淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2806200511465800
中文論文名稱 銅/奈米碳管複合材料製造暨磨潤性質
英文論文名稱 Manufacturing and Tribological properties of copper/carbon nanotube composites
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 董育煌
研究生英文姓名 Yu-Huang Tung
電子信箱 692340341@s92.tku.edu.tw
學號 692340341
學位類別 碩士
語文別 中文
口試日期 2005-06-17
論文頁數 83頁
口試委員 指導教授-林清彬
委員-林清彬
委員-林仁輝
委員-朱孝業
中文關鍵字 銅基/奈米碳管複合材料  無電解電鍍銅  磨潤  摩擦係數 
英文關鍵字 Copper/carbon nanotube composite  Electroless plating  Tribology  Friction coefficient 
學科別分類 學科別應用科學機械工程
中文摘要 本研究利用水合原理及無電解電鍍銅製程,成功地將銅鍍在奈米碳管表面上。並利用單向加壓成形及真空高溫燒結下,成功製得銅基/5、10、15及20vol.%奈米碳管複合材料。本研究並探討銅基/奈米碳管複合材料與麻田散鐵化S45C碳鋼(HRC60)進行乾磨耗時,不同奈米碳管含量,滑動速率(1.23m/s、2.45m/s與4.90m/s)及荷重(0.44MPa、0.74MPa與1.03MPa)對銅基/奈米碳管複合材料之磨耗性質影響。實驗結果,摩擦係數隨著奈米碳管含量增加而降低;當奈米碳管含量為10vol.%時,其磨耗率最低。滑動速率增加時,由於滑滯現象的影響加劇,使得摩擦係數與接觸電阻隨著滑動速率增加而上升。荷重增加時,由於滑滯現象減小及犁割與黏著磨耗加重之對磨耗正負面效應影響下,磨潤性質不隨荷重增加有明顯改變。對所有磨耗數據而言,當PV值為1.802時,由於系統發生劇烈振動,造成滑滯現象更為嚴重,導致磨耗率最高;至於PV值對於摩擦係數則無明顯影響。
英文摘要 This study has used successfully the cementation process and the electroless plating method to coat uniformly a copper layer on the surface of carbon nanotube. Then the copper/5, 10, 15 and 20vol.% carbon nanotube composites are made by one-way pressure and vacuum sintering method. The effect of content of carbon nanotube、sliding velocity and load effect on the tribology properties of copper/carbon nanotube composites to Martensitze S45(HRC60) under dry wear are also investigated. The experimental results showed that the friction coefficient increased with decreasing the content of carbon nanotube, which the content of carbon nanotube is 10vol.% can be get the lowest wear rate. The stick-slip effect becomes serious, resulting in the friction coefficient and the contact resistance increased with increasing the sliding velocity. However, tribology properties don’t change apparently with increasing the load because the positive effect of decreasing the stick-slip phenomenon and the negative effect of increasing the plough and adhering wear. For all results, when PV value is 1.802, the wear rate is the highest owing to vibration and stick-slip phenomenon are more serious.
