淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2708201611330400
中文論文名稱 以RFM為基礎之關聯規則建置服務推薦系統
英文論文名稱 Using RFM-based association rules to build a service recommendation system
校院名稱 淡江大學
系所名稱(中) 資訊管理學系碩士在職專班
系所名稱(英) On-the-Job Graduate Program in Advanced Information Management
學年度 104
學期 2
出版年 105
研究生中文姓名 洪千雯
研究生英文姓名 Chien Wen Hung
學號 701630302
學位類別 碩士
語文別 中文
口試日期 2016-05-29
論文頁數 85頁
口試委員 指導教授-解燕豪
委員-趙景明
委員-施盛寶
中文關鍵字 Recently、Frequency、Monetary模型  關聯規則  服務主導邏輯  旅遊業 
英文關鍵字 RFM  association rules  service-dominant logic  tourism industry 
學科別分類
中文摘要 現今企業競爭激烈,企業為了能永續經營,不斷的縮短產品開發時間外,也需要能快速反應顧客需求,所以企業也開始瞭解與滿足顧客的需求,與顧客建立良好關係,以往企業只重視實體產品,但現在也逐漸重視無形的服務,希望藉著提高服務品質,來提高顧客滿意度,以提高競爭力。所以企業開始透過產品的特性來設計服務內容,利用服務內容來提高顧客的保留率及市場佔有率。因此透過提供服務所產生的價值與內容的重要性,慢慢的逐漸超過有形的實體產品。
近年來網際網路蓬勃發展,導致服務資訊超載,為了讓顧客有效找到符合之服務資訊,因此出現了很多提供搜尋功能的系統,但目前的系統大部分都以產品導向,以產品之特徵為篩選的依據。但遺忘了服務的重要性及忽略了與顧客使用服務時所產生的價值為搜尋的重點。因此本研究以服務價值為推薦之依據,來提高所推薦服務的價值
所以本研究希望建立一個以服務為主的推薦系統,藉由RFM模型以分析出重要顧客名單及最有價值服務項目,然後用關聯規則探勘出,與最有價值服務項目之關聯性強的服務項目以推薦給顧客。為了來驗證此推薦系統之可行性及所推薦的服務項目是否符合顧客所需,本研究將所蒐集到的旅遊業資料,透過三個實驗『運用RFM模型分析顧客使用服務喜好』、『運用RFM模型分析顧客使用服務項目』、『運用關聯規則來產生有價值的服務項目之推薦清單』,分析出重要顧客名單,並推薦有價值的服務項目清單給顧客。
然後為了評估本研究的推薦系統的效能,以使用精確率(Precision)、回應率(Recall)與Fallout這三項指標來做評估,同時,本研究與關聯規則之Apriori演算法進行比較分析。由實驗結果顯示,本研究所建立的推薦系統的精確率、回應率及Fallout指標都大於傳統Apriori演算法,因此表示本研究之推薦系統能推薦具高價值的服務。
由實驗可得知,本研究透過RFM模型分析,將服務價值加以量化且保留下來,並且透過推薦系統來分享給下一位顧客。且可以針對不同行業領域來設定其服務項目,而所設定的服務項目可以跨領域性,不單單只有單一領域的推薦,以減少顧客的搜尋成本。而本研究所建立的推薦系統可以適用於不同的行業,將個別行業的服務項目設定於系統中,不會只侷限於旅遊業。
因為本研究實驗是套用國內旅遊業,而未加入國內旅遊業所重視的因素,加以調整相關權重比例,而未來的研究以此為基礎,來探討不同領域,或是結合不同領域,將不同領域所重視的因素加入,也可以根據領域上所重視的元素來調整參數的權重,然後也可以依據不同領域來設計可能創造出來的服務價值,讓所推薦之服務項目能更準確地符合顧客的需求,創造出更多元的服務項目。
英文摘要 Services have been important role to perform economic activities. In order to fulfill customer needs and increase customer retention and loyalty, enterprises attempt to design high quality services by considering good features. With the development of Internet, service information overloading becomes an essential issue nowadays. There are existing recommendation systems to help customers to find suitable information. However, these systems are built based on the product perspective rather considering values of services. Hence, this study aims to develop a service recommendation system to increase quality of services.
