§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2805200714104000
DOI 10.6846/TKU.2007.00905
論文名稱(中文) 萃取新技術:微米油膜氣泡萃取系統 (CASE)
論文名稱(英文) Compressed air-assisted solvent extraction (CASE) for metal removal
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 蕭世典
研究生(英文) Shin-Tien Hsiao
學號 694330662
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2006-05-14
論文頁數 63頁
口試委員 指導教授 - 李奇旺(chiwang@mail.tku.edu.tw)
委員 - 陳孝行(f10919@ntut.edu.tw)
委員 - 李奇旺(chiwang@mail.tku.edu.tw)
委員 - 李柏青(pclee@mail.tku.edu.tw)
關鍵字(中) Cd(II)
萃取
壓力
氣泡油膜
kerosene
D2EHPA
關鍵字(英) Pressurization
extraction
Cd(II)
D2EHPA
kerosene
第三語言關鍵字
學科別分類
中文摘要
過去眾多的萃取程序都有其缺點,如產生大量金屬污泥、處理時間冗長與使用萃取劑藥量過多…等。尤其是處理低濃度的廢水更為棘手,因為使用混凝沉澱會產生大量且含水量高的汙泥,若使用其他種處理程序也會受限於廢水中金屬濃度過低導致效率下降等的問題。
  本研究氣泡油膜萃取系統(CASE)就是利用將萃取溶劑加壓後釋壓的程序快速且大量的釋放在廢水中,如此ㄧ來可在短時間內,使用少量的萃取溶劑處理大量重金屬廢水的系統,尤其是針對低濃度的金屬污水。這是一個令人興奮且創新的技術,最主要的目的在於希望能透過本系統,在可預見的將來處理重金屬廢水不會再產生大量的重金屬污泥,也無需投入大量萃取劑,最重要的是可以明顯縮短處理重金屬污水上的時間與提升系統濃縮比。
  實驗結果發現氣泡油膜萃取系統(CASE)的確可以在短時間內將低濃度的廢水處理完成,如處理500ml (50ppm)的Cd金屬廢水時,利用CASE系統需使用了溶劑比為5:1的溶劑0.96克,再將pH值調整到6,處理效率變可達到約為95%以上的效果,處理時間不需1分鐘。系統濃縮比可達到高達1042倍,對於過去萃取程序來談這是一個很大的突破。
英文摘要
Compressed air-assisted solvent extraction (CASE) was developed to generate micro-sized solvent-coated air bubbles (5~30μm) which were  employed for metal extraction. Through pressurization of solvent (mixtures of extractant and diluent) with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, micro- sized solvent-coated air bubbles were generated instantaneously  creating enormous surface area between solvent and aqueous phases.
    Applied the proposed process for Cd(II) removal from wastewater (Cd=100mg l-1) and can be achieved with aqueous/solvent weight ratio  ratio of 1042 and extraction time of less than 60 sec with solvent having D2EHPA/kerosene weight ratio of 5:1. 
     CASE is a efficient systematic for dispose of wastewater.Making extraction process extremely fast and achieving very high aqueous/solvent weight ratio
第三語言摘要
論文目次
目錄
第一章 序論....................................................................................................1
第二章 文獻記載與比較................................................................................4
2.1傳統去除水中金屬方法文獻......................................................................4
2.1.1 混凝......................................................................................................4
2.1.2 萃取......................................................................................................5
2.1.3 SLM(supported liquid membranes)去除法..........................................6
2.1.4 氣泡輔助萃取劑浮除金屬(air-assisted solvent extraction; AASX).10
第三章 實驗材料與方法..............................................................................13
3.1 實驗設計.................................................................................................13
3.1.1 反應時間對於去除效率的影響........................................................13
3.1.2 pH值對系統的影響............................................................................15
3.1.3 不同extractant與solvent的比例下的等溫吸附曲線........................15
3.1.4 氣體溶入量........................................................................................16
3.1.5 不同比例下的氣泡大小、數量、油膜厚度....................................18
3.1.6 不同壓力下對去除率之影響............................................................19
3.1.7 模擬萃取系統與比較........................................................................20
3.1.8 萃取溶劑溶入之影響........................................................................22
3.2 研究想法與重心.......................................................................................23
3.3 實驗材料...................................................................................................24
3.3.1 金屬廢水與溶劑配製........................................................................24
3.3.2實驗藥材.............................................................................................25
3.4 實驗設備:...............................................................................................26
3.4.1 實驗系統............................................................................................26
3.4.2 分析儀器與方法................................................................................30
第四章 結果與討論......................................................................................32
4.1 PH值對系統的影響.................................................................................32
4.2 反應時間對系統之影響...........................................................................34
4.3 不同EXTRACTANT與SOLVENT的比例下的等溫吸附曲線........................35
4.4 模擬萃取系統與比較...............................................................................41
