§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2709201612560100
DOI 10.6846/TKU.2016.00955
論文名稱(中文) 無線攝像感測網路中攝像機選擇機制以利部份辨識目標覆蓋
論文名稱(英文) Cameras Selection for Partial-View Target Coverage in Wireless Camera Sensor Networks
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系全英語碩士班
系所名稱(英文) Master's Program, Department of Computer Science and Information Engineering (English-taught program)
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 白若盟
研究生(英文) RAMON DARIO BORJA MARTINEZ
學號 603780098
學位類別 碩士
語言別 英文
第二語言別
口試日期 2016-07-04
論文頁數 25頁
口試委員 指導教授 - 石貴平(darioborj@gmail.com)
委員 - 王三元
委員 - 王勝石
關鍵字(中) 無線攝影機感測網路
部份影像覆蓋
攝影機
目標覆蓋
關鍵字(英) Wireless Camera Sensor Networks
Partial-View Coverage
Cameras
Target Coverage
第三語言關鍵字
學科別分類
中文摘要
這篇論文主要在研究攝相感測網路(Wireless Camera Sensor Networks,,
WCSNs)中的目標覆蓋問題(Target coverage problem)。主要使用多個攝影機彼此合作來達到辨識目標物,而不像過去只用單一攝影機來機辨識目標,因此這篇論文提出一個運用最少的攝相機來達最大目標部分覆蓋(Maximum Partial-View Coverage with Minimum Camera Sensor Problem, MPCMCP)的問題,來找出如何使用最少攝影機數量達到最佳部分影像覆蓋
英文摘要
The thesis investigates the target coverage problem in wireless camera sensor networks such that a target can not only be sensed, but also be recognized. Instead of using one camera sensor to sense and recognize a target, to reduce the amount of deployed sensors, the paper takes advantage of multiple camera sensors to cooperatively sense and recognize a target. The target is recognized by integrating the views from the camera sensors sensing it. Therefore, the paper proposes the Maximum Partial-View Coverage with Minimum Camera Sensor Problem (MPCMCP) which aims to find the best and minimum number of cameras to do the partial-view coverage.
第三語言摘要
論文目次
Table of Contents
CHAPTER 1. INTRODUCTION	1
1.1	WIRELESS SENSOR NETWORKS AND WIRELESS CAMERA SENSOR NETWORKS	1
1.2	MOTIVATION	2
1.3	APPROACH	3
1.4	THESIS OUTLINE	4
CHAPTER 2. RELATED WORK	5
2.1	WIRELESS CAMERA SENSOR NETWORKS	5
2.2	RELATED WORK	5
CHAPTER 3. PRELIMINARIES	8
3.1	OVERVIEW	8
3.2	DEFINITIONS	8
3.3	ASSUMPTIONS	10
CHAPTER 4. CAPTURE DEGREE BY A CAMERA SENSOR	11
4.1	TARGET COVERAGE CHECK (TCC)	12
4.1.1	Coverage Check when the Target is a Point	12
4.1.2	Coverage Check when the Target is a Circle	14
4.2	CALCULATING THE CAPTURE DEGREE	15
4.2.1	The Capture Degree when the Target is a Point	15
4.2.2	The Capture Degree when the Target is a Circle	16
CHAPTER 5. MAXIMUM PARTIAL-VIEW COVERAGE WITH MINIMUM CAMERA SENSOR PROBLEM (MPCMCP)	18
5.1	PROBLEM IDENTIFICATION	18
5.2	THE MPCMCP	21
CHAPTER 6. CONCLUSION	22
REFERENCE	23

List of Figures 
Figure 1. Different sensing ranges. (a) Traditional sensor: disk-like sensing range, (b) Camera sensor: sector-like sensing range.	2
Figure 2. Full-View Coverage Model	5
Figure 3. The related definitions	9
Figure 4. Degree of recognition	9
Figure 5. Capture degree by Camera Sensor	10
Figure 6. Polar Coordinate	10
Figure 7. The two target types	11
Figure 8. Target inside the sensing range	11
Figure 9. Condition 1 for target coverage check when target is a point.	13
Figure 10. Condition 2 for target coverage check when target is a point.	13
Figure 11. Condition 1 for target coverage check when target is a circle.	14
Figure 12. Condition 2 for target coverage check when target is a circle.	15
Figure 13. Capture Degree of a Point	16
Figure 14. An example of calculating the capture degree when a target is a point.	16
Figure 15. Tangent points	17
Figure 16. The angles α and β	17
Figure 17. Deployment around a target.	19
Figure 18. Target is partially covered (red)	19
Figure 19. Partial-view Coverage	20
參考文獻
Reference
[1]	I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: A survey,” Computer Networks, vol. 38, pp. 393–422, 2002.