The service recommendation system is to find out the list of key customers and the list of key service items by applying the RFM and association rules approaches. Accordingly, this study conducts three experiments to verify the feasibility of the service recommendation system and evaluate the suitability of recommended services. Meanwhile, this study also uses Precision, Recall and Fallout to assess the performance of the service recommendation system by comparing to the mechanism of Apriori algorithm. The results show that the service recommendation system has higher performance than the mechanism of Apriori algorithm.
The research contributions are addressed as follows. Service values can be numerically represented and preserved via the RFM analysis. Valuable services are first to serve customers. The service recommendation system can be applied into different fields by defining suitable services in order to decrease searching cost. Finally, researchers can extend our system by considering other factors in different industries and defining proper weights to provide customers with high quality services for the further research.
論文目次 目錄
謹誌 I
目錄 VI
1.1研究背景 1
1.2研究動機 3
1.3研究問題 4
1.4研究目的 6
1.5研究架構 8
第貳章 文獻探討 10
2.1服務科學(Service Science) 10
2.2最近消費時間、使用頻率、消費金額(Recency 、Frequency 、Monetary ) 15
2.3關聯規則(Association Rules) 21
第參章 研究方法 29
3.1系統架構 30
3.2 RFM 模型分析 33
3.3 關聯規則分析(Association Rules Analysis) 44
第肆章實驗分析 50
4.1 實驗資料來源 51
4.2實驗程式語言與工具 51
4.3顧客旅遊資訊分析 52
4.4實驗一:運用RFM模型分析顧客使用服務喜好 53
4.5實驗二:運用RFM模型分析顧客使用服務項目 60
4.6實驗三:運用關聯規則產生服務項目推薦清單 67
4.7實驗四:評估推薦效能評估 69
4.8 討論與發現 72
第伍章 結論 75
5.1結論 75
5.2研究貢獻 76
5.4研究限制與範圍 78
5.5未來研究 78
參考文獻 80

表目錄
表2-1資料探勘基於RFM值的研究 20
表2-2運用資料探勘技術找出關聯規則的研究 27
表4-1顧客旅遊資訊(僅列舉部分資料) 53
表4-2顧客旅遊紀錄表 54
表4-3 顧客RFM 表 55
表4-4 顧客五等分RFM 表 56
表4-5顧客RFM 57
表4-6RFM五等分轉換對照表(服務喜好101) 58
表4-7RFM五等分轉換對照表(服務喜好103) 58
表4-8顧客五等分RFM 59
表4-9服務喜好之重要顧客數量表 60
表4-10顧客服務項目紀錄表 61
表4-11服務項目RFM表 62
表4-12服務項目五等分RFM表 63
表4-13服務項目RFM 64
表4-14服務喜好101之服務項目RFM五等分轉換對照表 65
表4-15服務喜好102之服務項目RFM五等分轉換對照表 65
表4-16服務項目五等分RFM 66
表4-17服務喜好之有價值服務項目表 67
表4-18顧客服務項目使用紀錄表 68
表4-19服務項目推薦清單 69
表4-20研究與Apriori推薦實驗之推薦效能結果 72

圖目錄
圖1-1論文架構 9
圖2-1產生高頻項目集之演算法過程 24
圖2-2 Apriori 演算法案例 26
圖3-1服務推薦系統處理流程 30
圖3-3顧客喜好RFM模型分析處理過程 33
圖3-4顧客服務喜好RFM模型分析處理過程 34
圖3-5顧客服務喜好RFM模型分析之系統架構 36
圖3-6 重要顧客RFM 演算法 38
圖3-7 顧客服務項目RFM分析 39
圖3-8顧客服務項目RFM模型分析之系統架構 40
圖3-9 有價值服務項目RFM 演算法 43
圖3-10服務關聯規則分析處理過程 44
圖3-11服務關聯規則分析之系統架構 45
圖3-12Apriori演算法 48
圖4-1實驗程式所運用技術之架構 52

參考文獻 參考文獻
[1] 中央研究院人心調查研究專題中心,<國人旅遊狀況調>,網址:https://srda.sinica.edu.tw/,上網日期:2016年5月31日
[2] R.F.Lusch、S.L.Vargo、G. Wessels, < Toward a conceptual foundation for service science: Contributions from service-dominant logic>, IBM Systems Journal, vol.47, no.1, pp.5-14, 2008.