4.5 油泡大小、氣體溶入量、油泡數量與油膜厚度之間的關係...............45
4.6 不同壓力下氣體溶入溶劑之影響...........................................................53
4.7 萃取溶劑融入之影響...............................................................................55
4.8 系統中建議操作參數...............................................................................58
第五章 結論與建議......................................................................................60
第六章 參考文獻..........................................................................................61
圖目錄
圖 1、Cd在水中的比重圖............................................................................5
圖 2、SLM的去除機制...............................................................................7
圖 3、(a)平板式液態薄膜示意圖(Reproduced from (Di Luccio et al., 2000))以及(b)中空纖維液態薄示意圖(Reproduced from http://www.nanya.edu.tw)......................................................................7
圖 4、氣泡輔助extraction浮除金屬裝置[3].............................................12
圖 5、特殊收集氣體玻璃瓶......................................................................18
圖 6、反應槽示意圖..................................................................................26
圖 7、高壓鋼瓶裝置圖..............................................................................27
圖 8、實際高壓鋼瓶圖..............................................................................27
圖 9、Stirred Ultrafiltration Cell(摘自Millipore 公司).......................28
圖 10、CASE實驗流程圖.........................................................................29
圖 11、模擬萃取實驗流程圖....................................................................30
圖 12、原子吸收光譜Cd檢量線...............................................................31
圖 13、extractant釋放在水樣前後之pH值變化.......................................33
圖 14、不同的pH值對去除率的影響.......................................................33
圖 15、不同時間對去除率的影響............................................................35
圖 16、同ㄧ溶劑在不同時間對去除率的影響........................................35
圖 17、extractant與solvent的比例為5:1之等溫吸附曲線。.................37
圖 18、extractant與solvent的比例為1:1之等溫吸附曲線。.................37
圖 19、extractant與solvent的比例為1:10之等溫吸附曲線。...............38
圖 20、extractant與solvent的比例為1:30之等溫吸附曲線。...............38
圖 21、extractant與solvent的比例為1:40之等溫吸附曲線。...............39
圖 22、萃取溶劑在不同比例下之等溫吸附曲線比較圖。....................39
圖 23、萃取溶劑比例為1:10之等溫吸附曲線(高濃度金屬廢水反應)40
圖 24、萃取溶劑比例為5:1與1:10之等溫吸附曲線比較圖(高濃度金屬廢水反應)............................................................................................41
圖 25、100rpm、200rpm轉速下模擬萃取隨時間的去除率...................42
圖 26、不同溶劑比例下模擬萃取實驗....................................................43
圖 27、油膜萃取系統(左)與模擬萃取實驗(右)澄清比較圖-(a)剛靜置、(b)靜置1小時、(c)靜置1.5小時、(d)靜置16小時...........................44
圖 28、油膜萃取系統(左)與模擬萃取實驗(右)澄清比較圖-(a)靜置1天、(b) 靜置2天、(c)靜置3天..............................................................44
圖 29、溶劑比1:10下油泡圖(a)1atm、(b)3atm、(c)5atm、(d)乳化油粒..............................................................................................................46
圖 30、溶劑比5:1下油泡圖(a)1atm、(b)3atm、(c)5atm、(d)乳化油粒..............................................................................................................46
圖 31、溶劑比1:40下油泡圖(a)1atm、(b)3atm、(c)5atm、(d)乳化油粒..............................................................................................................47
圖 32、5atm下噴出油泡圖(a) 溶劑比5:1、(b) 溶劑比1:1、(c) 溶劑比
1:40......................................................................................................47
圖 33、不同壓力對去除率的影響............................................................54
圖 34、加壓1atm (左)、3atm(中)、5atm(右)下的靜置(a)剛靜置、(b)靜置30分鐘、(c)靜置4小時後情形...................................................55
圖 35、不同時間下kerosene與萃取溶劑的溶入情形.............................56
圖 36、Kerosene與各萃取溶劑比例下的溶入情形................................58
圖 37、水中萃取劑量與COD之關係圖...................................................58
表目錄
表 1、SLM研究比較表...............................................................................9
表 2、各種萃取溶劑比的比例與比重表..................................................24
表 3、藥品清單資料..................................................................................25
表 4、乳化油粒與1:40萃取溶劑產生油泡比較表................................48
表 5、氣體融入萃取溶劑表......................................................................49
表 6、不同比例下的推估油泡數..............................................................50
表 7、不同溶劑比下莫耳通量推估表......................................................51
表 8、不同溶劑比下0.1μm厚度內總D2EHPA量推估表........................52
表 9、抽濾與掃流對於去除率的影響......................................................56
參考文獻
[1] 高文弘, and 周賢夢譯著 界面化學. 國興出版社 1983:66-67.

