6 時域接收波形(time domain)量測...................37
3.6.1 將接收天線換成新設計的UWB天線的S21接收波形....37
3.6.2 UWB天線系統S21接收波形........................38
3.7 各種類型天線之整體尺寸比較......................39
第四章 結論.........................................79
參考文獻.............................................81
附錄一...............................................84

圖 目 錄
圖1.1 無線通訊技術之(a)頻寬、(b)空間訊息量比較 …6
圖2.1 無窮長偶極圓錐形天線之立體結構………………………17
圖2.2 有限長度h 的偶極圓錐形天線…………………………17
圖2.3 (a)有限長度偶極天線(b)類比成有限長傳輸線…………18
圖2.4 (a) 單極天線(b)圓錐形天線(c)火山煙狀天線之二維結構圖……………………………………………………18
圖2.5 水滴狀天線之二維結構圖…………………………………19
圖2.6 水滴狀天線的演化順序…………………………………19
圖2.7 水滴狀天線的VSWR 之頻率響應..……………………20
圖2.8 水滴狀天線在(a)3GHz(b)6GHz(c)9GHz(d)12GHz 之輻射場型………………………………………………20
圖2.9 平面寬頻天線的演化圖…………………………………21
圖2.10 圓柱體之立體結構,半徑為r、高度為L…………………21
圖2.11 矩形單極微帶天線的二維結構圖………………………22
圖2.12 初始正方形單極天線的結構……………………………22
圖2.13 接地面(ground)微小變動對S11參數之影響………………23
圖2.14 金屬貼片微小變動對S11參數之影響………………………23
圖2.15 初始正方形單極天線在間隙處由饋入線往金屬貼片端看入之
阻抗圖……………………………………………….24
圖2.16 初始正方形單極天線(1)由Feed端看入之|S11|的模擬圖(2)在間隙處由饋入線往金屬貼片端看入之|S11|的模擬圖….……..24
圖2.17 方形單極天線(g=0.7mm)由饋入線看入之Smith chart變化圖……………………………………………………………25
圖2.18 方形單極天線(g=0.7mm)之等效電路模型……………25
圖3.1 Miniature型天線結構……….……………………………40
圖3.2 Miniature型再縮小化(最佳化前)…………………………40
圖3.3 Miniature型再縮小化(最佳化後)………………………41
圖3.4 Miniature型再縮小化(最佳化後)模擬|S11|參數…………41
圖3.5 Triangular型天線結構…………………………………42
圖3.6 Triangular型天線S11模擬及實測比較圖………………42
圖3.7 Triangular型天線由饋入端(AA')看入之S11模擬在Smith Chart上變化圖………………………………………………43
圖3.8 Triangular型天線電流分佈模擬圖(at f=3、4、5、6GHz)…44
圖3.9 Triangular型天線電流分佈模擬圖(at f=7、8、9、10GHz)…45
圖3.10 Triangular型天線結構,截除gap結構中四個特別長的長方
形(虛線部分)……………………………………………46
圖3.11 Triangular型模擬|S11|參數(截除gap結構中四個特別長的長方形)……………………………………………………46
圖3.12 單純折疊型(Folded type) 天線結構圖…………………47
圖3.13 單純摺疊(Folded type)以及在其兩側鑽三孔(Three-hole type)、五孔(Five-hole type)及九孔(Nine-hole type)結構的整體圖…………………………………………………...48
圖3.14 Folded type、Three-hole type、Five-hole type及Nine-hole type|S11|模擬圖……………………………………………49
圖3.15 單純折疊型(Folded type)天線電流分佈模擬圖(at f=3GHz)...50
圖3.16 鑽三孔型(Three-hole type)天線電流分佈模擬圖
(at f=3GHz)………………………………………………50
圖3.17 Three-hole type天線的|S11|模擬及實測圖……………49
圖3.18 Single meander型天線結構圖……………………………51
圖3.19 Single meander型天線S11模擬及實測比較圖……………52
圖3.20 Single meander型天線由饋入端(AA')看入之S11模擬在Smith Chart上變化圖………………………………52
圖3.21 微小變動金屬貼片長度對S11參數之影響………………53
圖3.22 微小變動饋入間隙(Feed Gap)g的大小對 參數之影響…53
圖3.23 Double meander型天線結構圖………………………54
圖3.24 Double meander型天線S11模擬及實測比較圖S11模擬在Smith Chart上變化圖…………………………55
圖3.26 微小變動金屬貼片長度對S11參數之影響………………56
圖3.27 微小變動饋入間隙(Feed Gap)g的大小對S11參數之影響…56
圖3.28 三種天線由饋入端(AA')看到的有效負載之阻抗(Zl)……57
圖3.29 Triangular型天線之E-plane(x-z平面)輻射場型實測(at f=3、4、5、6GHz)………………………………………………58
圖3.30 Triangular型天線之E-plane(x-z平面)輻射場型實測(at f=7、8、9、10GHz)………………………………………….…59
圖3.31 Triangular型天線之H-plane(x-y平面)輻射場型實測(at f=3、4、5、6GHz)………………………………………………60
圖3.32 Triangular型天線之H-plane(x-y平面)輻射場型實測(at f=7、8、9、10GHz)……………………………………………61
圖3.33 Single meander型天線之E-plane(x-z平面)輻射場型實測(at f=3、4、5、6GHz)…………………………………………62
圖3.34 Single meander型天線之E-plane(x-z平面)輻射場型實測(at f=7、8、9、10GHz)………………………………………63
