§ 瀏覽學位論文書目資料
系統識別號 U0002-2801200814412700
DOI 10.6846/TKU.2008.01317
論文名稱(中文) 一般化共同邊界Malmquist生產力指數及其應用
論文名稱(英文) The Generalized Metafrontier Malmquist Productivity Index and Its Applications
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 產業經濟學系博士班
系所名稱(英文) Department of Industrial Economics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 1
出版年 97
研究生(中文) 陳谷劦
研究生(英文) Ku-Hsieh Chen
學號 892510040
學位類別 博士
語言別 英文
第二語言別
口試日期 2007-01-17
論文頁數 110頁
口試委員 指導教授 - 楊浩彥(haoyen@webmail.ntcb.edu.tw)
共同指導教授 - 廖惠珠(rubyliao@mail.tku.edu.tw)
委員 - 陳忠榮(jrchen@cc.ncu.edu.tw)
委員 - 楊志海(chyang@mgt.ncu.edu.tw)
委員 - 黃璀娟(tch@cc.shu.edu.tw)
委員 - 陳明園(mychen@mail.tku.edu.tw)
委員 - 楊浩彥(haoyen@webmail.ntcb.edu.tw)
關鍵字(中) 總要素生產力
規模效率
技術效率
技術進步
技術收斂
Malmquist指數
共同邊界
關鍵字(英) Total factor productivity
Scale efficiency
Technocal efficiency
Technical progress
Technological convergence
Malmquist index
Metafrontier
第三語言關鍵字
學科別分類
中文摘要
在總要素生產力的領域,Cave et al. (1982) 的Malmquist生產力指數 (MPI) 受到廣泛的重視;然而在應用上,當生產單位非屬同一技術集合,而面對不同的技術邊界,跨群組MPI的分析,將受限於共同比較基礎的缺乏,而無法進行。為突破此限制,Rao (2006) 引進共同邊界 (metafrontier) 的概念,在非參數法下,提出共同邊界Malmquist生產力指數 (MMPI) 的估計架構。本文針對Rao (2006) 的MMPI,進行三個層面的延伸:首先,考量生產力指數衡量的完全性,嚐試透過距離函數的推導,在非參數法下,將規模效率調整項 (SEC) 納入MMPI的構成項目中;其次,並在參數法下,提供一般化共同邊界Malmquist生產力指數 (gMMPI) 的拆解,與可行估計架構;另外,亦針對MMPI構成項目中的「追趕」,進一步再拆解為純粹技術追趕 (PTCU) 與邊界追趕 (FCU) 二項,其中,PTCU所捕捉的,為個別國家的技術追趕,而FCU則反應出整個群組的技術追趕,其意涵與可應用的範圍不同。
在實證的應用上,本文利用1980-2003年間,35個高所得國家 (HICs)、73個中所得國家 (MICs),以及48個低所得國家 (LICs) 群組,進行參數法的生產力推估與拆解。結果發現,在MMPI的架構下,平均而言,中所得國家的生產力成長高於高、低所得國家群組,而在gMMPI的架構下,高所得國家的生產力成長則高於中、低所得國家群組,此反轉的結果,說明了未考量SEC的MMPI,所潛藏的衡量不完全的風險。其次,再將焦點轉向個別國家的比較,可以發現各個國家生產力成長的排序,也有類似的現象。此外,本文並發現,在樣本期間中,台灣的生產力指數呈現每年衰退0.3173%的現象,相較其他亞洲四小龍國家、金磚四國,以及美、日而言,位居最後。探究其原因,發現台灣在生產效率與規模效率上,持續以來的表現並不理想,分別呈現平均每年2.1679%與1.1594%惡化的現象;然而,在此同時也可以發現,在樣本期間內,各國的技術多呈現進步的結果,其中,台灣的技術進步則以年成長幅度3.0470%,位居亞洲四小龍國家、金磚四國,以及美、日之首。對此極端的結果,本文認為台灣過去的生產力,存在著對技術進步高度的依賴,但卻忽視了效率的提昇;因此,如何維持技術的成就,同時有效地進行在生產與規模上效率的調整,使欠缺天然資源稟賦的台灣,能獲得進一步經濟發展的動力,是當前重要的課題。最後,本文亦利用所推估的PTCU項,進行技術收斂假說的實證,觀察是否技術水準較低的國家,技術追趕的速度較快。結果發現,在絶對收斂的設定下,技術收斂並不存在,然而在條件收斂的設定下,技術將呈現收斂的現象。推論原因,主要可能與技術取得的差異有關。
英文摘要
This study extends Rao’s (2006) Metafrontier Malmquist Productivity Index (MMPI) to three dimensions. First, given the consideration to the completeness of a productivity index measure, we attempt to subsume a scale efficiency change term (SEC) in the MMPI with inductions of distance function under a non-parametric context. Second, a feasible structure of generalized MMPI (gMMPI) is also proposed under a parametric context. Furthermore, the ‘catching-up’ term in MMPI is disintegrated into two sub-components: pure technological catching-up (PTCU) and frontier catching-up (FCU), for achieving a more meaningful decomposition. Where, the PTCU is more suitable for observing the catching-up dynamics of a specific country, while the FCU is more suitable for observing the catching-up dynamics of the group frontier. For demonstrating the feasibility of this gMMPI framework, an empirical study is then conducted using data based on three country groups: 35 high income level countries (HICs), 73 middle income level countries, and 48 low income level countries (LICs) during the period from 1980-2003 with the parametric context. Consequently, the results reveal the risk embedded in the MMPI if the effect of the SEC is not taken into account. When shifting the focus to specific countries, the inconsistency between the rankings of MMPI and gMMPI is also found to be existent. Furthermore, the empirical results also reveal that the technical efficiency and scale efficiency of Taiwan exhibit annual averages of 2.1679% and 1.1594% declines, respectively. However, on average the margin of technical progress of Taiwan is about 3.0470% annually, which is ranked as the first when compared to the other four Asian countries, the BRIC countries and Japan and the US. Ultimately, this study also inspects the hypothesis of convergence in technology by using the pure technological catching-up term to observe whether a country with a lower level of technology would exhibit a higher catching-up rate. The results show that the technological convergence does not exist in the specifications of absolute convergence but exists in the situation of conditional convergence.
第三語言摘要
論文目次
CONTENTS
1.	RESEARCH BACKGROUND	1
			