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
總目錄 Ⅲ
圖目錄 Ⅴ
表目錄 Ⅷ
符號說明 Ⅸ
壹、導論 1
1-1 前言 1
1-2 文獻回顧 2
1-2.1金屬基複合材料與製造方法 2
1-2.2纖維強化金屬之磨耗行為 3
1-2.3奈米碳管性質 7
1-2.4奈米碳管複合材料製造 8
1-2.5奈米碳管複合材料之磨耗行為 11
1-3 研究範疇 11
貳、實驗設計 13
2-1實驗設備與材料 13
2-1.1實驗原料 13
2-1.2實驗設備 13
2-2奈米碳管之無電解電鍍銅製程 14
2-3銅基/奈米碳管複合材料製作 15
2-4性質測試 15
2-4.1磨耗測試 15
2-4.2硬度測試 17
2-5磨耗試片觀察 17
參、結果與討論 23
3-1銅基/奈米碳管複合材料製作 23
3-2磨耗參數對磨潤性質之影響 23
3-2.1奈米碳管含量之影響 23
3-2.1.1硬度、磨耗率與摩擦係數 23
3-2.1.2磨耗面、橫斷面與磨屑分析 25
3-2.1.3接觸電阻 28
3-2.2滑動速度之影響 29
3-2.2.1磨耗率 29
3-2.2.2摩擦係數 30
3-2.2.3接觸電阻 31
3-2.3荷重之影響 31
3-2.3.1磨耗率 31
3-2.3.2摩擦係數 32
3-2.3.3接觸電阻 33
3-2.4 PV值之影響 33
3-2.5測試溫度與奈米碳管含量對下試件溫度之影響 34
肆、結論 66
伍、參考文獻 68

圖目錄
圖 2-1奈米碳管鍍銅步驟流程 18
圖 2-2磨耗測試上下試片尺寸規格 19
圖 2-3-1 vane-on-disk 3D構造圖 20
圖 2-3-2 Falex6磨耗試驗機示意圖 21
圖 2-4 Falex-6多功能磨潤試驗機之(a)迴轉試驗機台;(b)訊號擷取與控制裝置 22
圖 3-1(a)奈米碳管無電解電鍍銅前(b)奈米碳管無電解電鍍銅後之顯微結構 35
圖 3-2銅基/奈米碳管複合材料之SEM照片,奈米碳管含量(a)5vol.% (b)10vol.% (c)15vol.% (d)20vol.% 36
圖 3-3銅基/奈米碳管複合材料之EDS分析 37
圖 3-4銅基/奈米碳管複合材料之成長機制 (a)無電解電鍍銅後 (b)兩銅球間相連(c)銅球成長(d)形成網狀結構 38
圖 3-5各種體積百分率之銅基/奈米碳管複合材料磨耗率與奈米碳管含量關係圖 41
圖 3-6各種體積百分率之銅基/奈米碳管複合材料摩擦係數變化圖43
圖 3-7銅基/奈米碳管複合材料與下試件於滑動速率2.45m/s、荷重1.03MPa對磨後之上試片磨耗面SEM照片,奈米碳管含量為(a)0% (b)5% (c)10% (d)15% (e)20% (f)裂縫造成之脆性破壞 44
圖 3-8銅基/奈米碳管複合材料與下試件對磨後之磨耗面EDX分析45
圖 3-9各種體積百分率之銅基/奈米碳管複合材料於滑動速率2.45m/s、荷重0.74MPa之磨耗橫斷面SEM (a)0% (b)5vol.% (c) 10vol.% (d) 15vol.% (e) 20vol.% 46
圖3-10於荷重0.74MPa、滑動速率1.225m/s下,不同奈米碳管含量上試件與HRC60之S45C碳鋼磨耗後下試件OM(a)0% (b)5% (c)10% (d)15% (e)20% 47
圖 3-11銅基/奈米碳管複合材料與S45C碳鋼於滑動速率4.9m/s、荷重0.74MPa下對磨後磨屑SEM照片,奈米碳管含量為(a)0% (b)5% (c)10% (d)15% (e)20% 48
圖 3-12銅基/奈米碳管複合材料之磨屑表面SEM顯微結構照片(a)0%(b)5% (c)10% (d)15% (e)20% 49
圖 3-13各種體積百分率銅基/奈米碳管複合材料於滑動速率1.225m/s、荷重1.03MPa下接觸電阻與時間關係(a)0% (b)5% (c)10% (d)15% (e)20% 50
圖 3-14各種體積百分率奈米碳管複合材料與HRC60之S45C碳鋼於不同滑動速率下,其磨耗率與奈米碳管含量關係 51
圖 3-15在15vol.%、0.44MPa下於不同轉速下磨屑表面之犁割狀態SEM,滑動速率為(a)1.225m/s (b)2.45m/s (c)4.9m/s 52
圖 3-16荷重1.03MPa下,不滑動速率之上試件磨耗面SEM照片,滑動速率為4.9m/s (a)5% (b)10% (c)15%及2.45m/s (d)5% (e)10% (f)15% 53
