淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2802201805435600
中文論文名稱 以整合性科技接受模式及沉浸理論探討警員使用數位學習平台之使用意圖
英文論文名稱 An investigation of Police’s Behavioral Intention to Use e-Learning by combination of UTAUT and Flow Theory
校院名稱 淡江大學
系所名稱(中) 教育科技學系碩士班
系所名稱(英) Department of Educational Technology
學年度 106
學期 1
出版年 107
研究生中文姓名 鄒乙菁
研究生英文姓名 Yi-Jing Zou
學號 600730229
學位類別 碩士
語文別 中文
第二語文別 中文
口試日期 2018-01-11
論文頁數 82頁
口試委員 指導教授-鍾志鴻
委員-卓美秀
委員-賴婷鈴
中文關鍵字 警員  數位學習  整合性科技接受理論  沉浸理論  偏最小平方法結構方程式模組 
英文關鍵字 Police officer  e-Learning  UTAUT  Flow Theory  PLS-SEM 
學科別分類 學科別社會科學教育學
中文摘要 隨著科技進步與發達,使得資訊的取得被迅速廣為運用,警政機關倘能有效結合新資訊通訊科技改良數位學習平台,定能提升警察的專業知識及增加執法效能,因此了解什麼因素會影響警員去接受此學習模式,是推動數位學習的關鍵步驟。本研究以整合科技接受理論及沉浸理論為架構基礎,以警員在數位學習平台正面使用意圖(正面態度)與整合科技接受模式變項(績效預期、付出預期、社會影響)及沉浸理論變項(熟悉技巧、參與度)彼此之間的差異情形,來瞭解警員對數位學習平台的使用意圖之調查,並採用探索性因素分析(EFA)及偏最小平方法結構方程式模組(PLS-SEM)進行統計分析。以基隆市政府警察局各分局、總局、派出所等分隊共20個駐點為主要調查對象,採取分層隨機抽樣,有效問卷數162份。經統計分析後之結果得出以下結論:

1.警員在警政業務的績效對數位學習平台的正向使用意圖之間有相關性。
2.警員對於數位學習平台的容易操作程度;以及受周遭人影響使用數位學習平台雖然較不相關,但對平台皆持有正面使用意圖。
3.警員具有足夠的資訊運用能力去使用數位學習平台,則使用的成效顯示正相關,故可給予合適的資訊教育訓練來提升熟悉技巧。
4.警員對警政業務的資訊需求會依賴數位學習平台的交流,當平台建立正向資訊系統是提升警員主動參與的關鍵因素。

本研究依據以上結論提出給教學設計師在規劃警員數位課程內容時,有實務上的建議。
英文摘要 Information acquirement is applied rapidly and widely by technology progress. Therefore, it is essential to consider some factors that can be used to design a set of digital learning platforms enhancing police officers' performance. This study is based on the theory of integration of science and technology and the theory of immersion. Based on the difference among the positive intention (positive attitude) of police officers in the digital learning platform and the acceptance of modalities (performance expectancy, effort expectancy, involvement) and immersion theory variables (skill, participation) for police officers to understand the intentions of them on the use of digital learning platform. Exploring Factor Analysis (EFA) and partial least squares structural equation (PLS-SEM) were used to analyze the results. Regarding Keelung Municipal Government Police Departments, branches, police stations and other divisions as the main survey of 20 stations, take stratified random sampling, 162 valid questionnaires. After counting and analyzing reached the following conclusions:

1. There is a correlation between the performance of police officers in policing services and the intended use of digital learning platforms.
2. The ease of operation of the digital learning platform for police officers is less relevant to surround people to use it, but all of them keep positive using experience.
3. The information requirement of policing business for police officers is dependent on the exchange of digital learning platform. The key factor is that enhance the active participation of police officers when positive using experience is established by platform.
4. If police officers have sufficient information abilities, it will use more high-effective of the digital learning platform. Therefore, it is a way to enhance familiarity skills by gave appropriate information education training.

Based on the above conclusion, there are some practical suggestions to the teaching designer when planning the digital course content of police officers.
