§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2708201918310000
DOI 10.6846/TKU.2019.00931
論文名稱(中文) 中空纖維模組於醇胺水溶液吸收二氧化碳之解析解與實驗研究
論文名稱(英文) Theoretical and Experimental Studies of Laminar Flow Carbon Dioxide Absorption through a Hollow Fiber Gas-Liquid Membrane Contactor
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 黃建彰
研究生(英文) Chien-Chang Huang
學號 607400156
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-12
論文頁數 89頁
口試委員 指導教授 - 何啟東(067241@mail.tku.edu.tw)
委員 - 陳俊成(luke@mail.tku.edu.tw)
委員 - 涂志偉(891360033@s91.tku.edu.tw)
關鍵字(中) 中空纖維管薄膜模組
薄膜氣體吸收
共軛格拉茲問題
乙醇胺
關鍵字(英) Gas absorption
Hollow fiber
Membrane contactor
Conjugated Graetz problem
第三語言關鍵字
學科別分類
中文摘要
本研究主要是探討以中空纖維管模組應用在薄膜氣體吸收系統之解析解與實驗之驗證。針對中空纖維管薄膜模組的部份,建立其速度分佈式及邊界條件。而在薄膜氣體吸收系統中,氣體溶質於氣、液兩相內之質傳屬於共軛格拉茲問題,利用正交性質展開法建立二維濃度分佈式,並配合分離變數法及級數展開可求得系統之解析解,且利用乙醇胺之化性,建構二氧化碳/乙醇胺之薄膜吸收系統,針對中空纖維管模組系統之實驗操作,並建構數學理論的研究,也進一步推導出氣體溶質在氣-液薄膜接觸器內,於氣、液兩相中之平均濃度、吸收速率及吸收效率等物理量之數學表示式。
以本文所建構之理論為基礎,改變氣、液兩相之進料流量與混合氣體進料的濃度,對二氧化碳之化學吸收作廣泛的討論,並且配合實驗分析結果印證理論分析之準確性,研究之主要價值在於無需經過冗長費時的實驗即可求得整個吸收系統之質傳係數及氣體溶質的二維濃度分佈式,進一步可討論各種變因對吸收效率的影響。
英文摘要
The device performance of the membrane gas absorption system was investigated theoretically and experimentally in the present study. A two-dimensional mathematical formulation was developed in a hollow fiber gas–liquid membrane contactor with gas and liquid flow rates regulated independently.  Physical absorption of carbon dioxide by amine was carried out and illustrated to validate the theoretical predictions.  The resultant partial differential equations, as referred to conjugated Graetz problems, were solved analytically using the separated variable method associated with an orthogonal expansion technique. The absorption efficiency was studied with the absorbent flow rate, gas feed flow rate and CO2 concentration in the gas feed as parameters. The theoretical predictions show that the effect of the initial carbon dioxide concentration in the gas feed on the absorption efficiency is match.  The influences of operating and design parameters on the absorption efficiency and total absorption rate are also discussed.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	III
圖目錄	VI
表目錄	IX
符號說明	X
第一章 緒 論	1
