§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2806200612213700
DOI 10.6846/TKU.2006.00882
論文名稱(中文) 以基因轉殖法研究單取代釕錯合物對整體蛋白質表現的影響
論文名稱(英文) Total protein expression induced by the gene-transformation of mono-substituted ruthenium complexes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 生命科學研究所碩士班
系所名稱(英文) Graduate Institute of Life Sciences
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 94
學期 2
出版年 95
研究生(中文) 黃柏嘉
研究生(英文) Po-Chia Huang
學號 693290214
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2006-06-06
論文頁數 78頁
口試委員 指導教授 - 鄭建中
委員 - 鄭建中
委員 - 陳灝平
委員 - 陳曜鴻
關鍵字(中) 釕金屬錯合物
凝膠位移法
基因轉殖法
電穿孔法
關鍵字(英) Ruthenium complex
Gel Mobility Shift Assay
Transformation
Electroporation
第三語言關鍵字
學科別分類
中文摘要
以釕金屬錯合物作為抗癌藥物的相關研究,已成為近來熱門的研究方向。由文獻中證實,此類型錯合物對於大腸桿菌亦具有抑制效果
,因此本實驗利用單一取代釕錯合物可鍵結 DNA之特性,以基因轉殖法研究釕錯合物鍵結BL21( DE3 )質體DNA對整體蛋白質表現影響,初步以[Ru(tpy)(bpy)Cl]Cl作為反應物(tpy=2,2',2"-terpyridine;
bpy=2,2'-bipyridyl)。利用限制酵素切割質體DNA使形狀由超螺旋狀轉變為直線狀,而導致電泳速率下降的特性,以Pvu Ⅱ限制酵素與BL21(DE3)之萃取質體作用,選出其中分子大小為3500 bp之質體 DNA作為與釕錯合物鍵結之反應物,並且以凝膠位移法證實釕錯合物與質體DNA的加成,加成物的電泳速率隨釕錯合物濃度增加而呈現階梯狀的降緩趨勢,此情形持續到釕錯合物濃度為10 μM才停止。Ru-DNA加成物以電穿孔基因轉殖方法送入 BL21(DE3)。由於所選用菌種原已具備了Amp r與lac-Z基因所限制,導致無法以藍白菌篩選後,由定序其質體DNA方法鑑定轉殖成敗,故以1.5 %洋菜膠電泳法觀測轉殖前後之核酸變化作為鑑定轉殖的方式。分子大小為14 kb之核酸產物會在
Ru-DNA作用下產生,而不含釕錯合物者則無。轉殖後所表現之整體蛋白質以超音波震盪法破菌取出,以SDS-PAGE進行比對。釕錯合物濃度由0 μM 增加至0.1 μM會導致蛋白質總表現量增加,然而當Ru錯合物濃度再增加至1,10 μM時,蛋白質總表現量反而下降。個別蛋白質差異則以28 kDa與40 kDa兩處蛋白質最為明顯。
英文摘要
Ruthenium complexes have attracted much attention in the development of anti-tumor drugs.Mono-substituted ruthenium complex,[Ru(tpy)(bpy)Cl]Cl(tpy = 2,2,2"-terpyridine;bpy = 2,2'-bipyridyl) have been known to bind with DNA resulting in the inhibition of the growth of Escherichia coli. The inhibition of Escherichia coli means total protein expression is altered. The relation between altered protein and the binding of [Ru(tpy)(bpy)Cl]Cl to DNA is what we would discuss in the article, and this is achieved by transferring the Ru-DNA adduct into Escherichia coli directly. In this article, the plasmid DNA with 2500 bp was extracted from BL21(DE3) and was binded with [Ru(tpy)(bpy)Cl]Cl. Binding condition is checked by gel mobility shift assay, and the Ru-DNA adduct showed decreasing 
electrophoresis mobility when [Ru(tpy)(bpy)Cl]Cl concentration increased from 0 to 10 μM. The Ru-DNA adduct were transferred into BL21(DE3) by electroporation method. 
Total protein induced by the gene-transformation of Ru-DNA adduct is attracted and analyzed by SDS-PAGE. The amount of total protein increased when [Ru(tpy)(bpy)Cl]Cl
concentration is from 0 to 0.1 μM, but decreased from 0.1 to 10 μM. The apparent difference of individual protein expression is on the 28 kD and 40 kD gel band.
第三語言摘要
論文目次
中文摘要...................................................I
Abstract..................................................II
謝誌.....................................................III
目錄...................................................... V
圖表目錄................................................VIII
符號與縮寫表...............................................X
前言.....................................................XII