論文目次 目錄
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與待答問題 5
第三節 名詞釋義 7
第四節 研究範圍與限制 9
第二章 文獻探討 10
第一節 警察數位學習平台相關研究 10
第二節 整合性科技接受模式 15
第三節 沉浸理論 27
第四節 偏最小平方法結構方程式模組 38
第三章 研究方法 40
第一節 研究架構 40
第二節 研究假說 42
第三節 研究設計與工具 43
第四節 研究對象與抽樣 48
第五節 資料分析方法 50
第四章 研究結果 52
第一節 描述性統計 52
第二節 信度效度分析 54
第三節 探索性因素分析 56
第四節 PLS-SEM分析 59
第五章 研究結論與建議 62
第一節 研究結論 62
第二節 研究建議 66
參考文獻 69
附錄一 警員使用數位學習平台使用意圖之調查問卷 80

表目錄
表2-1 數位學習界定彙整表 11
表2-2 沉浸理論的定義 28
表3-1 本研究問卷各構面題項 47
表4-1 樣本交叉分析統計結果 53
表4-2 轉軸後因子矩陣表 55
表4-3 探索性因素分析整體適配度結果 56
表4-4 探索性因素分析結果 57
表4-5 Bootstrap分析結果 58
表4-6 各構面之α值、CR值與AVE值整理表 59
表4-7 本研究各項假設結果 61

圖目錄
圖2-1 理論行為理論模型 16
圖2-2 計劃行為理論模型 18
圖2-3 科技接受模型 20
圖2-4 使用者接受模式基礎概念 21
圖2-5 整合性科技接受模式(UTAUT)架構 22
圖2-6 原始的沉浸模型 30
圖2-7 八個沉浸模型 31
圖2-8 八個沉浸模型 31
圖2-9 Novak et al. (2000)之沉浸概念模型簡化版 33
圖2-10 PLS 路徑模型示意圖 39
圖3-1 研究架構圖 41
圖3-2 本研究流程圖 44
圖4-1 全部樣本PLS路徑分析結果 60
參考文獻 一、中文文獻
王淑芬(2012)。公部門推行數位學習之研究-以交通部鐵路改建工程局為例。(未出版之碩士論文)。中華大學碩士在職專班,新竹。
世界經濟論壇World Economic Forum. WEF(2017)。發表「2016-2017年全球競爭力報告」。2016年9月28日,取自2017/05FullReport/TheGlobalCompetitivenessReport2016-2017_FINAL.pdf
江義平、賴欣怡(2014)。網路社群媒體使用者資訊分享行為探究。創新與管理,11(1),23-51。
呂岳翰(2015)。從消費者知覺觀點探討影響第三方支付使用意圖之因素。(未出版之碩士論文)。輔仁大學,新北。
李宗儒、陳棟樑、劉家禎(2012)。影響警察人員數位學習使用意願之研究。自由軟體與教育科技研討會論文集,4,1-8。
林幸華、連麗真(2002)。導入線上學習的第e步。台北:漢智電子商務。
林逢慶(2005)。開啟數位學習美麗新「視」界。載於黃玉珍(主編)。數位修練:20家導入e-learning的成功企業現身說法(頁i)。台北:經濟部工業局。
吳明隆(2011)。以數位化學習迎接新挑戰。T&D飛訊,124,1-21。
吳毅聲(2009)。數位學觀念與實作(第二版)。台北:學貫行銷。
吳佩芬(2016)。特色街區導覽系統之使用者情緒與沉浸經驗研究。設計學報,21(2),25-48。
吳美美、楊曉雯(1999)。圖書館的利用-高中高職篇。台北:國家圖書館。
李鎮宇、吳欣蓉、郭慧中(2011)。數位學習科技化教學教材發展趨勢。課程研究,6(1),1-26。
孫義雄、羅雅容(2013)。數位學習應用於警察學科常訓之探索性研究。警察行政管理學報,9,53-74。
高銘襄(2010)。影響公務人員線上學習使用意向之因素研究:以台北市政府教育局為例。(未出版之碩士論文)。世新大學,台北。
張心馨、王怡臻 (2008)。多國籍企業海外行銷通路、網絡關係及電子化程度對通路績效之實證研究。資訊管理學報,15(2),47-83。
張宗榮(2012)。以整合性科技接受模式及沉浸理論探討App之使用行為模式-以行動社群App為例。(未出版之碩士論文)。國立臺中教育大學碩士在職專班,台中。
張書瑞(2016)。使用者涉入對企業數位學習網站持續使用之調節功能。(未出版之碩士論文)。淡江大學,新北。
陳永隆(2000)。企業導入e-Learning的陷阱。臺灣國際電子商務中心數位周報。取自http://www.nii.org.tw/cnt/
陳年興、楊錦潭(2006)。數位學習-理論與實務(初版)。台北:博碩文化。
陳建文、駱達彪、蕭國鐘、潘有崴(2013)。影響顧客使用銀行虛擬通路意圖之研究。臺灣企業績效期刊,6(2), 213-231。
郭隆益(2009)。以科技接受模式探討警政知識聯網使用之成效。(未出版之碩士論文)。國立中山大學,高雄。
黃仁男(2013)。以整合性科技接受模式探討警察人員學科常訓導入數位學習使用意圖之研究-以雲林縣警察局為例。(未出版之碩士論文)。南華大學,嘉義。
黃玉珍(2005)。數位修練:20家導入e-learning的成功企業現身說法。台北:經濟部工業局。
黃雪甄(2012)。使用者的認知風格及知覺玩興對智慧型手機沉浸經驗與成癮之研究。(未出版之碩士論文)。國立屏東大學,屏東。
彭康鈞(2010)。影響大學生資訊使用行為之考量因素研究-以淡江大學為例。(未出版之碩士論文)。淡江大學,新北。。