圖 3-17固定荷重下,不同滑動速率、不同奈米碳管含量之上試件與摩擦係數之關係 54
圖 3-18電解銅於0.44MPa、不同滑動速率下之接觸電阻與時間關係圖(a)1.225m/s (b)2.45m/s (c)4.9m/s 55
圖 3-19 5vol.%奈米碳管複合材料於0.44MPa、不同滑動速率下之接觸電阻與時間關係圖(a)1.225m/s (b)2.45m/s (c)4.9m/s 56
圖 3-20 10vol.%奈米碳管複合材料於0.44MPa、不同滑動速率下之接觸電阻與時間關係圖(a)1.225m/s (b)2.45m/s (c)4.9m/s 57
圖 3-21 15vol.%奈米碳管複合材料於0.44MPa、不同滑動速率下之接觸電阻與時間關係圖(a)1.225m/s (b)2.45m/s (c)4.9m/s 58
圖 3-22 20vol.%奈米碳管複合材料於0.44MPa、不同滑動速率下之接觸電阻與時間關係圖(a)1.225m/s (b) 2.45m/s (c) 4.9m/s 59
圖 3-23在固定滑動速率下,不同荷重之各種體積百分率之銅基/奈米碳管複合材料荷重與磨耗率之關係 60
圖 3-24使用不同荷重之上試件於5vol.%、滑動速率1.225m/s下磨耗面SEM照片(a)0.44MPa (b)0.74MPa (c)1.03MPa 61
圖 3-25 10vol.%奈米碳管複合材料於滑動速率4.9m/s、不同荷重之接觸電阻與時間關係圖,荷重為(a)0.44MPa(b)0.74MPa(c)1.03MPa 62
圖 3-26銅基/奈米碳管複合材料之PV值與磨耗率關係圖 64
圖 3-27銅基/奈米碳管複合材料之PV值與摩擦係數關係圖 66
圖 3-28奈米碳管複合材料於滑動速率2.45m/s、荷重0.74MPa磨耗後溫度變化圖,奈米碳管含量為(a)0% (b) 5% (c) 10% (d) 15% (e) 20% 67
圖3-29 15vol.%奈米碳管複合材料於荷重0.44MPa磨耗後溫度變化圖,滑動速率為(a)1.225m/s (b)2.45m/s (c)4.9m/s 68

表目錄
表 3-1銅基/奈米碳管複合材料與麻田散鐵化之S45C碳鋼平均硬度值 39
表3-2各種體積百分率之銅基/奈米碳管複合材料磨耗率與奈米碳管含量關係 40
表 3-3各種體積百分率銅基/奈米碳管複合材料之摩擦係數變化 42
表 3-4銅基/奈米碳管複合材料之PV值與磨耗率關係 63
表 3-5銅基/奈米碳管複合材料之PV值與摩擦係數關係 65
參考文獻 1.R. R. Hart, B. C. Wonsiewicz and B. Y. Chin, “High Strength Copper Alloys by Thermomechanical Treatments”, Met. Trans. 1 (1970) pp.3163-3172.
2.D. G. Evans, P. L. Morris, R. W. Hains, C. Jowett and P. Achim, “Production Extrusion of AA6061-SiC Metal Matrix Composites”, Alcan, Kingstion (1989).
3.S. K. Biswas and B. N. Pramila Bai, “Dry Wear of AL-Graphite Particle Composites”, Wear, 68 (3) (1981) pp.347-358.
4.S. Muthukumarasamy, A. Guruprasad, A. Sudhakar and S. Seshan, “Performance of zinc alloy based metal matrix composites produced through squeeze casting”, Materials and Manufacturing Processes, 11 (1993) pp.351-366.
5.G. S. Upadhyaya, ”Powder Metaiiurgy, Metal Matrix Composites, an Overview”, Met. Mater. Process, 1 (1989) pp.17-28.
6.Chrysanthou, G. Erbaccio. “Production of Copper-Matrix Composites by In-Situ Processing”, Journal of Materials Science, 30 (1995) p.6339.