1.1 簡介	1
1.1.1薄膜氣體吸收	1
1.1.2醇胺的種類及特性於二氧化碳吸收	2
1.1.3格拉茲問題(Graetz problems)	4
1.2 研究動機與方向	4
第二章文獻回顧	6
2.1 文獻回顧	6
2.2格拉茲問題(Graetz problems)	8
第三章中空纖維管順流式氣-液薄膜接觸器	11
3.1 基本理論	11
3.2 平均濃度與質傳係數	21
3.3 吸收速率與吸收效率	22
3.4 計算範例、結果與討論	22
第四章中空纖維管逆流式氣-液薄膜接觸器	28
4-1 基本理論	28
4-2 平均濃度與質傳係數	34
4-3 吸收速率與吸收效率	34
4-4計算範例、結果與討論	35
第五章實驗分析	40
5.1中空纖維管薄膜吸收系統	40
5.2 中空纖維管薄膜吸收模組	44
5.2.1藥品	44
5.3 實驗步驟	46
5.3.1 薄膜順流吸收實驗	46
5.3.2 薄膜逆流吸收實驗	47
5.3.3中空纖維管薄膜清洗	47
5.3.4中空纖維管改質[57]	47
5.4 結果與討論	48
第六章結 論	58
參考文獻	59
附錄A:正交性質證明	66
附錄B:積分公式證明	69
B.1中空纖維模組順流系統積分公式	70
B.2中空纖維模組逆流系統積分公式	73
附錄C:展開係數求解過程	75
C.1 中空纖維模組順流展開系數	81
C.2中空纖維模組逆流展開係數	84
附錄D:平均濃度	87
D.1中空纖維模組順流系統平均濃度	88
D.2中空纖維模組逆流系統平均濃度	89
	
	 
圖目錄
圖3.1中空纖維管模組順流式氣-液薄膜吸收器。	24
圖3.2中空纖維管模組順流系統中,理論之吸收效率與液相流率之關係。 ( Qa = 3.33 cm3/s,n=7 )	25
圖3.3中空纖維管模組順流系統中,理論之吸收效率與液相流率之關係。 ( Qa = 3.33 cm3/s,n=19 )	26
圖4.1中空纖維管模組順流式氣-液薄膜吸收器。	36
圖4.2中空纖維管模組逆流系統中,理論之吸收效率與液相流率之關係。 ( Qa= 3.33 cm3/s,n=7 )	37
圖4.3中空纖維管模組逆流系統中,理論之吸收效率與液相流率之關係。 ( Qa= 3.33 cm3/s,n=19 )	38
圖5.1順流中空纖維管薄膜吸收系統簡圖	41
圖5.2逆流中空纖維管薄膜吸收系統簡圖	41
圖5.3中空纖維管模組順流系統中,理論與實驗之氣相平均濃度與液相流率之關係(n=7)。	50
圖5.4中空纖維管模組逆流系統中,理論與實驗之氣相平均濃度與液相流率之關係(n=7)。	50
圖5.5中空纖維管模組順流系統中,理論與實驗之二氧化碳吸收速率與液相流率之關係。( Qa = 3.33 cm3/s, n=7 )	51
圖5.6中空纖維管模組逆流系統中,理論與實驗之二氧化碳吸收速率與液相流率之關係。( Qa= 3.33 cm3/s, n=7 )	51
圖5.7中空纖維管模組順流系統中,理論與實驗之二氧化碳吸收速率與液相流率之關係。( Qa= 3.33 cm3/s, n=19 )	52
圖5.8中空纖維管模組逆流系統中,理論與實驗之二氧化碳吸收速率與液相流率之關係。( Qa= 3.33 cm3/s, n=19 )	52
圖5.9中空纖維管模組順流系統中,理論與實驗之二氧化碳薄膜通量與液相流率之關係。( Qa= 3.33 cm3/s, n=7 )	53
圖5.10中空纖維管模組逆流系統中,理論與實驗之二氧化碳薄膜通量與液相流率之關係。( Qa= 3.33 cm3/s, n=7 )	53
圖5.11中空纖維管模組順流系統中,理論與實驗之二氧化碳薄膜通量與液相流率之關係。( Qa= 3.33 cm3/s, n=19 )	54
圖5.12中空纖維管模組逆流系統中,理論與實驗之二氧化碳薄膜通量與液相流率之關係。( Qa= 3.33 cm3/s, n=19 )	54
圖5.13中空纖維管模組順流系統中,理論與實驗之吸收效率與液相流率之關係。( Qa= 3.33 cm3/s, n=7 )	55
圖5.14中空纖維管模組逆流系統中,理論與實驗之吸收效率與液相流率之關係。( Qa= 3.33 cm3/s, n=7 )	55
圖5.15中空纖維管模組順流系統中,理論與實驗之吸收效率與液相流率之關係。( Qa= 3.33 cm3/s, n=19 )	56
圖5.16中空纖維管模組逆流系統中,理論與實驗之吸收效率與液相流率之關係。( Qa = 3.33 cm3/s, n=19 )	56
 
表目錄
表3.1 實驗參數。	23
表3.2中空纖維管順流式薄膜接觸器特徵值數目對無因次平均出口濃度之比較。	27
表4.1 中空纖維管逆流式薄膜接觸器特徵值數目對無因次平均出口濃度之比較。	39
表5.1 實驗值與理論值之平均誤差(n=7)	57
表5.2 實驗值與理論值之平均誤差(n=19)	57
參考文獻
1. G. Sartori, D. W. Savage, Sterically hindered amines for carbon dioxide removal from gases, Ind. Eng. Chem. Fundam., 22, 239 (1983).