圖3.35 Single meander型天線之H-plane(x-y平面)輻射場型實測(at f=3、4、5、6GHz)………………………………………64
圖3.36 Single meander型天線之H-plane(x-y平面)輻射場型實測(at f=7、8、9、10GHz)………………………………………65
圖3.37 Double meander型天線之E-plane(x-z平面)輻射場型實測(at f=3、4、5、6GHz)………………………………………66
圖3.38 Double meander型天線之E-plane(x-z平面)輻射場型實測(at f=7、8、9、10GHz)………………………………………67
圖3.39 Double meander型天線之H-plane(x-y平面)輻射場型實測(at f=3、4、5、6GHz)………………………………………68
圖3.40 Double meander型天線之H-plane(x-y平面)輻射場型實測(at f=7、8、9、10GHz)………………………………………69
圖3.41 Triangular型、Single meander型及Double meander型的H-plane實測之輻射增益值的比較……………70
圖3.42 金屬貼片(patch)以面對面(face to face)、面對邊(face to side)、邊對邊(side by side)配置的俯視圖(top view)………70
圖3.43 Triangular型S21之大小實測圖……………………………71
圖3.44 Triangular型S21之相位實測圖…………………………71
圖3.45 Single meander型S21之大小實測圖……………………72
圖3.46 Single meander型S21之相位實測圖……………………72
圖3.47 Double meander型S21之大小實測圖……………………73
圖3.48 Double meander型S21之相位實測圖……………………73
圖3.49 P-623號角天線接收波形………………………………74
圖3.50 Triangular型接收波形…………………………………74
圖3.51 Single meander型接收波形……………………………75
圖3.52 Double meander型接收波形……………………………75
圖3.53 Triangular型天線的接收波形圖(以相同天線傳送及接收)..76
圖3.54 Single meander型天線的接收波形圖(以相同天線傳送及接收)………………………………………………………76
圖3.55 Double meander型天線的接收波形(以相同天線傳送及接收)………………………………………………………77
圖3.56 Triangular型、Single meander及Double meander型天線face to face的接收波形比較圖………………………………77

表 目 錄
表一 Miniature型、Triangular型、Single meander型及Double meander型的天線整體寬度(Wa)、整體長度(La)、金屬貼片(patch)寬度(Wp)及長度(Lp)等尺寸的比較表[單位:mm]………………78

參考文獻 [1]賴辰銜,超寬頻平面單極天線的縮小化設計,碩士論文,淡江大學電機工程學系,2005年6月
[2] David G. Leeper, “Wireless Data Blaster”, Scientific American, 2002 May.
[3] Warren L. Stutzman and Gary A. Thiele, Antenna Theory and Design, Second
Edition, John Wiley, New York, 1998.
[4] M. Y. Lu and C. S. Shi, “A High-Quality Ultra-Wideband Omni-Direction Antenna”, Electromagnetic Compatibility Proceedings, 1997 International Symposium on, 21-23 May 1997, pp. 122-125.
[5] John D. Kraus and Ronald J. Marhefka, Antennas For All Applications, Third
Edition, McGraw-Hill, New York, 2002.
[6] D. K. Cheng, Field and Wave Electromagnetics, Second Edition, Addison Wesley,
1989.
[7] T. Taniguchi and T. Kobayashi, “An Omnidirectional And Low-VSWR Antenna for
the FCC-Approved UWB Frequency Band”, Antennas and Propagation Society
International Symposium, 2003. IEEE, Volume: 3,June 22-27, 2003, pp.460-463.
[8] H. Kawakami and G.Sato, “Broadband Characteristics Of Rotationally Symmetric Antennas And Thin Wire Constructs,” IEEE Trans. Antennas Propagat.,vol.AP-35, pp.26-32, Jan.1987.
[9]H. Nakano, N. Ikeda, Y.Wu, R.Suzuki, H.Mimaki,and J. Yamauchi,”Realization Of Dual-Frequency And Wide-Band VSWR Performances Using Normal Helical And Inverted-Fantennas, “IEEE Trans. Antennas Propagat.,vol.46,pp.788-793,June1998.
[10] S. D. Rogers and C. M. Butler, ”Cage Antennas Optimized For Band-Width,” Electron. Lett., vol. 36, no. 11, pp. 932-933,2000.
[11] W. Cho. M. Kanda, H. Hwang, and M. W. Howard,” A Disk-Loaded Thick Cylindrical Dipole Antenna For Validation Of An EMC Test Site From 30 to 300MHz,”IEEE Trans. Electromagn. Compat., VOl. 42, pp. 172-180, May2000.