7.L. G. Peterson, E. R. Kimml and R. A. Queeney, Powder Met, Int. 5 (1973) pp.65.
8.Jeng-Maw Chiou and D.D.L. Chung, ”Characterization of Metal-Matrix Composites Fabricated by Vacuum Infiltration of a Liquid Metal Under an Inert Gas Pressure”, J. Mater. Sci., 26 (1991) pp.2583-2589.
9.M. K. Aghajanian, J. T. Burke, D. H. White and A. S. Nagelberg, ”A New Infiltration Process for the Fabrication of Metal Matrix Composites”, SAMPE Symposium and Exposition Series, 34 (1989) pp.818-823.
10.Y. B. Liu, S. C. Lim, S. Ray and P. K. Rohatgi, “Friction and Wear of Aluminum-Graphite Composites: The Smearing Process of Graphite During Sliding”, Wear, 159 (2) (1992) pp.201-205.
11.L. Christodoulou, P. A. Parrishand and C. R. Crowe, “XDTM Titanium Auminide Composite in High Temperature/High Performance Composites”, Reno, Nevada, F. D. Lem-key, S. G. Fishman, A. G. Evans and J. R. Stife(eds). MRS, Pittsdurge, (1988) pp.29-34.
12.K. Lee, L. E. Sanchez-cadera, S. T. Oktay and N. P. Soh, AdvancedMater, Pro. 8 (1992) p.31.
13.Chrysanthou, G. Erbaccio, “Production of Copper-Matrix Composites by In-Situ Processing. Journal of Materials Science”, Journal of Materials Science, 30 (1995) p.6339.
14.M. S. Newkirk, A. W. Urguhart, H. R. Zwickerand and E. Breval, “Formation of Lanxide Ceramic Composites Materials”, J. Mat. Res., 1 (1986) 81-89.
15.Yi Feng, Wenfang Wang, et al. “Influence of current density on the friction coefficient of carbon fiber/copper/graphite composite.”, Mater. Mech. Eng., 24 (5) (2000) p.40.
16.A. Martin, J. Rodriguez, J. Llorca, “Temperature effects on the wear behavior of particulate reinforced Al-based composites”, Wear, 225 (1999) pp.615-620
17.Xu Jincheng, Yu Hui, Xia long, Li Xiaolong, Yang Hua, ”Effects of some factors on the tribological properties of the short carbon fiber-reinforced copper composite”, Materials and Design, 25 (2004) p.489.
18.Hui-Hui Fu, Kyung-Seop Han, Jung-Il Song, ”Wear properties of Saffil/Al, Saffil/Al2O3/Al and Saffil/SiC/Al hybrid metal matrix composites”, Wear, 256 (2004) pp.705-713.
19.B. Gurcan, T. N. Bake , ”Wear behaviour of AA6061 aluminium alloy and its composites”, Wear, 188 (1995) pp.185-191.
20.H. Akbulut , M. Durman, F . Yilmaz, “Dry wear and friction properties of δ-Al2O3 short fiber reinforced Al-Si (LM 13) alloy metal matrix composites”, Wear, 215 (1998) 170-179.
21.J. I. Song & K. S. Han, “Effect of volume fraction of carbon fibers on wear behavior of Al/Al2O3/C hybrid metal matrix composites”, composite structures, 39 (3-4) (1997) p.309.
22.G.H. Cao , S.Q. Wu, J.M. Liu Z.G. Liu, “Wear-resistance mechanism of an Al–12Si alloy reinforced with aluminosilicate short fibers”, Tribology International ,32 (1999) p.721.
23.P. D. Warren, T. J. Mackin, A. G. Evans, Design, “analysis and application of an improved push-through test for the measurement of interface properties in composites “, Acta Metallurgica et Materialia, 40 (1992) pp.1243-1249.
24.P. D. Jero, R. J. Kerans, T. A. Parthasarathy, “Effect of interfacial roughness on the frictional stress measured using pushout tests.”, J. Am. Ceram, Soc. ,74 (1991) p.2793.