2. T. Chakravarty, U. K. Phukan, R. H. Weiland, Reaction of Acid Gases with Mixtures of Amine. Chem. Eng. Prog., 81, 32 (1985).
3. Kohl, A. L. and R. B. Nielsen, (1997). Gas Purification, 5th edition. Gulf, Houston, TX.
4. Z. Qi and E. L. Cussler, Microporous Hollow Fibers for Gas Absorption I. Mass Transfer in the Liquid, J. Membr. Sci., 23 (1985) 321-332.
5. Z. Qi and E. L. Cussler, Microporous Hollow Fibers for Gas Absorption II. Mass Transfer Across the Membrane, J. Membr. Sci., 23 (1985) 333-345.
6. M. C. Yang and E. L. Cussler, Designing Hollow-Fiber Contactors, AIChE J., 32 (1986) 1910-1916.
7. D. O. Cooney and C. C. Jackson, Gas Absorption in a Hollow Fiber Device, Chem. Eng. Comm., 79 (1989) 153-163.
8. H. Kreulen, G. F. Versteeg, C. A. Smolders and W. P. M. van Swaaij, Selective Removal of H2S from Sour Gas with Microporous Membranes. Part I. Application in a Gas-Liquid System, J. Membr. Sci., 73 (1992) 293-304.
9. M. J. Costello, A. G. Fane, P. A. Hogan and R. W. Schofield, The Effect of Shell Side Hydrodynamics on the Performance of Axial Flow Hollow Fiber Modules, J. Membr. Sci., 80 (1993) 1-11.
10. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 1. Physical Mass Transfer Process. A specific application: Mass Transfer in Highly Viscous Liquids, J. Membr. Sci., 78 (1993) 197-216.
11. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 2. Mass Transfer with Chemical Reaction, J. Membr. Sci., 78 (1993) 217-238.
12. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Determination of Mass Transfer Rates in Wetted and Non-Wetted Microporous Membranes, Chem. Eng. Sci., 48 (1993) 2093-2102.
13. S. Karoor and K. K. Sirkar, Gas Absorption Studies in Microporous Hollow Fiber Membrane Modules, Ind. Eng. Chem. Res., 32 (1993) 674-684.
14. H. A. Rangwala, Absorption of Carbon Dioxide into Aqueous Solutions Using Hollow Fiber Membrane Contactor, J. Membr. Sci., 112 (1996) 229-240.
15. H. Chen, A. S. Kovvali, S. Majumdar and K. K. Sirkar, Selective CO2 Separation from CO2-N2 Mixtures by Immobilized Carbonate-Glycerol Membrane, Ind. Eng. Chem. Res., 38 (1999) 3489-3498.
16. Y. S. Kim and S. M. Yang, Absorption of Carbon Dioxide Through Hollow Fiber Membrane Using Various Aqueous Absorbent, Sep. Purif. Technol. 21 (2000) 101-109.
17. Y. Lee, R. D. Noble, B. Y. Yeom, Y. I. Park and K. H. Lee, Analysis of CO2 removal by Hollow Fiber Membrane Contactors, J. Membr. Sci., 194 (2001) 57-67.
18. V. Y. Dindore, D. W. F. Brilman, F. H. Geuzebroek and G. F. Versteeg, Membrane-Solvent Selection for CO2 Removal Using Membrane Gas-Liquid Contactors, Sep. Purif. Technol., 40 (2004) 133-145.
