§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2709201913322900
DOI 10.6846/TKU.2019.00935
論文名稱(中文) 高密度發酵菌種篩選
論文名稱(英文) Screening of high density fermentor yeast strains
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 朱傳大
研究生(英文) Chuan-TA Chu
學號 602160110
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-18
論文頁數 24頁
口試委員 指導教授 - 陳銘凱(mkchern@mail.tku.edu.tw)
委員 - 蔡旻燁(mytsai@tku.edu.tw; mytsai886@gmail.com)
委員 - 官宜靜(iching@ttu.edu.tw)
關鍵字(中) 酵母菌BY4742
酒精發酵
突變
酒精耐受性
關鍵字(英) Saccharomyces cerevisiae BY4742
alcohol fermentation
mutation
ethanol tolerance
第三語言關鍵字
學科別分類
中文摘要
酒精不管做為能源還是食物一直以來是人類依賴的重要產物,如何產酒以及增加產酒效率一直以來是工業中的課題之一。
    在過往的研究中,學家利用Methylnitronitrosoguanidine(MNNG)或Ethyl Methane Sulfonate(EMS)藥劑與UV突變法對酵母菌BY4742菌株進行基因突變,更有利用Global transcription machinery engineering (gTME)基因工程的方式轉換細胞基因,期望利用改變原有基因配置能增加酵母菌在高醣高酒精的環境下酒精生產的效率。
    本實驗採UV突變法並以3000、4000、5000μJ/cm2強度進行照射突變,再藉由高濃度葡萄糖與高濃度酒精的培養條件,對已隨機突變過的菌株進行連續液態篩選,初步篩選出具有高醣高酒精耐受性的菌種。
英文摘要
Alcohol has always been an important product of human dependence,
whether it is energy or food. How to produce wine and increase the efficiency of 
wine production has always been one of the topics in the industry.
    In previous studies, scientists used Methylnitronitrosoguanidine (MNNG) 
or Ethyl Methane Sulfonate (EMS) agents and UV mutations to genetically 
mutate the yeast BY4742 strain, furthermore, converted the genes of the cells by 
using Global transcription machinery engineering (gTME), expected to use the 
altered original gene configuration that can increase the efficiency of yeast 
production in high concentration of glucose and alcohol environments.
    In our experiment, UV mutation method was used to irradiate mutations 
with intensity of 3000, 4000 and 5000 μJ/cm2, and the strains with random 
mutations were subjected to continuous liquid screening by high-concentration 
glucose and high-concentration alcohol culture conditions. In order to find a 
strain with high sugar and high alcohol tolerance.
第三語言摘要
論文目次
謝誌	I
中文摘要	II
英文摘要	III
總目錄	IV
圖表目錄	VI
第一章	緒論	1
1.1	前言	1
1.2	研究背景	1
1.3	研究動機	3
第二章	材料與方法	5
2.1	實驗材料	5
2.1.1	菌株	5
2.1.2	實驗藥品與溶液製備	5
2.1.2.1	藥品	5
2.1.2.2	溶液製備	6
2.1.3	實驗儀器	10
2.2	實驗方法	13
2.2.1	菌株突變	13
2.2.2	菌株篩選	14
2.2.3	生長能力測試	15
2.2.4	發酵能力測試	15
第三章	結果與討論	17
3.1	菌株突變	17
3.2	篩選方式	19
第四章	結論	22
第五章	參考資料	23
 
圖表目錄
圖1糖酵解與發酵過程	2
圖2酵母菌作為酒精發酵菌種的優勢與劣勢	4
圖3分光光度計	10
圖4 UV crosslinker	10
圖5倒立顯微鏡	11
圖6高壓滅菌釜	12
圖7酸鹼測量儀	12
圖8實驗流程	13
圖9滾珠圖盤分布情形	18
圖10使用UV突變致死率	19
圖11不同篩選條件下細胞密度	20
參考文獻
1.	McGovern, P.E., et al., Fermented beverages of pre- and proto-historic China, Proceedings of the National Academy of Sciences, 2004. 101(51), P. 17593-17598.
2.	G. M. Walker, 125th Anniversary Review: Fuel Alcohol: Current Production and Future Challenges., J. Inst. Brew, 2011.117(1), P.3–22.
3.	Li, p., Sakuragi, k., Makino, H., Extraction techniques in sustainable biofuel production: A concise review, Fuel Processing Technology, 2019,193, P. 295-303.
4.	Gray K.A., Zhao L., Emptage M., Current Opinion in Chemical Biology , Bioethanol, 2006. 10, P.141-146.
5.	Antoni, D., Zverlov, V., Schwarz, W., Biofuels from microbes, Applied Microbiology and Biotechnology, 2007. 77, P. 23-35.
6.	Stokstad, E., Biofuels. Engineered superbugs boost hopes of turning seaweed into fuel. Science (New York, NY), 2012. 335,P. 273.
7.	Balat, M., Balat, H., Oz, C., Progress in bioethanol processing. Progress in Energy and Combustion Science, 2008. 34, P. 551-573.
8.	Walker, G. M., Walker, R. S. K., Enhancing Yeast Alcoholic Fermentations, Advances in Applied Microbiology, 2018. 105, P.87-129.
9.	Stanley, D., Bandara, A., Fraser, S., Chambers, P.J., Stanley, G.A. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of Applied Microbiology, 2010. 109, P. 13-24.
10.	You, K.M., Rosenfield, C.L., Knipple, D.C., Ethanol Tolerance in the Yeast Saccharomyces cerevisiae Is Dependent on Cellular Oleic Acid Content, Applied and Environmental Microbiology, 2003. 69,P. 1499-1503.
11.	Stanley, D., Fraser, S., Chambers, P., Rogers, P., Stanley, G. Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. Journal of Industrial Microbiology & Biotechnology, 2010. 37,P. 139-149.
12.	Alper, H., Moxley, J., Nevoigt, E., Fink, G.R., Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science (New York, NY), 2006. 314, P. 1565-1568.
13.	Qin, Y., Dong, Z.Y., Liu, L.M., Chen, J., Manipulation of NADH metabolism in industrial strains, Chin J. Biotech, 2009. 25(2), P. 161-169.
14.	Lam, F.H., Ghaderi, A., Fink, G.R., Stephanopoulos, G., Engineering alcohol tolerance in yeast. Science, 2014. 346, P. 71–75.
15.	Lawrence, C.W., Classical mutagenesis techniques, Methods in Enzymology, 1991. 194, P. 273-281.
16.	Lin, C.L., The effect of overexpressing ADH3p in Saccharomyces cerevisiae BY4742 & ΔADH3 strain(BY4741)on mitochondrial morphology, Thesis of Tamkang University,Department of chemistry,2014.
17.	Lin, H.Y., ΙΙ. Improving ethanol and high-glucose tolerance of Saccharomyces cerevisiae by random mutagenesis, Thesis of Tamkang University,Department of chemistry,2012.
18.	Lin, Y., et al., Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742, Biomass and Bioenergy, 2012. 47, P. 395-401.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信