25.S. Q. Guo, Y. Kagawa, “Characterization of interface sliding damage in a SiC fiber-reinforced Ti-15-3 matrix composite by cyclic fatigue.”, Acta, Mater, 45 (6) (1997) p.2257.
26.S. Q. Wu , H. Z. Wang , S. C. Tjong, “Mechanical and wear behavior of an Al/Si alloy metal-matrix composite reinforced with aluminosilicate fiber”, Composites Science and Technology, 56 (1996) p.1261.
27.T. Alpas and J. D. Embury, “Sliding and Abrasive Wear Behavior of an Aluminum(2014)-SiC Particle Reinforced Composite”, Scr. Metall. ,24 (1990) pp.931-935.
28.T. Alpas, J. Zhang, “Wear rate transitions in cast Al-Si alloys reinforced with SiC particles”, Scripta Metall. Mater., 26 (1992) p.505.
29.J. Zhang, A. T. Alpas, “Wear regimes and transitions in Al2O3 particulate-reinforced Al alloys”, Mater. Sci. Eng. , A 161 (1993) p.273.
30.T. Alpas, J. Zhang, “Effect of microstructure (particulate size and volume fraction) and counterface material on sliding wear resistance of particulate-reinforced aluminum matrix composites”, Metall. Mater. Trans, A 25 (1994) p.969.
31.S. Wilson, A. T. Alpas, “Wear mechanism maps for metal matrix composites”, Wear, 212 (1997) pp.41-49.
32.S.F. Moustafa ,”Wear and wear mechanisms of Al-22%Si/A12O3 composite ”,Wear ,185 (1995) pp.189-195.
33.P. K. Rohatgi, Y. Liu, R. Asthana, “Some issue in the construction of wear mechanism maps for metal matrix composites, in: P. K. Rohatgi, P. J Blau, C. S. Yust(Eds.), Tribology of Composite Material”, ASM International, (1990) p.291.
34.P. K. Rohatgi, Y. Liu, S. C. Lim, “Wear mapping for metal and ceramic matrix composites, in: K. Friedrich(Ed.), Advances in Composites Tribology, Composite Materials Series (B. Pipes, Ser. Ed.), vol. 8”, Elsevier, Amsterdam, 8 (1993) p.291.
35.P. Modi, B. K. Prasad, A. H. Yegnswaran, M. L. Vaidya, ” Dry sliding wear behavior of squeeze cast aluminum alloy-silicon carbide composites”, Mater. Sci. Eng., A 151 (1992) p.235.
36.M. K. Surappa, S. V. Prasad, P. K. Rohatgi, “Wear and abrasion of cast Al-alumina particle composite”, Wear, 77 (1982) p.235.
37.Y. M. Pan, M. E. Fine, H. S. Cheng, “Wear mechanisms of aluminum- based metal matrix composites under rolling and sliding contacts, in: P. K. Rohatgi, C. S. Yust, P. J. Blau(Eds.)”, ASM International, (1990) p.69.
38.P. K. Rohatgi, Y. Liu, S. Ray, “Friction and wear of metal-matrix composites”, ASM Handbook, 18, Friction Lubrication, and Wear Technology, ASM, (1992) p.801.
39.P. Sannino, “Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion”, H. J. Rack, Wear, 189 (1995) pp.1-19.
40.R. L. Deuis, C. subramanina, J. M. Yellup, “Dry sliding wear of aluminum composites-a review”, Compos. Sci. Technol., 57 (1997) p.415.
41.Wang, H. J. Rack, “Dry sliding wear in 2124 Al-SiCw/17-4 PH stainless steel systems” Wear, 147 (1991) p.355.
42.T. Miyajima , Y. Iwai , “Effects of reinforcements on sliding wear behavior of aluminum matrix composites”, Wear, 255 (2003) p.606.
43.Wang AG, Hutching IM, “Wear of Alumina Fibre-Aluminium Matrix Composites by Two-Body Abrasion”, Mater Sci Technol, 5 (1989) p.71.