第一章 簡介...............................................01
   
1-1   金屬錯合物於藥物發展上的應用........................01
1-2   釕錯合物的發展與應用................................05
1-3   核酸與蛋白質表現....................................09
1-4   凝膠位移法(Gel Mobility Shift Assay)................12
1-5   基因轉殖(Gene-transformation).......................18
1-6   抗生素與藍白篩選法..................................24
1-7   實驗目的與策略......................................29

第二章 材料與方法.........................................30
   
2-1   ㄧ般材料............................................30
2-2   儀器設備............................................33
2-3   藥品配置............................................34
2-4   實驗方法............................................37
2-4-1 實驗流程............................................37
2-4-2 E.coli BL21(DE3)培養................................37
2-4-3 E.coli BL21(DE3)質體DNA之純化與限制酵素確認.........38
2-4-4 凝膠位移法檢驗Ru-DNA加成物的形成....................43
2-4-5 電穿孔進行Ru-DNA加成物的基因轉殖....................43
2-4-6 基因轉殖之藍白篩選檢測..............................44
2-4-7 超音波震盪取得釕作用後BL21(DE3)粗萃取物.............48
2-4-8 洋菜膠電泳探討釕錯合物造成的核酸變化................49
2-4-9 SDS-PAGE探討釕錯合物濃度影響蛋白質表現..............49
  
第三章 結果與討論.........................................50

3-1   E.coli(DE3)質體DNA之取得............................50
3-2   萃取質體與pstI,PvuII限制酵素之作用結果..............51
3-3   以核酸電泳速率探討釕錯合物-DNA加成物(adduct)之形成..51
3-4   藍白篩選法與序列分析之結果..........................53
3-5   釕錯合物作用基因轉殖產生14 kb高分子量核酸產物.......54
3-6   E.coli BL21(DE3)整體蛋白質的取得與比較..............54

第四章 結論...............................................57

參考文獻..................................................58

附錄

附錄一 [Ru(tpy)(bpy)Cl]Cl分子結構.........................74
附錄二 pGEMT-T® Easy Vector, pGEM-3Z® Vector.............75
附錄三 QIAGEN Plasmid Midi Kit............................76
附錄四 Vector-NTI 8.0 操作步驟............................77
附錄五 SDS-PAGE 製膠流程..................................78