19. V. Y. Dindore, D. W. F. Brilman, P. H. M. Feron and G. F. Versteeg, CO2 Absorption at Elevated Pressures Using a Hollow Fiber Membrane Contactor, J. Membr. Sci., 235 (2004) 99-109.
20. S. Nii and H. Takeuchi, Gas Absorption with Membrane Permeation-Acid Gas Removal from Flue Gases by a Permabsorption Method, Trans IChemE., 72 (1994) 21-26.
21. P. H. M. Feron and A. E. Jansen, Capture of Carbon Dioxide Using Membrane Gas Absorption and Reuse in the Horticultural Industry, Energy Convers. Mgmt, 36 (1995) 411-414.
22. S. Bhaumik, S. Majumdar and K. K. Sirkar, Hollow-Fiber Membrane-Based Rapid Pressure Swing Absorption, AIChE J., 42 (1996) 409-421.
23. P. H. M. Feron and A. E. Jansen, The Production of Carbon Dioxide from Flue Gas by Membrane Gas Absorption, Energy Convers. Mgmt., 38 (1997) S93-S98.
24. M. S. Chun and K. H. Lee, Analysis on a Hydrophobic Hollow-Fiber Membrane Absorber and Experimental Observations of CO2 Removal by Enhanced Absorption, Sep. Sci. Technol., 32 (1997) 2445-2466.
25. K. Li and W. K. Teo, Use of Permeation and Absorption Methods for CO2 Removal in Hollow Fiber Membrane Modules, Sep. Purif. Technol., 13 (1998) 79-88.
26. D. Bhaumik, S. Majumdar and K. K. Sirkar, Absorption of CO2 in a Transverse Flow Hollow Fiber Membrane Module Having a Few Wraps of the Fiber Mat, J. Membr. Sci., 138 (1998) 77-82.
27. A. Gabelman and S. T. Hwang, Hollow Fiber Membrane Contactor, J. Membr. Sci., 159 (1999) 61-106.
28. P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron and G. F. Versteeg, New Absorption Liquids for the Removal of CO2 from Dilute Gas Streams Using Membrane Contactors, Chem. Eng. Sci., 57 (2002) 1639-1651.
29. M. Mavroudi, S. P. Kaldis and G. P. Sakellaropoulos, Reduction of CO2 Emissions by a Membrane Contacting Process, Fuel, 82 (2003) 2153-2159.
30. S. S. Kim ans D. O. Cooney, An Improved Theoretical Model for Hollow-Fiber Enzyme Reactors, , Chem. Eng. Sci., 31 (1976) 289-294.
31. J. E. Vivian and C. J. King, Diffusivities of Slightly Soluble Gases in Water, AIChE J., 10 (1964) 220-221.
32. W.P. Wang, H.T. Lin, C.D. Ho, An Analytical Study of Laminar Co-current Flow Gas Absorption through a Parallel-Plate Gas-Liquid Membrane Contactor, J. Membr. Sci, 278 (2006) 181-189.
33. C. D. Ho, Y. J. Sung, Y. C. Chuang, An Analytical Study of Laminar Concurrent Flow Membrane Absorption through a Hollow Fiber Gas-Liquid Membrane Contactor, J. Membr. Sci., 428 (2013) 232-240.
34. B. P. Xiao, A. K. Biswas, S. S. Li, Absorption of Carbon Dioxide into Aqueous Blends of 2-Amino-2-Methyl-1-Propanol and Diethanolamine, Chem. Eng. Sci, 58 (2003) 4137-4144.
35. G. M. Brown, Heat or Mass Transfer in a Fluid in Laminar Flow in a Circular or Flat Conduit, AIChE J., 6 (1960) 179-183.
36. T. L. Perelman, On Conjugated Problems of Heat Transfer, Int. J. Heat Mass Transfer, 3 (1961) 293-303.
37. 	A. P. Hatton and A. Quarmby, Heat Transfer in the Thermal Entry Length with Laminar Flow in an Annulus, Int. J. Heat Mass Transfer, 5 (1962) 973-980.
38. 	R. J. Nunge and W. N. Gill, Analysis of Heat or Mass Transfer in Some Countercurrent Flows, Int. J. Heat Mass Transfer, 8 (1965) 873-886.