44.Moustafa SF, ”Wear and wear mechanisms of Al-22%Si/Al2O3f composite.”, Wear, 185 (1999) pp.185-195.
45.Axen N, Alahelisten A, ”Abrasive wear of alumina fiber-reinforced aluminum.” Wear, 173 (1994) pp.95-104.
46.Y. Iwai , T. Honda , T. Miyajima , Y. Iwasaki , M. K. Surappa , J. F. Xu, ” Dry sliding behavior of Al2O3 fiber reinforced aluminum composites”, Composites Science and Technology, 60 (2000) p.1781.
47.S. Cowan and W. O. Winer, Friction, “Frictional Heating Calculations”, ASM Handbook, 18 (1992) p.39.
48.Li, W. Li, X. Zhao and M. Tu, Chengdu University of Science and Technology, China, personal communications, (1992).
49.Razavizadeh abd T. S. Eyre, “Oxidative Wear of Aluminium Alloys”, Wear, 87 (1983) p.261.
50.Goto, M. Ashida and K. Endo, Wear, 116 (1987) p.141.
51.K. Yen and T. Ishihara, “Effect of Humidity on Friction and Wear of Al-Si Eutectic Alloy and Al-Si Alloy-Graphite Composites”, Wear, 198 (1996) pp.169-175.
52.Ma Zongyi, Bi Jing, Lu Yuxiong, Shen Hongwei and Goa Yinuxuan, “Abrasive Wear of Discontinuous SiC Reinforced Aluminum Alloy Composites”, Wear, 148 (1991) pp.287-293.
53.C. Garcia-Cordovilla, J. Narciso and E. Louis, “Abrasive Wear Resistance of Aluminium Alloy/Ceramic Particulate Composites”, Wear, 192 (1996) pp.170-177.
54.Iijima S., “Helical microtubules of graphitic carbon”, Nature, 354 (1991) p.56.
55.R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, “Electronic structure of chiral graphene tubules”, Appl. Phys. Lett. 60 (18) (1992) pp.2204-2206.
56.Mintmire JW, Dunlap BI, White CT. “Are Fullerene Tubules Metallic? ”, Phys Rev Lett , 68 (1992) p.631.
57.Hamada N, Sawada SI, Oshiyama A. “New one-dimensional conductors: Graphitic microtubules”, Phys Rev Lett , 68 (1992) p.1579.
58.Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S, et al. “Large-scale production of single-walled carbon nanotubes by the electric-arc technique.”, Nature 388 (1997) pp.756–758.
59.Rinzler AG, Liu J, Dai H, Nikolaev P, Hu.man CB, Rodriguez- Macias FJ et al., “Large-scale lubrication of single-wall carbon nanotubes: Process, product and characterization.”, Applied Physics A, 67 (1) (1998) pp.29-37.
60.Nikolaev P, Bronikowski MJ, Bradley RK, Fohmund F, Colbert DT, Smith KA et al., “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide.”, Chemical Physics Letters, 313 (1-2) (1999) pp.91-97.
61.Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP et al. “Synthesis of large arrays of well-aligned carbon nanotubes on glass.”, Science, 282 (1998) pp.1105-1107.
62.Ren ZF, Huang ZP, Xu JW, Wang DZ, Wen JG, Wang JH et al. “growth of a single freestanding multiwall carbon nanotube on each nanonickel dot.”, Applied Physics Letters, 75 (8) (1999) pp.1086-1088.
63.N. Hamada, S. Sawada, A. Oshiyama, ”New one-dimensional conductors: Graphitic microtubules”, Phys. Rev. Lett. 68 (1992) pp.1579-1581.
64.J.W. Mintwire, B.I. Dunlap, C.T. White, ”Are fullerene tubules metallic? ”, Phys. Rev. Lett. 68 (1992) pp.631-634.
65.J. Broughton, M.P. Pederson, ”Nanocapillarity in fullerene tubules”, Phys. Rev. Lett. 69 (1992) pp.2689-2692.