[2]	 L. M. L. Oliveira and J. J. P. Rodrigues, “Wireless sensor networks: A survey on environmental monitoring,” Journal of Communications, vol. 6, no. 2, pp. 143–151, Apr. 2011.
[3]	P. Rawat, K. D. Singh, H. Chaouchi, and J. M. Bonnin, “Wireless sensor networks: A survey on recent developments and potential synergies,” Journal of Supercomputing, vol. 68, pp. 1–48, 2014.
[4]	J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor networks survey,” Computer Networks, vol. 52, pp. 2292–2330, 2008.
[5]	I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless multimedia sensor networks,” Computer Networks, vol. 51, pp. 921–960, 2007. 
[6]	K.-P. Shih, C.-M. Chou, I.-H. Liu, and C.-C. Li, “On barrier coverage in wireless camera sensor networks,” in Proceedings of the IEEE International Conference on Advanced Information Networking and Applications (AINA), 2010. 
[7]	Y. Wang and G. Cao, “On full-view coverage in camera sensor networks,” in Proceedings of the IEEE INFOCOM, the Annual Joint Conference of the IEEE Computer and Communications Societies, 2011.
[8]	Y. Wang and G. Cao. Barrier coverage in camera sensor networks. In Proc. of the ACM MobiHoc, 2011. 
[9]	H. Ma, M. Yang, D. Li, Y. Hong, and W. Chen, “Minimum camera barrier coverage in wireless camera sensor networks,” in Proceedings of the IEEE INFOCOM, the Annual Joint Conference of the IEEE Computer and Communications Societies, 2012.
[10]	Y. Morsly, N. Aouf, M. S. Djouadi, and M. Richardson, “Particle swarm optimization inspired probability algorithm for optimal camera network placement,” IEEE Sensors J., vol. 12, no. 5, pp. 1402–1412, May 2012. 
[11]	P. Balister, Z. Zheng, S. Kumar, and P. Sinha. Trap coverage: Allowing coverage holes of bounded diameter in wireless sensor networks. In IEEE INFOCOM ,2009.
[12]	C.-F. Huang and Y.-C. Tseng. The coverage problem in a wireless sensor network. In ACM WSNA 2003.
[13]	Y. Wang and G. Cao. Minimizing service delay in directional sensor networks. In IEEE INFOCOM 2011.
[14]	Y. Cai, w. Lou, M. Li, and X.-Y. Li. Energy efficient target-oriented scheduling in directional sensor networks. IEEE Trans. Comput., 58(9): 1 259-1 274, 2009.
[15]	Y. Cai, W. Lou, M. Li, X.-Y. Li, Target-oriented scheduling in directional sensor networks, in: INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE, 2007, pp. 1550 –1558.
[16]	H. Yang, D. Li, H. Chen, Coverage quality based target-oriented scheduling in directional sensor networks, in: Communications (ICC), 2010 IEEE International Conference on, 2010, pp. 1 –5.
[17]	H. W. H. Chen, N. Tzeng, Grid-based approach for working node selection in wireless sensor networks, in: Communications, 2004 IEEE International Conference on, Vol. 6, IEEE, 2004, pp. 3673 –3678.
[18]	S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava, “Coverage problems in wireless ad hoc sensor networks,” in Proc. IEEE Infocom Conf., 2001, pp. 1380–1387.
[19]	M.P. Johnson and A. Bar-Noy. Pan and scan: configuring cameras for coverage. In Proc. of IEEE INFOCOM, 2011.
[20]	Y. Wu and X. Wang,” Achieving Full View Coverage with Randomly-Deployed Heterogeneous Camera Sensors,” in Proc. IEEE ICDCS, Macau, China, 2012, pp. 556-565.
[21]	Yang Gui, Fan Wu, Xiaofeng Gao and Guihai Chen, "Full-view barrier coverage with rotatable camera sensors", Communications in China (ICCC) 2014 IEEE/CIC International Conference on, pp. 818-822, 2014.
[22]	Rui Yang, Xiaofeng Gao, Fan Wu and Guihai Chen, "Distributed Algorithm for Full-View Barrier Coverage with Rotatable Camera Sensors", Global Communications Conference (GLOBECOM) 2015 IEEE, pp. 1-6, 2015.
[23]	T-Hao, Liu. “On Partial-View Coverage in Wireless Camera Sensor Networks” M.A. thesis, Tamkang University, Taiwan, 2014.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信