圖1-1   順鉑(cisplatin)之結構..............................1
圖1-2   cisplatin與DNA-GG-序列的交互連接 (cross-linking)...2
圖1-3   應用於臨床治療之金屬錯合物及結構...................3
圖1-4   進入臨床試驗階段的鉑系金屬錯合物...................4
圖1-5   (a)NAMI與NAMI-A (b)[RuII(η6-arene)(en)X]+.........6
圖1-6   釕錯合物與DNA鍵結模式..............................7
圖1-7   生命表現中心原則(central dogma)....................9
圖1-8   原核生命基因調控示意圖............................10
圖1-9  C5甲基化示意圖....................................11
圖1-10  洋菜膠(Agarose)分子結構...........................13
圖1-11  核酸電泳示意圖....................................14
圖1-12  EtBr分子鍵結核酸示意圖............................15
圖1-13  聚丙烯醯胺凝膠結構與組成..........................16
圖1-14  SDS作用蛋白質示意圖...............................17
圖1-15  氯化鈣基因轉殖法示意圖............................20
圖1-16  電穿孔基因轉殖法示意圖............................21
圖1-17  磷酸雙層構成細胞膜................................22
圖1-18  β-galactosidase作用分解X-gal示意圖...............24
圖1-19  藍白菌篩選法......................................25
圖1-20  T-A選殖法示意圖...................................26
圖1-21  DNA接合酶作用機制.................................28
圖2-1  洋菜膠電泳裝置圖..................................35
圖2-2   SDS-PAGE示意圖....................................36
圖2-3   單一菌落純化方法..................................37
圖2-4   限制酵素切割質體造成電泳速率下滑..................39
圖2-5   BC60 DNA序列示意圖................................45
表1     各濃度洋菜膠電泳適合分離的核酸大小範圍............14
表2     pstI與pvuII之辨識序列.............................40
參考文獻
1.Reedijk*, J., Why Does Cisplatin Reach Guanine-N7 with   
  Competing S-Donor Ligands Available in the Cell? Chemical 
  Reviews 1999, 99, 2499-2510.
2.Rosenberg, B.; Camp, L. V.; Krigas, T., Inhibition of 
  Cell Division in Escherichia coli by Electrolysis 
  Products from a Platinum Electrode.   Nature 1965, 205,   
  698-699.
3.Reedijk*, J., Why Does Cisplatin Reach Guanine-N7 with 
  Competing S-Donor Ligands Available in the Cell? Chemical 
  Reviews 1999, 99, 2499-2510.
4.L.Miessler, G.; A.Tarr, D., Inorganic Chemistry. Second 
  ed.; Prentice Hall.
5.Zhang, C. X.; Lippard, S. J., New metal complexes as 
  potential therapeutics. Current Opinion in Chemical  
  Biology 2003, 7, 481-489.
6.Clarke*, M. J.; Zhu, F.; Frasca, D. R., Non-Platinum 
  Chemotherapeutic Metallopharmaceuticals. Chem. Rev. 1999, 
  99, 2511-2533.
7.Yang, G.; Wu, F. Z.; Wang, L.; Fi, L. N.; Tian, X., Stuty 
  of the Interaction between novel Ruthenium(II)-
  Polypyridyl complexes and Calf thymus DNA. Journal of  
  Inorganic Biochemistry 1997, 66, 141-144.
8.Ji, L.-N.; Zou, X.-H.; Liu, J.-G., Shape- and 
  enantioselective interaction of Ru(II)/Co(III) 
  polypyridyl complexes with DNA. Coordination Chemistry 
  Reviews 2001, 216, 513-536.
9.Chouai, A.; E.Wicke, S.; Turro, C.; Bacsa, J.; Dunbar, K. 
  R.; Wang, D.; Thummel, R. P., Ruthenium(II) complexes of  
  1,12-Diazaperylene and their interactions with DNA. 
  Inorganic Chemistry 2005, 44, 5996-6003.
10.J.Carter, P.; Cheng, C.-C.; Thorp, H. H., Oxidation of 
  DNA and RNA by Oxoruthenium(IV) Metallointercalators:  
  Visualizing the Recognition Properties of  
  Dipyridophenazine by High-Resolution Electrophoresis. J. 
  Am. Chem. Soc. 1998, 120, 632-642.