66.D.T. Colbert, J. Zhang, M. Mcclures, Nanotubes Sci. 2266 (1994) p.1218.
67.Calvert P. “Nanotube composites-a recipe for strength. ”, Nature, 399 (1999) p.210.
68.Thostenson ET , Ren ZF , Chou TW., “Advances in the science and technology of carbon nanotubes and their composites: a review.” Compos. Sci. Technol. 61 (2001) pp.1899-912.
69.Treacy MMJ, Ebbesen TW, Gibson JM. “Exceptionally high Young`s modulus observed for individual carbon nanotubes. ”, Nature 381 (1996) pp.678-680.
70.Wong EW, Sheehan PE, Lieber CM., “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. ” Science 277 (1997) pp.940-942.
71.Service RF.,” MATERIALS SCIENCE: Superstrong Nanotubes Show They Are Smart, Too”, Science, 281 (1998) pp.940 - 942.
72.Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benpit W, Zuppiroli L., “Mechanical properties of carbon nanotubes.”, Appl Phys , A 69 (1999) pp.255-260.
73.T.W. Ebbersen, Ann. Rev. Mater. Sci., 24 (1994) p.235.
74.M.Q. Liu, M. John, Y. Cowle, Carbon, 32 (1994) p.393.
75.M.M.J.Q. Treacy, T.W. Ebbesen, J.M. Gibson,” Exceptionally high Youngâs modulusobserved for individual carbon nanotubes”, Nature, 381 (1996) pp.678-680.
76.T.W. Ebbesen, P.M. Ajayan, ”Large-scale synthesis of carbon nanotubes”, Nature, 358 (1992) p.220.
77.P. G. Collins, P. Avouris, “Nanotubes for electronics”, Sci. Am., 283 (6) (2000) pp.62-69.
78.M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, “Exceptionally high Youngâs modulus observed for individual carbon nanotubes”, Nature, 381 (1996) pp.678-680.
79.M. R. Falvo, G. J. Clary, “Bending and buckling of carbon nanotubes under large strain”, Nature, 389 (1997) p.582.
80.S. Curran, A. P. Davey, “Evolution and evaluation of the polymer/nanotube composite”, Synth. Met., 103 (1999) p.2559.
81.S. R. Dong, J. P. Tu, X. B. Zhang, “An investigation of the sliding wear behavior of Cu-matrix. composite reinforced by carbon nanotubes”, Mater. Sci. Eng., A313 (2001) 83.
82.A. Peigney, Ch. Laurent, E. Flahaut, A, Rousset, “Carbon nanotubes in novel ceramic matrix composites”, Ceram. Int. 26 (2000) pp.677-683.
83.R. Z. Ma, J. Wu, B. Q. Wei, J. Liang, D. H. Wu, ”Processing and properties of carbon nanotubes–nano-SiC ceramic” , J. Mater. Sci., 33 (1998) pp.5243-5246.
84.S. Rochie, “Carbon nanotubes: exceptional mechanical and electrical properties” , Ann. Chim. Sci. Mater. 25 (2000) pp.529-532
85.E. T. Thostenson, Z. Ren, T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review”, Comp. Sci. Technol. 61(2001) pp.1899-1921
86.K. T. Lau, D. Hui, “The revolutionary of creation advances materials – carbon nanotube composite”, Composite: Part B 33 (2002) pp.263-277.
87.O. Lourie, H. D. Wagner, “Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composite”, Comp, Sci. Technol. 59 (1999) pp.975-977.
88.K. T. Lau, D. Hui, “Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structure”, Carbon 40 (2002) pp.1597-1617.
89.J. M. Howe, Int. Mater. Rev., 38 (1993) p.233.
90.Mortensen and I. Jin., “Solidification processing of metal matrix composites,” International Materials Reviews 37 (1992) p.101.
91.S. Terry and P. Grieveson, “Observations on the Role of Interfacial Phenomena in Materials Processing”, ISIJ. Int. 33 (1993) p.166.
92.Donald R. Askeland, Material Science and Engineering, 3 (1996) pp.105-135.