	1.1	Research Motivation	1
	1.2	Research Purpose and Framework	3
		
2.	TFP, MMPI AND CONVERGENCE HYPOTHESIS	7
			
	2.1	Introduction to the Total Factors Productivity (TFP) Index	7
	2.2	The Metafrontier Malmquist Productivity Index (MMPI)	12
	2.3	Convergence Hypotheses	16
		
3.	GENERALIZED MMPI AND MODEL SPECIFICATIONS	21
			
	3.1	Extensions of Rao’s Technological Catching-up	21
	3.2	Extensions of the Metafrontier Malmquist Productivity Index	25
		3.2.1	Non-Parametric Extension of MMPI	30
		3.2.2	Parametric Extension of MMPI	32
	3.3	Model Specifications and variable constructions	36
		3.3.1	Stochastic and Metafrontier Production Function Models	36
		3.3.2	Models for Convergence in Technology	39
		
4.	EMPIRICAL APPLICATIONS	45
			
	4.1	Data and Its Arrangements	45
	4.2	Estimations of the Stochastic and the Metafrontier Production Function	49
	4.3	Estimations of MPI, MMPI and gMMPI	53
	4.4	Tests for Hypothesis of Convergence in Technology	73
		
5.	CONCLUDING REMARKS AND RESEARCH LIMITATIONS	84
			
	5.1	Concluding Remarks	84
	5.2	Research Limitations and Further Research Suggestions	89
		
6.	APPENDIX	92
		
	Appendix 1: Rao’s (2006) Decomposition of MMPI	92
	Appendix 2: The Inductions of Decompositions of CRS Based GMPI	93
	Appendix 3: The Inductions and Decompositions of CRS Based MMPI	94
	Appendix 4: The Inductions of gMMPI under the Parametric Context	97
	Appendix 5: The Further Decompositions of gMMPI	98
		