董和昇、鄧士豪 (2011):影響數位學習系統接受的關鍵因素。T&D飛訊,113,1-17。
趙美聲(2005)。國內公務人員數位學習需求調查及具體推動策略與步驟(委託案報告)。台北:行政院人事行政局。
楊純青(2004)。成人線上學習之人際互動與神馳經驗對其學習成效之影響。(未出版之碩士論文)。高雄師範大學,高雄。
經濟部工業局(2006)。我國數位學習產業發展措施具體建議報告書。
潘瑛如、方崇雄(2010)。部分最小平方路徑分析法在教育研究上的應用。研習資訊,27(5),95-107
歐淑芬(2010),以整合性科技接受模式探究喝克網路學院數位學習之研究。 (未出版之碩士論文)。國立聯合大學,苗栗。
謝榮哲(2010)。以科技接受模型探討企業員工對數位學習系統接受程度之研究 -以台灣與印尼企業員工之比較。(未出版之碩士論文)。國立中央大學,桃園。
謝秀能(2001)。警察機關實施全面品質管理之研究。(未出版之碩士論文)。元智大學,桃園。
蕭淑鈴(2011)。彰化縣人事人員網路素養、數位學習態度與參與數位學習意願關係之研究。(未出版之碩士論文)。彰化師範大學,彰化。
顏春煌(2010)。數位學習:觀念、方法、實務、設計與實作。台北:碁峯資訊。

二、英文文獻
Anderson, L.W., Ryan, D.W., & Shapiro, B.J. (1989). The IEA Classroom Environment Study. Oxford: Pergamon Press.
Ajzen, I. & Fishbein, M. (1975). Belief, attitude, intention and behavior: an introduction to theory and research. Reading (MA): Addison-Wesley.
Ajzen, I. (1985). From intention to actions: A theory of planned behavior. In J. Kuhl & J. Beckman (Eds.), Action control: From cognition to behavior (pp.11-39). Berlin; New York: Springer-Verlag.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Process, 50(2), 179-211.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory: Prentice-Hall, Inc.
Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25, 351-370.
Buxton, W. (1994). Human Skills in Interface Design. In L. MacDonald & J. Vince (Eds), Interacting with virtual environment. New York: John Wiley & Sons Ltd.
Brown, E., & Cairns, P. (2004). A grounded investigation of game immersion.In CHI'04 extended abstracts on Human factors in computing systems (pp.1297-1300). ACM.
Callahan, E.(2004). Interface design and culture.Annual Review of Information Science and Technology,39,257-310.
Calisir, F., & Calisir, F. (2004). The Relation of interface usability characteristics, perceived usefulness, and perceived ease of use to end-user satisfaction with Enterprise Resource Planning (ERP) Systems. Computers in Human Behavior, 20(4), 505-515.
Cheong, J. H., & Park, M. (2005). Mobile internet acceptance in Korea. Internet Research, 15(2), 125-140.
Cohen, E.J.M. (1968). Conceptual design and feasibility study of navy deep submergence vehicles. Nav. Eng. J. 80, 875–887.
Compeau, D. R., Higgins, C. A., & Huff, S. (1999). Social cognition theory and individual reactions to computing technology : A longitudinal study1. MIS Quarterly, 23(2), 145-158
Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco: Jossey-Bass.