93.Paul G. Shewmon. ,Diffusion in solids, McGraw-Hill, New York, 1963 pp.1-117.
94.T.W. Ebbesen, H. Hiura, M.E. Bischer, Adv. Mater., 8 (2) (1996) p.155.
95.B.C. Satishkumar, E.M. Vogl, A. Govindaraj, C.N.R. Rao, J. Phys. D: Appl. Phys., 29 (12) (1996) p.3173.
96.R.Q. Yu, L.W. Chen, Q.Q. Liu, J.Y. Lin, K.L. Tan, S.C. Ng, H.S.O. Chan, G.Q. Xu, T.S.A. Hor, Chem. Mater., 10 (3) (1998) p.718.
97.L.M. Ang, T.S.A. Hor, G.Q. Xu, C.H. Tung, S.P. Zhao, J.L.S. Wang, ” Decoration of activated carbon nanotubes with copper and nickel”, Carbon 38 (3) (2000) pp.363-372.
98.I. Kiricsi, Z Konya, K. Niesz, A. A. Koos, P. Biro, “Synthesis procedures for production of carbon nantube junctions”, Proc. SPIE-Int. Soc. Opt. Enf. 5 (118) (2003) pp.280-287
99.Cailu Xu, Gongwei Wu, Zheng Liu, Dehai Wu, Thomas T. Meek, Qingyou Han, “Preparation of copper nanoparticles on carbon nanotubesby electroless plating method”, Materials Research Bulletin, 39 (2004) pp.1499-1505.
100.Susumu Arai, Morinobu Endo, “Carbon nanofiber-copper composite powder prepared by electrodeposition”, Electrochemistry communications 5 (2003) pp.797-799
101.Ho Jung Hwang,Oh-Keun Kwon,Jeong Won Kang, “Copper nanocluster diffusion in carbon nanotube”, Solid State Communications, 129 (2004) p.687.
102.S. Shieu, R. Raj and S. L. Sass, Acta Metall. Mater, 38 (1990) p.2215.
103.S. K. Choi, M. Chandrasekaran and M. J. Brabers, J. Mat. Sci., 25 (1990) p.1957.
104.Y. C. Lu, S. L. Sass, Q. Bai, D. L. Kohlstedt and W. W. Gerberich, Acta Metall. Mater., 43 (1995) p.31.
105.G. Evans, F. W. Zok and I. Davis, Comp. Sci. Tech., 42 (1991)p.3.
106.S. F. Moustafa, “Wear and wear mechanism of Al22%Si/Al2O3 composite”, Wear 185 (1995) pp.189-195.
107.T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu, M. Seki, Mater. Trans., 45 (2) (2004) p.602.
108.Y. Ishida, H. Ichinose, J. Wang, and T. Suga, 46th Annu. Met. Electr. Micros. Soc. of America. Proc., (1998) p.728.
109.W. X. Chen , J. P. Tu , L. Y. Wang , H. Y. Gan , Z. D. Xu , X. B. Zhang, “Tribological application of carbon nanotubes in a metal-based composites coating and composites”, Carbon 41 (2003) pp.215-222.
110. Jinwei Ning , Junji Zhang , Yubai Pan , Jingkum Guo, “Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube”, Materials Science and Engineering A357 (2003) pp.392-396.
111.Dong SR, Tu JP, Zhang XB., “An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotube.”, Mater. Sci. Eng. A313 (2001) pp.83-87.
112.Kuzumaki T, “Miyazawa K, Ichinose H, Ito K. Processing of carbon nanotube reinforced aluminum composite.” J. Mater. Res. 13 (1998) pp.2445-2449.
113.Files BS, Mayeaux BM. Carbon nanotubes. Adv Mater Proc, 156 (1999) pp.47-49.
114.朱孝業,”含固體潤滑劑之鋁基複合材料在往復式運動不同潤滑條件下磨潤性能分析”,國立成功大學機械工程學系博士論文,2001
115. J. Hone, A. Zettl, M. Whitney, Synt., Metals, 103 (1999) pp.2498-2499.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-07-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-07-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信