7.	REFERENCES	102

 

LIST OF TABLES	
Table 1.	Average annual growth rates: gross domestic product, capital and labor	47
Table 2.	MLE estimation of the group frontiers - stochastic frontier analysis model	50
Table 3.	Estimation of metafrontier - linear programming approach	52
Table 4.	Decomposition of the generalized metafrontier Malmquist productivity index: 1980-2003 (HICs, MICs and LICs)	54
Table 5.	Decomposition of generalized metafrontier Malmquist productivity index: 1980-2003 (BRICs, Asian four countries, Japan and the US)	60
Table 6.	Inspections of scale efficiency changes (BRICs, Asian four countries, Japan and the US)	67
Table 7.	Inspection to hypothesis of absolute β convergence in technology	77
Table 8.	Inspection to the hypothesis of conditional β convergence in technology	78
Table 9.	Inspection to hypothesis of conditional β convergence in technology (some extensions for checking robustness)	83
Table A1.	Country list of high, middle and low income countries	100
Table A2.	Difference tests of the MMPI, gMMPI and its components of HICs, MICs and LICs	101

 

LIST OF FIGURES	
Figure 1.	Illustrations of the concept of Rao’s catching-up and the pure technological catching-up and frontier catching-up of this study	23
Figure 2.	Illustrations of the importance of scale efficiency in a productivity measure and the concept of CRS and VRS technology	27
Figure 3.	The average annual growth rates of output, capital and labor for the HICs, MICs and LICs	48
Figure 4.	The dynamics of gMMPI and MMPI for the HICs, MICs and LICs	56
Figure 5.	The dynamics of the TEC*, TC* and SEC* for the HICs, MICs and LICs	57
Figure 6.	The dynamics of the PTCU, FCU and RCU decomposed from the gMMPI in this study for the HICs, MICs and LICs	59
Figure 7.	The dynamics of the TEC* for the BRIC countries, Asian four countries, Japan and the US	64
Figure 8.	The dynamics of the TC* for the BRIC countries, Asian four countries, Japan and US	65
Figure 9.	The dynamics of the gMMPI for the BRIC countries, Asian four countries, Japan and US	69
Figure 10.	The dynamics of the MMPI for the BRIC countries, Asian four countries, Japan and US	70
Figure 11.	The dynamics of the SEC* for the BRIC countries, Asian four countries, Japan and US	72
Figure 12.	The dynamics of the PTCU for the BRIC countries, Asian four countries, Japan and US	74
Figure 13.	The dynamics of FCU for the BRIC countries, Asian four countries, Japan and US	75
Figure 14.	The relation ship of technological level and technological catching-up for the HICs, MICs and LICs	81
參考文獻
Aigner, D.J., C.A.K. Lovell, and P. Schmidt (1977) “Formulation and Estimation of Stochastic Frontier Production Function Models,” Journal of Econometrics, 6, 21-37.
Balk, B.M. (2001) “Scale Efficiency and Productivity Change,” Journal of Productivity Analysis, 15, 159-183.
Balasubramanyam, V.N. (1998) “The Multilateral Agreement on Investment (MAI) and Foreign Direct Investment in Developing Countries,” Lancaster University Management School, Economics Department, Working Paper.
Banker, R.D. (1984) “Estimating Most Productive Scale Size Using Data Envelopment Analysis,” European Journal of Operational Research, 17, 35-44.
Barro, R. (1991) “Economic Growth in a Cross Section of Countries,” Quarterly Journal of Economics, 106:2, 407-443.
Barro, R. and X. Sala-i-Martin (2004) Economic Growth, New York: Macmillan.
Battese, G.E., and T.J. Coelli (1992) “Frontier Production Functions, Technical Efficiency and Panel Data: With Application to Paddy Farmers in India,” Journal of Productivity Analysis, 3, 153-169.