[12] Zhi Ning Chen, “Novel Bi-Arm Rolled Monopole For UWB Applications” IEEE Transactions on antennas and propagation, vol.53 , no.2 February2005
[13] Zhi Ning Chen, “Broadband Roll Monopole” IEEE Transactions on antennas and propagation, vol.51 , no.11, Novermber 2003
[14] David G. Leeper, “Wireless Data Blaster”, Scientific American, 2002 May
[15] M.J. Ammann, “The Pentagonal Planar Monopole For Digital Mobile Terminal; Bandwidth Considerations And Modeling”, Antennas and Propagation, 2001, 11th International Conference on(IEE Conf. Publ. No. 480), Volume: 1, 17-20 April 2001 Page(s): 82-85. vol.1
[16] J.A. Evans, M.J. Ammann, “Planar Trapezoidal And Pentagonal Monopoles With Impedance Bandwidths In Excess Of 10:1”, Antennas and Propagation Society, 1999. IEEE International Symposium 1999, Volume: 3, 11-16 July 1999 Page(s): 1558-1561
[17] Z.N. Chen, “Impedance Characteristics Of Trapezoidal Planar Monopole Antennas”, Microwave and Optical Technology Letters, 2000, 27, (2), 120-122
[18] M.J. Ammann, Zhi Ning Chen, “Wideband Monopole Antennas For Multi-Band Wireless Systems”, Antennas and Propagation Magazine, IEEE, Volume: 45 Issue: 2, April 2003 Page(s): 146-150
[19] G. Kumar, K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, 2003
[20] M. Hammoud, P. Poey, F. Colombel, “Matching The Input Impedance Of a Broadband Disc Monopole“, Electronics Letters, Volume: 29 Issue: 4, 18 Feb. 1993 Page(s): 406-407.
[21] N. P. Agrawall, G. Kumar, K. P. Ray, “New Wideband Monopole Antennas”, Antennas and Propagation Society International Symposium, 1997Digest, Volume: 1, 13-18July 1997 Page(s): 248-251 Vol.1
[22] N. P. Agrawall, G. Kumar, K. P. Ray, “Wide-Band Planar Monopole Antennas”, Antennas and Propagation, IEEE Transactions on, Volume: 46 Issue: 2, Feb 1998 Page(s): 294-295
[23] L. Desclos, M. Madihian, J. M. Floch, T. Ohsawa, “1.6-6 GHz Optimized Antennas For Indoor Wireless LAN Applications”, Wireless Applications Digest, 1997, IEEE MTT-S Symposium on Technologies for, 23-26 Feb. 1997 Page(s): 39-42
[24] E. Antonino-Daviu, M. Cabedo-Fabres, M. Ferrando-Bataller, A. Valero-Nogueira, “Wideband Double-Ded Planar Monopole Antennas”, Electronics Letters, Volume: 39 Issue: 23, 13 Nov. 2003 Page(s): 1635-1636
[25] P. V. Anob, K. P. Ray, G. Kumar, “Wideband Orthogonal Square Monopole Antennas With Semi-Circular Base”, Antennas and Propagation Society International Symposium, 2001 IEEE, Volume: 3, 8-13 July 2001 Page(s): 294-297 vol.3
[26] Kin-Lu Wong, Yi-Fang Lin, “Stripline-Fed Printed Triangular Monopole”, Electronics Letters, Volume: 33 Issue: 17, 14 Aug. 1997 Page(s): 1428-1429
[27] J. M. Johnson, Y. Rahmat-Samii, “The Tab Monopole”, Antennas and Propagation, IEEE Transactions on, Volume: 45 Issue: 1, Jan. 1997 Page(s): 187-188
[28] J. M. Johnson, Y. Rahmat-Samii, “Wideband Tab Monopole Antenna Array For Wireless Adaptive And Mobile Information Systems Application”, Antennas and Propagation Society International Symposium, 1996. AP-S. Digest, Volume: 1, 21-26 July 1996 Page(s): 718-721 Vol. 1
[29] 林鼎富,印刷式超寬頻天線, 碩士論文,國立交通大學電信工程學系, 2003年6月
[30] 施廷諺,超寬頻單極微帶天線, 專題報告,淡江大學電機工程學系, 2003年11月
[31] Warren L. Stutzman and Gary A. Thiele, Antenna Theory and Design, Second Edition, John Wiley, New York, 1998
[32] M. Y. Lu and C. S. Shi, “A High-Quality Ultra-Wideband Omni-Direction Antenna”, Electromagnetic Compatibility Proceedings, 1997 International Symposium on, 21-23 May 1997, pp. 122-125
[33] D. K. Cheng, Field and Wave Electromagnetics, Second Edition, Addison Wesley, 1989
[34] John D. Kraus and Ronald J. Marhefka, Antennas For All Applications, Third Edition, McGraw-Hill, New York, 2002
[35] T. Taniguchi and T. Kobayashi, “An Omnidirectional And Low-VSWR Antenna For The FCC-Approved UWB Frequency Band”, Antennas and Propagation Society International Symposium, 2003. IEEE, Volume: 3,June 22-27, 2003, pp.460-463
[36] IE3D 7.0, Zeland Software, Inc., Fremont, CA, 2000
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-07-11公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-07-11起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信