Csikszentmihalyi, M., & Csikszentmihalyi, I.(1988). Optimal experience. UK: Cambridge University Press.
Csikszentmihalyi, M. & LeFevre, J. (1989). Optimal Experience in Work and Leisure, Journal of Personality and Social Psychology,Vol.56, No.5, pp.815-822.
Csikszentmihalyi, M., & Nakamura, J. (1989). The dynamics of intrinsic motivation: A study of adolescents. In R. Ames, & C. Ames (Eds.). Research on motivation in education: Goals and cognitions (pp. 45-71). New York, NY: Academic Press.
Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper and Row.
Csikszentmihalyi, M. (1993). The evolving self: A psychology for the third millennium. New York: Harper & Row.
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Doctoral dissertation, Massachusetts Institute of Technology.
Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
Davis, F. D., Bagozzi, L., R. P. & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science , 35(8), 982-1003.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.
DeVellis, R. F. (1991). Scale development theory and application. London: SAGE.
Ellis, G. D. & Voelkl, J. E. (1994). Measurement and analysis issues with explants ion of variance in daily experience using the flow model. Journal of Leisure Research, 26(4), 337-356.
Fishbein, B. & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An introduction to theory and research reading. Addison- Wesley Pub.
Finneran, C. M., & Zhang, P. (2005). Flow in computer-mediated environments: Promises and challenges. Communications of the Association for Information Systems, 15(4), 82-101.
Fredrickson, B. L., & Joiner, T. (2002). Positive emotions trigger upward spirals toward emotional well-being. Psychological Science, 13(2), 172-175.
Ghani, J. A., & Deshpande, S. P. (1994). Task characteristics and the experience of optimal flow in human-computer interaction. The Journal of Psychology, 128(4), 381-391.
Ghani, J. A., Supnick, R., & Rooney, P. (1991). The experience of flow in computer-,mediated and in face to face groups. Proceedings of the Twelfth International Conference on Information Systems, December 16-18, New York, NY, USA, University of Minnesota, 229 - 237.
Hair, J. F., Hult, G., Ringle, C. M., & Sastedt, M. (2014). A Primer on partial least squares structural equation modeling (PLS-SEM) (1st Ed.). Thousand Oaks, CA: Sage Publication Inc.
Hoffman, D., & Novak, T. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of Marketing, 60(3), 50-68.
Hsu, C.L. & Lu, H.P. (2004). Why do people play on-line games? an extended TAM with social influences and flow experience. Information & Management, 41(7), 853-868.
Igbaria, M., Iivari, J., & Maragahh, H. (1995). Why do individual use computer technology? A Finnish Case Study. Information and Management, 29, 227-238.
Jackson, S. A., & Csikszentmihalyi, M. (1999). Flow in Sport. Champaign, IL: Human Kinetics.
Jackson, S. A., & Marsh, H. W. (1996). Development and validation of a scale to measure optimal experience: The flow state scale. Journal of Sport & Exercise Psychology, 18, 17-35.
Jennett, C., Cox, A. L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., & Walton, A. (2008). Measuring and defining the experience of immersion in games. International Journal of Human-Computer Studies, 66(9), 641-661.
Joreskog K.G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger and O. D. Duncan (Eds.), Structural Equation Models in the Social Sciences. New York: Seminar Press.
Kemmis, S.(1988). Action research. In J. P. Keeves(Ed.), Educational research, methodology, and measurement. An international handbook(pp. 42-49). Oxford: Pergamon Press.
Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223.
Lin, H. F. (2007). Effects of extrinsic and intrinsic motivation on employee knowledge sharing intentions. Journal of Information Science, 33(2), 135-149.
Lutz, R. J. & Guiry, M. (1994). Intense consumption experiences: peaks, performances, and flows. Winter Marketing Educators’ Conference, St. Petersburg, FL, February.
Massimini, F. & Carli, M. (1988). The systematic assessment of flow in daily experience. In Csikszentmihalyi, M.(Ed)& Csikszentmihalyi, I.S.(Ed), Optimal experience: Psychological studies of flow in consciousness. New York : Cambridge University Press.
Mathwick, C., & Rigdon, E. (2004). Play, flow, and the online search experience. Journal of Consumer Research, 31, 324-332.
Moore, G.C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192-222.
