淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2803201314344800
中文論文名稱 利用毛細管電泳及MALDI-TOF mass研究幾丁聚醣之降解反應
英文論文名稱 Study of degradation reaction of chitosan by capillary electrophoresis and MALDI-TOF mass
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 101
學期 1
出版年 102
研究生中文姓名 張國書
研究生英文姓名 Kuo-Shu Chang
學號 698160370
學位類別 碩士
語文別 中文
口試日期 2013-01-14
論文頁數 109頁
口試委員 指導教授-吳俊弘
委員-陳灝平
委員-施增廉
中文關鍵字 幾丁聚醣 
英文關鍵字 Chitosan  Degradation  CE  MALDI 
學科別分類 學科別自然科學化學
中文摘要 本論文以毛細管電泳(CE)技術分別建立測量幾丁聚醣的去乙醯化程度(DDA)和分子量(Mv)的校正曲線。在測量不同DDA(26%~95%)幾丁聚醣樣品於不同濃度(25 mM~1.6 M) 毛細管電泳緩衝溶液(tris-phosphate buffer, pH = 2.00)中的電泳遷移率(μ)時,我們發現,由CE所建構的μ對DDA(NMR測量值)校正曲線在樣品之高DDA範圍(55%~95%)和低DDA範圍(26%~ 55%)有不同的線性關係,而隨著緩衝溶液濃度提高,兩線性漸趨一致,在毛細管電泳緩衝溶液達1.5 M時,兩段DDA範圍(26%~95%)即呈一線性關係。另外,毛細管電泳圖的UV吸收峰(200 nm)訊號之半高寬(W1/2, DDA)代表樣品的DDA分布情形,我們發現將樣品進行依我們所設計的去乙醯化反應,再經乙醯化反應後,可得到較小分布但DDA不變的樣品。而毛細管電泳快速和微量分析的特性,更有利於我們探討幾丁質和幾丁聚醣的去乙醯化反應之動力學。
我們也利用CE測量幾丁聚醣樣品的黏度,以Mark-Houwink equation計算其極限黏度分子量(Mv),再測量不同Mv幾丁聚醣在毛細管凝膠電泳(CGE, 分離介質為0.3% PEO in 100 mM tris-phosphate buffer, pH = 2.00)中的電泳遷移率,建立Log(μ)對Mv的校正曲線。據此,我們探討了以過硫酸鉀(potassium persulfate, KPS)為主的化學裂解法,和以胃蛋白酶(pepsin)、脂解酶(lipase )、和胰蛋白酶(trypsin)為主的酵素消化法,對於幾丁聚醣分子量降解反應的影響。
除了以CE分析幾丁聚醣降解後的多醣產物,我們也使用MALDI-TOF MS偵測分子量降解後的幾丁寡醣產物。根據MALDI所測得的質譜圖和數據,我們可以分析降解產物的單體組成,並比較不同降解方法所得產物的異同。
英文摘要 In this thesis, we used capillary electrophoresis (CE) technique to establish the respective calibration curves for the measurements of degree of deacetylation (DDA) and molecular weight (Mv) for chitosan samples. When measuring the electrophoretic mobility (μ) of chitosan samples with DDA values ranging from 26% to 95% in CE run buffers (tris-phosphate buffer, pH = 2.00) of various concentrations (25 mM~1.6M), we found that the μ-versus-DDA (NMR measured) calibration curves possess different linearity in the higher DDA region (55%~95%) and in the lower DDA region (26%~55%). Moreover, the linearity of the two regions gradually approach to each other with increasing buffer concentrations, and finally become one linear relation in the DDA range of 26%~95% when raising the CE buffer concentration up to 1.5 M. In addition, the UV absorption peak (at 200 nm) width at half maximum (W1/2, DDA) in the CE electropherogram enable us to obtain the DDA distribution in the chitosan samples. We found that chitosan with unchanged DDA but narrower DDA distribution can be generated by designed deacetylation and acetylation reactions. The high efficiency and microanalysis features of our CE based method also facilitate the kinetic studies of the deacetylation reactions for chitin and chitosan samples.
We also used CE to measure the viscosity of the chitosan samples so as to calculate the intrinsic-viscosity defined molecular weight (Mv) by the Mark-Houwink equation, and to establish the Log(μ)-versus-Mv calibration curve by measuring the electrophoretic mobility of chitosan samples with varied Mv’s in capillary gel electrophoresis (CGE, with separation medium of 0.3% PEO in 100 mM tris-phosphate buffer, pH = 2.00). By using the CGE technique we were able to study the Mv degradation reactions of chitosan by the chemical degradation method, which is mainly initiated by potassium persulfate (KPS), and by the enzymatic digestion approach, which is based on the biological enzymes such as pepsin, lipase, and trypsin.
Besides CE, we also used MALDI-TOF mass to detect the chitooligosaccharide product of the chitosan degradation reaction. According to the MALDI-TOF mass spectrums and data, we can analyze and make a comparison among the monomer compositions of the chitooligosaccharide obtained from the abovementioned different fragmentation methods.