Battese, G.E., and D.S.P. Rao (2002) “Technology Gap, Efficiency and a Stochastic Metafrontier Function,” International Journal of Business and Economics, 1, 87-93.
Battese, G.E., D.S.P. Rao, and C.J. O’Donnell (2004) “A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies,” Journal of Productivity Analysis, 21, 91-103.
Bernanke, B.S., and R.S. Gurkaynak (2001) “Is Growth Exogenous? Taking Mankiw, Romer and Weil Seriously,” National Bureau of Economic Research, Working Paper, No. 8365. 
Branstetter, L. and J.R. Chen (2006) “The Impact of Technology Transfer and R&D on Productivity Growth in Taiwanese Industry: Microeconometric Analysis Using Plant and Firm-Level Data,” Journal of the Japanese and International Economies, 20, 177-192.
Caselli, F., G. Esquivel and F. Lefort (1996) “Reopening the Convergence Debate: A New Look at Cross-Country Growth Empirics,” Journal of Economic Growth, 1, 363-390.
Caves, D.W., L.R. Christensen, and W.E. Diewert (1982) “The Economic Theory of Index Numbers and the Measurement of Input, Output and Productivity,” Econometrica, 50, 1393-1414.
Chang, C.C., and Y.H. Luh (2000) “Efficiency Change and Growth in Productivity: The Asian Growth Experience,” Journal of Asian Economics, 10, 551-570.
Chen, K.H. (2007) “A Note on Orea’s Generalized Malmquist Productivity Index,” Submitting Manuscript.
Chen, K.H. (2007) “The Impact of Agglomerative Industrial Dynamic Externalities on Regional Technology Gaps: A Case of the ICT Industry in Taiwan”, Australasian Journal of Regional Studies, 13: 3, forthcoming.
Chen, J.R. and C.H. Yang (2006) “The Effects of Knowledge Capital on Enhancing Firm’s Productivity in Taiwan - Does R&D or Technology Import Matter?” Hitotsubashi Journal of Economics, 47:2, 137-153.
Christensen, L.R., Jorgenson, D.W., and L.J. Lau (1973) “Transcendental Logarithmic Production Frontiers,” Review of Economic Statistics, 55, 28-45.
Coe, D. and E. Helpman (1995) “International R&D Spillovers,” European Economic Review, 39, 859-887.
Coelli, T., D.S.P. Rao, C.J. O’Donnell, and G.E. Battese (2005) Introduction to Efficiency and Productivity Analysis, 2nd edition, Springer, Heidelberg.
Collins, S., and B. Bosworth (1996) “Economic Growth in East Asia: Accumulation versus Assimilation,” Brookings Papers in Economics, 2, 135-203
Cook, P., and Y. Uchida (2002) “Productivity Growth in East Asia: a Reappraisal,” Applied Economics, 34, 1195--1207.
DeLong, J.B. (1988) “Productivity Growth, Convergence and Welfare: Comment,” American Economic Review, 78: 5, 1138-1154.
Denny, M., M. Fuss, and L. Waverman (1981) “The Measurement and Interpretation of Total Factor Productivity in Regulated Industries with an Application to Canadian Telecommunications,” In T.G. Cowing, and R.E. Stevenson (eds.), Productivity Measurement in Regulated Industries, New York: Academic Press, 179-218. 
Diewert, W.E. (1976) “Exact and Superlative Index Numbers,” Journal of Econometrics, 4, 115-145.
Durlauf, S.N. and P.A. Johnstopn (1995) “Multiple Regimes and Cross-Country Growth Behavior,” Journal of Applied Econometrics, 10, 365-384.
Daulau, S.N., A. Koutellos and A. Minkin (2001) “The Local Solow Growth Model,” European Economic Review, 45, 928-940.
Eaton, J. and S. Kortum (1999) “Internatiional Technology Diffusion: Theory and Measurement,” International Economic Review, 40:3, 537-570.
Edwards, S. (1998) “Openness, Productivity and Growth: What Do We Really Know?” Economic Journal, 108, 1383-1398.
Farrell, M.J. (1957) “The Measurement of Productive Efficiency,” Journal of the Royal Statistical Society, 120, 253-281.