Mohammadyari, S. & Singh, H. (2015). “Understanding the Effect of E‐Learning on Individual Performance: The Role of Digital Literacy”, Computers & Education, Vol. 82, pp. 11‐25.
Novak, P. T., Hoffman, L. D. and Yung, Y. F. (1997). Modeling the Structure of the Flow Experience among Web Users, INFORMS Marketing Science and the InternetMini-Conference, MIT.
Novak, T. P., Hoffman, D. L., & Yung, Y. F. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing Science, 19(1), 22-42
O’Sullivan, K.M. (2011). Synergy: Mobile devices and knowledge management. Retrieved September 11, 2013, from http://knowledgecompass.wordpress.com/2011/06/04/synergy- mobile-devices-and-knowledge-management/
Patrick, Y. K. C.(1996). An empirical investigation on factors affecting the acceptance of CASE by systems developers. Information & Management, 30, 269-280.
Phuangthong, D., & Malisawan, S. (2005). A study of behavioral intention for 3G Mobile internet technology: Preliminary research on mobile learning. Proceedings of the Second International Conference on eLearning for Knowledge-Based Society. Bangkok, Thailand, August 4-7, 17.1-17.7.
Rogers, E. M. (1995). Diffusion of innovations (4th ed.). N.Y.: The Free Press.
Rosenberg, M. (2001). E-learning strategies for delivering knowledge in the Digital Age. New York: McGraw-Hill.
Rukzio, E., Broll, G., Leichtenstern, K., & Schmidt, A. (2007). Mobile interaction with thereal world: An evaluation and comparison of physical mobile interaction techniques. In Ambient intelligence (pp. 1-18). Berlin, Germany: Springer.
Skadberg, Y. X., & Kimmel, J. R. (2004). Visitor's flow experience while browsing a web site: Its measurement, contributing factors and consequences. Computers in Human Behavior, 20(3), 403-422.
Steuer, J.(1992). Defining virtual reality: Dimensions determining telepresence. Journal of Communication, 42, 73-93.
Taylor, S., & Todd, P. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6, 144-176.
Thompson, R. L., Higgins, C.A., & Howell, J. M. (1991). Personal computing toward a conceptual model of utilization. MIS Quarterly, 15(1), 125-143.
Trevino, K. L., & Webster, J. (1992). Flow in Computer-Mediated Communication . Communication Research, 19(5), 539- 573.
Venkatesh, V., Morris, M.G., Davis, G.B.,&; Davis, F.D.(2003). “User acceptance of information technology: Toward a unified view,” MIS Quarterly, 27(3), 425-478.
Venkatesh, V., Morris, M. G., Gordon. B., DAVIS, & Davis F. D. (2003). User Acceptance of Information Technology: Toward A Unified View. MIS Quarterly, 27(3), 425-478.
Wan,Z.,Wang,Y.,& Haggerty, N.(2008). Why people benefit from E-learning differently:the effects of psychological processes on E-learning outcomes. Information & Management, 45(8), 513-521.
Webster, J., Trevino, K. L. & Ryan, L .(1993). The Dimensionality and Correlates of Flow in Human-Computer Interactions. Computer in Human Behavior, 9(4), 411-426.
Wilson, T. D. (1999). Models in Information Behavior Research. Journal of Document, 55(3), 251-257.
Wold, Herman (1966). Estimation of principal components and related models by iterative least squares. (編) Krishnaiaah, P.R. Multivariate Analysis. New York: Academic Press, 391–420.
Wold, H (1975). Path models with one or two latent variables. In H. M. Blalock Jr., F. M. Borodkin, R. Boudon, & V. Capecchi (Eds.), Quantitative sociology. New York: Seminar Press, 307-357.
Wu,Y.Q.,Tan,J.S.,He,W.,&Wang,C.Z.(2009). Construction of e-learning platform. Journal of Communication and Computer,12(6), 33-37.
Yang, H., & Lay, Y. (2005). Implementation and evaluation of computer-aided Mandarin phonemes training system for hearing-impaired students. British Journal of Educational Technology, 36(3), 537-551.
Zaichkowsky, Judith Lynne(1985). Measuring the Involvement Construct. Journal of Consumer Research, 12, 341-352.
Zimbardo G. Philip, Ann L. Weber (1994). Psychology. New York: Harper Collins College Publishers, 296-29
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-03-09公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-03-09起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信