[3] Stephen L.Vargo、Melissa Archpru Akaka,, Service Science, vol.1, no.1, pp.32-41, 2009
[4] Richard Normann, , Jossey-Bass,2001.
[5] Paul P.Maglio、Jim Spohrer,< Fundamentals of service science>, Journal of the Academy of Marketing Science,vol.36, no.1, pp.18-20, 2008
[6] Valarie A.Zeithaml, , The Journal of Marketing,vol.52,pp.2-22,1998
[7] Ruth N.Bolton、James H.Drew, , Journal of Consumer Research, vol.17, no.4, pp.375-384, 1991.
[8] Robert B. Woodruff, , Journal of the Academy of Marketing Science, vol.25, no.2, pp.139-153, 1997.
[9] Rakesh Agrawa、Tomasz Imielinski、Arun Swami,< Mining association rules between sets of items in large databases.>, ACM SIGMOD Record, vol.22, no.2, pp.207-216, 1993.
[10] Anand, N.、Gardner, H. K.、Morris, T., < Knowledge-based innovation: Emergence and embedding of new practice areas in management consulting firms>, Academy of Management Journal, vol.50, no.2, pp.406-428, 2007.
[11] Bult、J. R.、Wansbeek, T., , arketing Science, vol.14,no.4,pp. 378-394,1995.
[12] Chang, H.、Tsai, H., , Expert Systems with Applications, vol.38, no.12,
pp.14499-14513, 2011.
[13] Chen, R., , Environmental Impact Assessment Review, vol.29, no.3, pp.157-164, 2009
[14] Chen, Y、Kuo, M、Wu, S、Tang, K, < Discovering recency, frequency, and monetary (RFM) sequential patterns from customers’ purchasing data>, Electronic Commerce Research and Applications vol.8, no.5, pp.241-251, 2009.
[15] Cheng, C.、Chen, Y, , Expert Systems with Applications, vol.36, no.3, pp.4176-4184, 2009.
[16] Cheng, L、Sun, L, , Electronic Commerce Research and Applications, vol.11, no.2, pp.89-100, 2012.
[17] Chiang, W, , Expert Systems with Applications ,vol.38, no.3, pp.1716-1722, 2011.
[18] Cho, Y. H.、Kim, J. K, , Expert Systems with Applications ,vol.26, no.2, pp.233-246, 2004.
[19] Demirkan, H、Goul, M., < Service oriented technology management to improve organizational agility>, International Journal of Innovation and Technology Management, vol.6, no.01, pp.1-16, 2009.
[20] Dominguez-Péry, C.、Ageron, B、Neubert, G,
, International Journal of Production Economics, vol.141, no.2, pp.440-451, 2013
[21] Ernst, H., . International Journal of Management Reviews, vol.4, no.1, pp.1-40, 2002.
[22] Glushko, R. J, < Designing a service science discipline with discipline>, IBM Systems Journal, vol.47, no.1, pp.15-27, 2008.
[23] Groth, R, , Prentice Hall PTR., 2000
[24] Han, J.、Kamber, M.、Pei, J, , Morgan kaufmann, 2006.