11.Xu.H; Zheng.KC; Chen.Y; Li.YZ; Lin.LJ; Li.H; Zhang.PX; 
  Ji.LN, Effects of the substitution positions of Br group  
  in intercalative ligand on the DNA-binding behaviors of Ru
  (II) polypyridyl complexes. Journal of Inorganic 
  Biochemistry 2003, 98, 87-97.
12.Y.N. Vashisht Gopal; Konuru, N.; Kondapi*, A. K., 
  Topoisomerase II antagonism and anticancer activity of   
  coordinated derivatives of [RuCl2(C6H6)(dmso)]. Archives 
  of Biochemistry and Biophysics 2002, 401, 53-62.
13.Cheng, C.-C.; Lee, W.-L.; Su, J.-G.; Liu, C.-L., 
  Covalent Interaction of Ru(terpy)(tmephen)Cl+ with DNA: A 
  potential Ruthenium-Based Anticancer Drug. Journal of the 
  chinese Chemical Society 2000, 47, (1), 213-220.
14.Li, H.; Qian, Z. M., Transferrin/Transferrin Receptor-
  Mediated Drug Delivery. Medicinal Research Reviews 2002,  
  22.
15.Xu, H.; Liang, Y.; Zhang, P.; Du, F.; Zhou, B.-R.; Wu, 
  J.; Liu, J.-H.; Liu, Z.-G.; Ji, L.-N., Biophysical 
  studies of a ruthenium(II) polypyridyl complex binding to 
  DNA and RNA prove that nucleic acid structure has 
  significant effects on binding behaviors. J Biol Inorg 
  Chem 2005, 10, 529-538.
16.Hershey, A. D.; Dixon, J.; Chase, A. M., Nucleic Acid 
  Economy In Bacteria Infected with bacteriophage T2. The 
  Journal of general physiology 1953, 6, 777-789.
17.Crick.F, Central dogma of molecular biology. Nature 
  1970, 8258, 561-563.
18.Mark.M.Garner; Arnold.Revzin, A gel electrophoresis 
  method for quantifying the binding of proteins to 
  specific DNA regions: application to components of the 
  Escherichia coli lactose operon regulatory system+. 
  Nucleic Acids Research 1981, 9, 3047.
19.Fried, M.; M.Crothers, D., Equilibria and kinetics of 
  lac repressor-operator interactions by polyacrylamide gel 
  electrophoresis. Nucleic Acids Research 1981, 9, 6505.
20.Reece, R. J., Analysis of Genes and Genomes. WILEY: 2004.
21.Raymond, S.; Weintraub, L., Acrylamide gel as a 
  supporting medium for zone electrophoresis. Science 1959, 
  130, 711.
22.Bishop, D. H. L.; Claybrook, J. R.; Spiegelman, S.,   
  Electrophoretic Separation of Viral Nucleic Acids on 
  Polyacrylamide Gels. J. Mol. Biol. 1967, 26, 373-387.
23.S.N.Cohen; A.C.Y.Chang; L.Hsu.In, Nonchromosomal 
  antibiotic resistance in bacteria: genetic transformation 
  of Escherichia coli by R-factor DNA. Proc. Nat. Acad. 
  Sci. USA 1972, 69, 2110-2114.
24.M.Mandel; A.Higa, Calcium-dependent Bacteriophage DNA 
  Infection. J. Mol. Biol. 1970, 53, 159-162.
25.Xie, T.-D.; Sun, L.; Tsong, T. Y., Study of mechanisms 
  of electric field-induced DNA transfection I:DNA entry by 
  surface binding and diffusion through membrane pores. 
  Biophysical Society 1990, 58, 13-19.
26.Canatella, P. J.; Karr, J. F.; Petros, J. A.; 
  Prausnitz*, M. R., Quantitative Study of Electroporation-
  Mediated Molecular Uptake and Cell Viability. Biophysical 
  Journal 2001, 80, 755-764.
27.Jeff.F.Miller*; William.J.Dowert; Lucy.S.Tompkins*, High-
  voltage electroporation of bacteria: Genetic 
  transformation of Campylobacterjejuni with plasmid DNA. 
  Proc. Nati. Acad. Sci. USA 1988, 85, 856-860.
28.E.Neumann*; M.Schaefer-Ridder; Y.Wang; P.H.Hofschneider, 
  Gene transfer into mouse lyoma cells by electroporation 
  in high electric fields. The EMBO Journal 1982, 1, 841-
  845.
29.Chu, G.; Hayakawa, H.; Berg, P., Electroporation for the 
  efficient transfection of mammalian cells with DNA. 
  Nucleic Acids Research 1987, 15, 1311-1326.
30.A.Ullmann, Complementation in beta-galactosidase: from 
  protein structure to genetic engineering. Bioessays 1992, 
  3, 201-205.
31.Weiss, B.; Richardson, C. C., Enzymatic breakage and 
  joining of deoxyribonucleic acid, i. repair of single-
  strand breaks in DNA by an enzyme system from Escherichia 
  Coli infected with T4 bacteriophaage. Proc. 
  Natl.Acad.Sci.USA 1967, 93, (12), 817-821.
32.J.Timson, D.; Singleton, M. R.; Wigley, D. B., DNA 
  ligases in the repair and replication of DNA. Mutation 
  Research 2000, 460, 301-318.
33.Orvig*, C.; Abrams, M. J., Medicinal Inorganic 
  Chemistry: Introduction. Chem. Rev. 1999, 99, 2201-2203.
34.Mir*, L. M.; Orlowski, S., Mechanisms of 
  electrochemotherapy. Advanced Drug Delivery Reviews 1999, 
  35, 107-118.
35.De-chu Tang*; Devit*, M.; Johnston*, S. A., Genetic 
  immunization is a simple method for eliciting an immune 
  response. Nature 1992, 356, (152-154).
36 Sambrook, J.; Russell, D. W., Molecular Cloning. Third 
  ed.; Cold Spring Harbor Laboratory Press.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信