Färe, R., and D. Primont (1995) Multi-output Production a Duality: Theory and Applications, Boston: Kluwer Academic Publishers.
Färe, R., S. Grosskopf, and D. Margaritis (2006) “Productivity Growth and Convergence in the European Union,” Journal Productivity Analysis, 25, 111-141.
Färe, R., S. Grosskopf, M. Norris, and Z. Zhang (1994) “Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries,” American Economic Review, 84, 66-83.
Fisher, I. (1922) The Making of Index Numbers, Houghton Mifflin, Boston.
Fischer, S. (1993) “The Role of Macroeconomic Factors in Growth,” Journal of Monetary Economics, 32, 485-512.
Fortanier, F. (2001) FDI and Technology Transfer, the Costs and Benefits of FDI, Paris: OECD.
Fosfuri, A., M. Motta and T. Ronde (2001) “Foreign Direct Investment and Spillovers through Worker’s Mobility,” Journal of International Economics, 53: 1, 205-222.
Frisch, R (1965) Theory of Production, Dordrecht: D. Reidel.
Galor, O. (1996) “Convergence? Inferences from Theoretical Models,” Economic Journal, 437, 1056-1069. 
Grifell, E., and C.A.K. Lovell (1999) “A Generalized Malmquist Productivity Index,” Top. Sociedad Española de Investigación Operativa, 7, 81-101.
Hall, R., and C. Jones (1999) “Why Do Some Countries Produce So Much More per Worker than Others?” Quarterly Journal of Economics, 114, 83-116.
Han, G., K.P. Kalirajan, and N. Singh (2002) “Productivity and Economic Growth in East Asia: Innovation, Efficiency and Accumulation,” Japan and the World Economy, 14, 401-424.
Heston, A., R. Summers, and B. Aten (2006) Penn World Table Version 6.2, Center for International Comparisons of Production, Income and Prices at the University of Pennsylvania, September.
Ho, T.W. (2006) “Income Thresholds and Growth Convergence: A Panel Data Approach,” The Manchester School, 74, 170-189.
Hsieh, C.T. (1999) “Productivity Growth and Factor Prices in East Asia,” American Economic Review, 89, 133-138.
Hsieh, C.T. (2002) “What Explains the Industrial Revolution in East Asia? Evidence from the Factor Markets,” American Economic Review, 92, 502-526.
Huang, T.H., Y.H. Chen, and M.H. Wang (2007) “A Study of Production Efficiency and Rate of Total Factor Productivity Change for Ten East Asian Countries,” Taiwan Economic Review, forthcoming (in Chinese).
Islam, N. (1995) “Growth Empirics: a Panel Data Approach,” Quarterly Journal of Economics, 110, 1127-1170.
Iyer, K., A. Rambaldi, and K.K. Tang (2005) “Globalisation and the Technology Gap: Regional and Time Evidence,” in J.M. Aurifeille, S. Svizzero, and C. Tisdell (eds.), Leading Economic and Managerial Issues Involving Globalisation, Chapter 15, Nova Science Publishers, 213-227.
Jeon, B.M., and R.C. Sickles (2004) “The Role of Environmental Factors in Growth Accounting,” Journal of Applied Econometrics, 19, 567-591.
Kim, J.I., and L.J. Lau (1994) “The Sources of Economic Growth of the East Asian Newly Industrialized Countries,” Journal of the Japanese and International Economies, 8, 235-271.
Krüger, J.J. (2003) “The Global Trends of Total Factor Productivity: Evidence from the Nonparametric Malmquist Index Approach,” Oxford Economic Papers, 55, 265--286.
Krugman, P. (1994) “The Myth of Asia’s Miracle,” Foreign Affairs, 6, 62-78
Kumbhakar, S.C., and H.J. Wang (2005) “Estimation of Growth Convergence Using a Stochastic Production Frontier Approach,” Economics Letters, 88, 300-305.
Laspeyres, E. (1871) “Die Berechnug einer mittleren Waaren-preissteigerung,” Jahrbucher fur Nationalokonomie und statistic, 16, 296-314.