[25] Hosseini、S. M. S、Maleki, A、Gholamian、M. R, ,Expert Systems with Applications, vol.37, no.7, pp.5259-5264, 2010
[26] Huang, S、Chang, E、Wu, H.,
, Expert Systems with Applications, vol.36, no.3, pp.5909-5915, 2009
[27] Hughes, A. M, , McGraw-Hill Pub.Co, 2005.
[28] Joo, Y. G、Sohn、S. Y, , Expert Systems with Applications, vol.34, no.1, pp.63-71, 2008
[29] Kaymak, U, < Fuzzy target selection using RFM variables>,IFSA World Congress and 20th NAFIPS International Conference, Joint 9th ,2, pp.1038-1043, 2001
[30]Koch、R, , Random House LLC, 2011.
[31] Liao, S.、Chen, Y.、Deng, M, , Expert Systems with Applications, vol.37, no.6, pp.4212-4223, 2010
[32] Lin, W、Alvarez、S. A.、Ruiz, C, < Efficient adaptive-support association rule mining for recommender systems>, Data Mining and Knowledge Discovery,vol.6, no.1, pp.83-105, 2002
[33] Linoff, G. S.、Berry, M、J.Mining, , John Wiley & Sons, Inc.
[34] Liu, D.、Shih, Y, < Hybrid approaches to product recommendation based on customer lifetime value and purchase preferences>, Journal of Systems and Software, vol.77, no.2, pp.181-191, 2005
[35] Maglio, P、Bailey, J、Gruhl, D, , Computer, vol.40, pp.71-77, 2007
[36] McCarty, J. A.、Hastak, M, , Journal of Business Research, vol.60, no.6, pp.656-662, 2007
[37] Miglautsch、J.R, < Thoughts on RFM scoring>. The Journal of Database Marketing, vol.8, no.1, pp.67-72, 2000.
[38] Ng, I. C.、Maull, R.、Yip, N, ., European Management Journal, vol.27, no.6, pp.377-387, 2009
[39] Rong, J.、Vu, H. Q、Law, R.、Li, G.,
, Tourism Management, vol.33, no.4, pp.731-740, 2012.
[40] Sampson, S. E.、Froehle、C. M., , Production and Operations Management, vol.15, no.2, pp.329-343, 2006.
[41] Schijns, J、Schröder, G. J, , Journal of Direct Marketing, vol.10, no.3, pp.69-79, 1996
[42] Shim, B.、Choi, K.,、Suh, Y, , Expert Systems with Applications, vol.39, no.9, pp.7736-7742, 2012
[43] Spohrer, J.、Maglio, P, , Presentation at IBM Almaden Research Center, 2005
[44] Spohrer, J.、Vargo, S. L.、Caswell, N.、Maglio, P. P., < The service system is the basic abstraction of service science>, Hawaii International Conference on System Sciences, Proceedings of the 41st Annual, pp.104-104
[45] Tsai, C.、Chiu, C,
, Expert Systems with Applications, vol.27, no.2, pp.265-276, 2004
[46]Vargo, S. L、Lusch, R. F, .Journal of Marketing, vol.68, no.1, pp.1-17, 2004
[47] Vargo, S. L.、Lusch, R. F., , Industrial Marketing Management, vol.37, no.3, pp.254-259, 2008
[48] Wang, Y.、Chuang, Y、Hsu, M、Keh, H.,
, Expert Systems with Applications, vol.26, no.3, pp 427-434, 2004
[49] Wu, J., & Lin, Z., , Proceedings of the 7th International Conference on Electronic Commerce, pp.316-318.
[50] Zhao, Q.、Bhowmick, S. S., , Nanyang Technological University, Singapore, 2003
[51] Zheng, C. L.、Hao, K. R.、Ding, Y. S,
, Advanced Materials Research, 765, pp.630-633, 2013
[52] Rakesh Agrawal、Ramakrishnan Srikan,>, Proceedings of the 20th VLDB Conference, Santiago, Chile, 1994
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2021-08-29公開。
  • 同意授權瀏覽/列印電子全文服務,於2021-08-29起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信