39. 	R. J. Nunge and W. N. Gill, An Analytical Study of Laminar Counterflow Double-Pipe Heat Exchangers. AIChE J., 12 (1966) 279-289.
40. 	C. J. Hsu, Heat Transfer in a Round Tube with Sinusoidal Wall Heat Flux Distribution, AIChE J., 11 (1965) 690-695.
41. 	E. J. Davis, Exact Solutions for a Class of Heat and Mass Transfer Problems, Can. J. Chem. Eng., 51 (1973) 562-572.
42. H. M. Yeh, T.W. Chang and S. W. Tsai, A Study of the Graetz Problems in Concentric-Tube Continuous-Contact Countercurrent Separation Process with Recycles at Both Ends, Sep. Sci. Technol., 21 (1986) 403-419.
43. M. A. Ebadian and H. Y. Zhang, An Exact Solution of Extend Graetz Problem with Axial Heat Conduction, Int. J. Heat Mass Transfer, 32 (1989) 1709-1717.
44. X. Yin and H. H. Bau, The Conjugated Graetz Problem with Axial Conduction, J. Heat Trans, 118 (1996) 482-485.
45. C. D. Ho, H. M. Yeh and W. S. Sheu, An Analytical Study of Heat and Mass Transfer through a Parallel-Plate Channel with Recycle, Int. J. Heat Mass Transfer, 44 (1998) 2589-2599.
46. C. D. Ho and W. Y. Yang, Heat Transfer of Conjugated Graetz Problems with Laminar Counterflow in Double-pass Concentric Circular Heat Exchangers, Int. J. Heat Mass Transfer, 48 (2005) 4474-4480. 
47. R. O. C. Guedes and M. N. Ozisik, Conjugated Turbulent Heat Transfer with Axial Condition in Wall and Convection Boundary Conditions in a Parallel-Plate Channel, Int. J. Heat and Fluid Flow, 13 (1992) 322.
48. E. J. Davis and S. Venkatesh, The Solution of Conjugated Multiphase Heat and Mass Transfer Problems, Chem. Eng. Sci., 34 (1978) 775-787.
49. E. Papoutsakis and D. Ramkrishna, Conjugated Graetz Problems-I General Formalism and a Class of Solid-Fluid Problems, Chem. Eng. Sci., 36 (1981) 1381-1391.
50. E. Papoutsakis and D. Ramkrishna, Conjugated Graetz Problems-II Fluid-Fluid Problems, Chem. Eng. Sci., 36 (1981) 1393-1399.
51. M. R. Doshi, P. M. Daiya and W. N. Gill, Three Dimensional Laminar Dispersion in Open and Close Rectangular Conduits, Chem. Eng. Sci., 33 (1978) 795-804.
52. 	C. W. Tan and C. J. Hsu, Low Peclet Number Mass Transfer in Laminar Flow Through Circular Tubes, Int. J. Heat Mass Transfer, 15 (1972) 2187-2201.
53. J. Happle, Viscous Flow Relative to Arrays of Cylinder, AIChE J., 5 (1959) 174.
54. V. Danckwerts, Insights into CHEMICAL ENGINEERING. New York: Pergamon press Inc., 1981.
55. Q. Zheng, L.H. Dong, J. Chen, G. Gao. W.Y. Fei, Absorption Solubility Calculation and Process Simulation for CO2 Capture, CIESC, 61 (2010) 1740-1746.
56. C. D. Ho, H. M. Yeh and R. C. Wang, Heat-Transfer Enhancement in Double-Pass Flat-Plate Solar Air Heaters with Recycle, Energy, 30 (2005) 2796-2817.
57. Chia-Chieh Ko, Chien-Hua Chen, Yi-Rui Chen, Yu-Hsun Wu, Soon-Chien Lu, Fa-Chun Hu, Chia-Ling Li and Kuo-Lun Tung, Increasing the Performance of Vacuum Membrane Distillation Using Micro-Structured Hydrophobic Aluminum Hollow Fiber Membranes, Appl. Sci.,7(2017), 357-367.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信