論文目次 第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3幾丁質、幾丁聚醣簡介 3
1.3.1幾丁質、幾丁聚醣特性 3
1.3.2幾丁質與幾丁聚醣的製備 4
1.3.3幾丁聚醣的去乙醯化程度之測定 6
1.3.4 測定分子量 .........................................................7
1.4降解幾丁聚醣酵素之介紹..............................................8
1.5 毛細管電泳簡介............................................................9
1.5.1毛細管電泳簡介 9
1.5.2毛細管電泳的分離原理 9
1.5.3毛細管電泳的分離方法 10
1.6基質輔助雷射脫附游離質譜法(MALDI-TOF/MS)
簡介 ...............................................................................12
1.6本章參考資料 14
第二章 實驗 18
2.1實驗藥品 18
2.2實驗條件及步驟 21
2.2.1毛細管電泳儀 21
2.2.2毛細管處理 22
2.2.3緩衝溶液配置 23
2.2.4以毛細管電泳測量之條件步驟 ..24
2.2.5利用核磁共振法測量幾丁聚醣之去乙醯化程度 33
2.2.6利用MALDI-TOF MS測量幾丁寡醣………..34
2.3實驗樣品備製 37
2.3.1幾丁聚醣之去乙醯化反應 37
2.3.2幾丁聚醣之乙醯化反應 37
2.3.3幾丁聚醣之降解反應 39
2.4本章參考文獻 42
第三章 結果與討論 43
3.1幾丁聚醣去乙醯化程度 43
3.1.1緩衝溶液濃度對去乙醯化校正曲線的影響…..43
3.1.2幾丁聚醣去乙醯化反應動力學 ………………52
3.1.3幾丁質去乙醯化反應動力學………………… .55
3.1.4 不同去乙醯化幾丁聚醣混合物的測量 ...........59
3.1.5測量實際幾丁聚醣藥品......................................61
3.1.6 幾丁聚醣去乙醯化再乙醯化反應.....................64
3.2 幾丁聚醣之分子量校正曲線........................................72
3.2.1 建立幾丁聚醣分子量校正曲線.........................72
3.2.2 不同濃度polymer buffer對校正曲線影響.......78
3.3 幾丁聚醣降解反應....................................................... 82
3.3.1 KPS降解條件..................................................... 82
3.3.2 幾丁聚醣KPS降解反應動力學.........................88
3.3.3 酵素降解幾丁聚醣條件探討 ...........................92
3.4 MALDI-ToF-MS測量幾丁聚寡糖..............................96
3.5 結論............................................................................106
3.6 參考文獻......................................……………………108
參考文獻 1. Ban, E.; Choi, O. K.; Ryu, J. C.; Yoo, Y. S., “ Capillary electrophoresis
of high-molecular chitosan: the natural carbohydrate biopolymer ”,
Electrophoresis, 2001, 22, 2217-2221.
2.曾詩穎 淡江大學 化學學系碩士班 2010.
3. Schatz, C.;Viton, C.;Delair, T.; Pichot, C.; Domard, A., “ Typical
physicochemical behaviors of chitosan in aqueous Solution ”,
Biomacramolecules, 2003, 4, 641-648.
4. Sorlier, P.;Viton, C.;Domard, A., “ Relation between solution
properties and degree of acetylation of chitosan: role of aging ”,
Biomacromolecules, 2002, 3, 1336-1342.
5. Qun, G.; Ajun, W., “ Effects of molecular weight, degree of acetylation
and ionic strength on surface tension of chitosan in dilute solution ”,
Carbohydrate Polymers, 2006, 64, 29-36.
6. Schatz, C.; Pichot, C.; Delair, T.; Viton, C.; Domard, A., “ Static light
scattering studies on chitosan solutions: from macromolecular
chains to colloidal dispersions ”, Langmuir, 2003, 19, 9896-9903.
7. Zoldners, J.; Kiseleva, T.; Kaiminsh, I., “Influence of ascorbic acid on the stability of chitosan solutions”, Carbohydrate Polymers, 2005, 60, 215-218.

8. Kumar, A. B. Vishu; Tharanathan, R. N. “A comparative study on depolymerization of chitosan by proteolytic enzymes”, Carbohydrate Polymers, 2004, 58, 275-283.
9. Roncal, Tomas; Oviedo, Alberto; Lopez de Armentia, Iratxe; Fernandez, Laura; Villaran, M. Carmen. “High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan”, Carbohydrate Reserch, 2007, 342, 2750-2756.
10. Zhu, Li-Ying; Lin, Dong-Qiang; Yao, Shan-Jing. “Biodegradation of polyelectrolyte complex films composed of chitosan and sodium cellulose sulfate as the controllable release carrier”, Carbohydrate Polymers, 2010, 82, 323-328.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-04-08公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-04-08起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信