[2] Molinari, R, Argurio, P, and Pirillo, F Comparison between stagnant sandwich and supported liquid membranes in copper(II) removal from aqueous solutions: flux, stability and model elaboration. Journal of Membrane Science 2005;256:158-168.

[3] Tarkan, HM, and Finch, JA Air-assisted solvent extraction: towards a novel extraction process. Minerals Engineering 2005;18:83-88.

[4] Bodzek, Ml, Korus, I, and Loska, K Application of the hybrid complexation-ultrafiltration process for removal of metal ions from galvanic wastewater. Desalination 1999;121:117-121.

[5] Rovira, M, and Sastre, AM Modelling of mass transfer in facilitated supported liquid-membrane transport of palladium(II) using di-(2-ethylhexyl) thiophosphoric acid. Journal of Membrane Science 1998;149:241-250.

[6] He, D, Luo, X, Yang, C, Ma, M, and Wan, Y Study of transport and separation of Zn(II) by a combined supported liquid membrane/strip dispersion process containing D2EHPA in kerosene as the carrier. Desalination 2006;194:40-51.

[7] Rodríguez, M, González-Muñoz, MJ, Luque, S, Alvarez, JR, and Coca, J Extractive ultrafiltration for the removal of carboxylic acids. Journal of Membrane Science 2006;274:209-218.

[8] Silva, A, Delerue-Matos, C, and Fiuza, A Use of solvent extraction to remediate soils contaminated with hydrocarbons. Journal of Hazardous Materials 2005;124:224-229.

[9] Ndungu, K, Hurst, MP, and Bruland, KW Comparison of copper speciation in estuarine water measured using analytical voltammetry and supported liquid membrane techniques. Environmental Science and Technology 2005;39:3166-3175.

[10] Arous, O, Gherrou, A, and Kerdjoudj, H Removal of Ag(I), Cu(I1) and Zn(I1) ions with a supported liquid membrane containing cryptands as carriers. Desalination 2004;161:295-303.

[11] Leon, G, and Guzman, MA Kinetic study of the effect of carrier and stripping agent concentrations on the facilitated transport of cobalt through bulk liquid membranes. Desalination 2005;184:79.

[12] Zaghbani, A, Tayeb, R, Bonnamour, I, Felix, C, Vocanson, F, Lamartine, R, Dhahbi, M, and Seta, P Affinity membranes for the extraction of Cd2+ metal ions by facilitated transport ensured by a new thiacalix[4]arene complexing agent incorporated in supported liquid membranes (SLM). Journal of Membrane Science 2005;258:5.

[13] Van de Voorde, I, Pinoy, L, and De Ketelaere, RF Recovery of nickel ions by supported liquid membrane (SLM) extraction. J. Membrane Sci. 2004;234:11-21.

[14] Swain, B, Sarangi, K, and Das, RP Effect of different anions on separation of copper and zinc by supported liquid membrane using TOPS-99 as mobile carrier. J. Membrane Sci. 2004;243:189-194.

[15] Fu, SS, Teramoto, M, and Matsuyama, H Uphill Transport of Ce(III) by Supported Liquid Membranes Containing Octyl(Phenyl)-N,N-diisobutylcarbamoylmethylphosphine Oxide in 2-Nitrophenyl Octyl Ether. Sep. Sci. Technol. 2004;39:517-538.

[16] Bukhari, N, Chaudry, MA, and Mazhar, M Cobalt(II) transport through triethanolamine-cyclohexanone supported liquid membranes. J. Membrane Sci. 2004;234:157-165.

[17] Valenzuela, F, Basualto, C, Tapia, C, and Sapag, J Application of hollow-fiber supported liquid membranes technique to the selective recovery of a low content of copper from a Chilean mine water. J. Membrane Sci. 1999;155:163-168.

[18] Tarkan, HM, and Finch, JA Foaming properties of solvents for use in air-assisted solvent extraction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005;264:126-132.

[19] Rane, MV, Sadanandam, R, Bhattacharya, K, Tangri, SK, and Suri, AK Use of mixed-metals isotherm and log-log McCabe Thiele's diagram in solvent extraction-A case study. hydrometallurgy 2006;81:1-8.

[20] Vlyssides, AG, Mai, ST, and Barampouti, EMP Bubble Size Distribution Formed by Depressurizing Air-Saturated Water. Ind. Eng. Chem. Res. 2004;43:2775-2778.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信