淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2709201913322900
中文論文名稱 高密度發酵菌種篩選
英文論文名稱 Screening of high density fermentor yeast strains
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 107
學期 2
出版年 108
研究生中文姓名 朱傳大
研究生英文姓名 Chuan-TA Chu
學號 602160110
學位類別 碩士
語文別 中文
口試日期 2019-07-18
論文頁數 24頁
口試委員 指導教授-陳銘凱
委員-蔡旻燁
委員-官宜靜
中文關鍵字 酵母菌BY4742  酒精發酵  突變  酒精耐受性 
英文關鍵字 Saccharomyces cerevisiae BY4742  alcohol fermentation  mutation  ethanol tolerance 
學科別分類 學科別自然科學化學
中文摘要 酒精不管做為能源還是食物一直以來是人類依賴的重要產物,如何產酒以及增加產酒效率一直以來是工業中的課題之一。
在過往的研究中,學家利用Methylnitronitrosoguanidine(MNNG)或Ethyl Methane Sulfonate(EMS)藥劑與UV突變法對酵母菌BY4742菌株進行基因突變,更有利用Global transcription machinery engineering (gTME)基因工程的方式轉換細胞基因,期望利用改變原有基因配置能增加酵母菌在高醣高酒精的環境下酒精生產的效率。
本實驗採UV突變法並以3000、4000、5000μJ/cm2強度進行照射突變,再藉由高濃度葡萄糖與高濃度酒精的培養條件,對已隨機突變過的菌株進行連續液態篩選,初步篩選出具有高醣高酒精耐受性的菌種。
英文摘要 Alcohol has always been an important product of human dependence,
whether it is energy or food. How to produce wine and increase the efficiency of
wine production has always been one of the topics in the industry.
In previous studies, scientists used Methylnitronitrosoguanidine (MNNG)
or Ethyl Methane Sulfonate (EMS) agents and UV mutations to genetically
mutate the yeast BY4742 strain, furthermore, converted the genes of the cells by
using Global transcription machinery engineering (gTME), expected to use the
altered original gene configuration that can increase the efficiency of yeast
production in high concentration of glucose and alcohol environments.
In our experiment, UV mutation method was used to irradiate mutations
with intensity of 3000, 4000 and 5000 μJ/cm2, and the strains with random
mutations were subjected to continuous liquid screening by high-concentration
glucose and high-concentration alcohol culture conditions. In order to find a
strain with high sugar and high alcohol tolerance.
論文目次 謝誌 I
中文摘要 II
英文摘要 III
總目錄 IV
圖表目錄 VI
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究動機 3
第二章 材料與方法 5
2.1 實驗材料 5
2.1.1 菌株 5
2.1.2 實驗藥品與溶液製備 5
2.1.2.1 藥品 5
2.1.2.2 溶液製備 6
2.1.3 實驗儀器 10
2.2 實驗方法 13
2.2.1 菌株突變 13
2.2.2 菌株篩選 14
2.2.3 生長能力測試 15
2.2.4 發酵能力測試 15
第三章 結果與討論 17
3.1 菌株突變 17
3.2 篩選方式 19
第四章 結論 22
第五章 參考資料 23

圖表目錄
圖1糖酵解與發酵過程 2
圖2酵母菌作為酒精發酵菌種的優勢與劣勢 4
圖3分光光度計 10
圖4 UV crosslinker 10
圖5倒立顯微鏡 11
圖6高壓滅菌釜 12
圖7酸鹼測量儀 12
圖8實驗流程 13
圖9滾珠圖盤分布情形 18
圖10使用UV突變致死率 19
圖11不同篩選條件下細胞密度 20
參考文獻 1. McGovern, P.E., et al., Fermented beverages of pre- and proto-historic China, Proceedings of the National Academy of Sciences, 2004. 101(51), P. 17593-17598.
2. G. M. Walker, 125th Anniversary Review: Fuel Alcohol: Current Production and Future Challenges., J. Inst. Brew, 2011.117(1), P.3–22.
3. Li, p., Sakuragi, k., Makino, H., Extraction techniques in sustainable biofuel production: A concise review, Fuel Processing Technology, 2019,193, P. 295-303.
4. Gray K.A., Zhao L., Emptage M., Current Opinion in Chemical Biology , Bioethanol, 2006. 10, P.141-146.
5. Antoni, D., Zverlov, V., Schwarz, W., Biofuels from microbes, Applied Microbiology and Biotechnology, 2007. 77, P. 23-35.
6. Stokstad, E., Biofuels. Engineered superbugs boost hopes of turning seaweed into fuel. Science (New York, NY), 2012. 335,P. 273.
7. Balat, M., Balat, H., Oz, C., Progress in bioethanol processing. Progress in Energy and Combustion Science, 2008. 34, P. 551-573.
8. Walker, G. M., Walker, R. S. K., Enhancing Yeast Alcoholic Fermentations, Advances in Applied Microbiology, 2018. 105, P.87-129.
9. Stanley, D., Bandara, A., Fraser, S., Chambers, P.J., Stanley, G.A. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of Applied Microbiology, 2010. 109, P. 13-24.
10. You, K.M., Rosenfield, C.L., Knipple, D.C., Ethanol Tolerance in the Yeast Saccharomyces cerevisiae Is Dependent on Cellular Oleic Acid Content, Applied and Environmental Microbiology, 2003. 69,P. 1499-1503.
11. Stanley, D., Fraser, S., Chambers, P., Rogers, P., Stanley, G. Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. Journal of Industrial Microbiology & Biotechnology, 2010. 37,P. 139-149.
12. Alper, H., Moxley, J., Nevoigt, E., Fink, G.R., Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science (New York, NY), 2006. 314, P. 1565-1568.
13. Qin, Y., Dong, Z.Y., Liu, L.M., Chen, J., Manipulation of NADH metabolism in industrial strains, Chin J. Biotech, 2009. 25(2), P. 161-169.
14. Lam, F.H., Ghaderi, A., Fink, G.R., Stephanopoulos, G., Engineering alcohol tolerance in yeast. Science, 2014. 346, P. 71–75.
15. Lawrence, C.W., Classical mutagenesis techniques, Methods in Enzymology, 1991. 194, P. 273-281.
16. Lin, C.L., The effect of overexpressing ADH3p in Saccharomyces cerevisiae BY4742 & ΔADH3 strain(BY4741)on mitochondrial morphology, Thesis of Tamkang University,Department of chemistry,2014.
17. Lin, H.Y., ΙΙ. Improving ethanol and high-glucose tolerance of Saccharomyces cerevisiae by random mutagenesis, Thesis of Tamkang University,Department of chemistry,2012.
18. Lin, Y., et al., Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742, Biomass and Bioenergy, 2012. 47, P. 395-401.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-10-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-10-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信