Liu, Z. and T. Stengos (1999) “Nonlinearity in Cross-Country Growth Regressions: A Semiparametric Approach,” Journal of Applied Econometrics, 14, 527-538. 
Levine, R. and D. Renelt (1992) “A Sensitivity Analysis of Cross-Country Growth Regressions,” American Economic Review, 82:4, 942-963.
Lipsey, R.E., E.D. Ramstetter and M. Blomstrom (2000) “Outward FDI and Parent Exports and Employment: Japan, the United States, and Sweden,” NBER Working Paper, No. 7623.
Lu, W.C., J.R. Chen and C.L. Wang (2006) “Granger Causality Test on R&D Spatial Spillovers and Productivity Growth,” Applied Economics Letters, 13: 13, 857-861.
Malmquist, S. (1953) “Index Numbers and Indifference Curves,” Trabajos de Estatistica, 4, 209-242.
Mankiw, N.G., D. Romer and D.N. Weil (1992) “A Contribution to the Empirics of Economic Growth,” Quarterly Journal of Economics, 107:2, 407-437.
Marti, C. (1996) “Is There an East Asian Miracle?” Union Bank of Switzerland Economic Research Working Paper, October.
Maudos, J., J.M. Pastor and L. Serrano (2000) “Convergence in OECD Countries: Technical Change, Efficiency and Productivity,” Applied Economics, 32, 757-765.
Meeusen, W., and J. van den Broeck (1977) “Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error,” International Economic Review, 18, 435-444.
OECD (2002) The Measurement of Scientific and Technical Activities, Paris: OECD. 
Orea, L. (2002) “Parametric Decomposition of a Generalized Malmquist Productivity Index,” Journal of Productivity Analysis, 18, 5-22.
Porter, M. E. (1998) The Competitive Advantage of Nations, American: Simon and Schuster.
Quah, D. (1993) “Galton’s Fallacy and Test of the Convergence Hypothesis,” Scandinavian Journal of Economics, 95:4, 427-443.
Quah, D. (1996) “Empirics for Economic Growth and Convergence,” European Economic Review, 40:6, 1353-1375.
Rao, D.S.P. (2006) “Metafrontier Frameworks for the Study of Firm-Level Efficiencies and Technology Gaps,” 2006 Productivity and Efficiency Seminar, Taipei, 10th March, Conference Paper.
Ray, S.C. (1998) “Measuring Scale Efficiency from a Translog Production Function,” Journal of Productivity Analysis, 11, 183-194.
Ray, S.C., and E. Desli (1997) “Productivity Growth, Technical Progress and efficiency Change in Industrialized Countries: Comment,” American Economic Review, 87, 1033-1039.
Sala-i-Martin, X. (1996) “Regional Cohesion: Evidence and Theories of Regional Growth and Convergence,” European Economic Review, 40: 6, 1325-1352.
Shephard, R.W. (1970) Theory of Cost and Production Functions, Princeton, NJ: Princeton University Press.
Solow, R.W. (1957) “Technical Change and the Aggregate Production Function,” Review of Economics and Statistics, 39: 3, 312-320.
Temple, J.R.W. (1998) “Robustness Test of Augment Solow Model,” Journal of Applied Econometrics, 13, 361-375.
Törnqvist, L. (1936) “The Bank of Finland’s Consumption Price Index,” Bank of Finland Monthly Bulletin, 10, 1-8.
World Bank (2003) World Development Indicators 2003, on CD-ROM, The World Bank Group.
Wu, Y. (2004) “Openness, Productivity and Growth in the APEC Economies,” Empirical Economics, 29, 593-604.
Young, A. (1992) “A Tale of Two Cities: Factor accumulation and Technical Change in Hong Kong and Singapore,” in O. J. Blanchard, and S. Fischer (eds), National Bureau of Economic Research Macroeconomics Annual, MIT Press, Cambridge, M.A, 13-54.
Young, A. (1995) “The Tyranny of Numbers: Confronting the Statistical Realities of the East Asian Growth Experience,” Quarterly Journal of Economics, 110, 641-680.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信