§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2708201412122300
DOI 10.6846/TKU.2014.01134
論文名稱(中文) 仿蜂鳥懸停機構套件之設計與製造
論文名稱(英文) Design and Manufacture of Hummingbird-like Flapping Mechanisms and Plastic Kits
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 洪堃銓
研究生(英文) Kun-Chuan Hung
學號 601370157
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-07-01
論文頁數 108頁
口試委員 指導教授 - 楊龍杰(ljyang@mail.tku.edu.tw)
委員 - 洪國永(kuoyung@mail.mcut.edu.tw)
委員 - 康尚文(swkang@mail.tku.edu.tw)
關鍵字(中) 拍翼微飛行器
四連桿
伊氏直線機構
塑膠射出成型
大行程拍翼角度
關鍵字(英) flapping micro-air-vehicle (MAV)
four-bar-linkage (FBL)
Evan's straight line mechanism
plastics injection molding
large flapping stroke
第三語言關鍵字
學科別分類
中文摘要
為設計一種多功能之拍翼微飛行器,本研究開發質輕與節能之新穎拍翼機構。作為整體拍翼微飛行器之最重要部分,本研究拍翼機構以四連桿機構為基礎架構進行改良與設計,並搭配整合伊氏直線機構,使兩翼相位差趨近於零,最大拍翼行程角接近120°,以產生足夠的空氣動力進行前飛巡航與垂直起降。本研究之拍翼機構經過三代的改良設計,使用放電線切割加工製作原型,最終成功開發模具進行塑膠射出成型,該聚甲醛(POM)機構質量僅1.78g。本研究透過高速攝影機拍攝機構運轉可得出其拍翼頻率,搭配20cm翼展輸出之拍翼頻率高達18.86Hz;並使用六軸力規搭配風洞量測該機構產生之升推力,在攻角70°姿態飛行時可產生升力13.4gf,大於拍翼微飛行器總質量9.7g;至於室外飛行測試,則成功在24秒內飛至高度20公尺。
英文摘要
In the body of research relevant to versatile flapping micro-air-vehicles (MAV), design and development of light-weight and energy-efficient flapping mechanisms occupies a position of primacy due to its immense impact on the flight performance and mission capability. Realization of a compact flapping mechanism that can produce adequate aerodynamic force for fulfilling the requirements of cruising forward flight and vertical take-off and landing (VTOL) needs the combination of the four-bar-linkage (FBL) and Evan's straight line mechanism. This paper presents the concerted approach adopted for developing the flapping wing mechanisms for 20 cm span flapping MAVs through an iterative approach involving three design iterations on mechanisms and multiple fabrications approaches such as electrical-discharge-wire-cutting (EDWC) and plastics injection molding. The minimum mass of the polyoxymethylene (POM) mechanism is only 1.78 gram and the maximum flapping frequency is 18.86 Hz. Performance characteristics for each mechanism are evaluated through high speed photography, power take-off measurement, wind tunnel testing and test flights. The maximum lift is 13.4 gram force under the angle of attack of 70° and is beyond the total mass 9.7 gram of the MAV. The resultant flapping mechanism with almost non-existent phase lag between the wings and the extra large flapping stroke up to 120 like birds push this 20 cm-span flapping MAV up to 20 m high in 24 sec.
第三語言摘要
論文目次
目錄
第一章 緒論	1
1-1研究背景	1
1-2 文獻回顧	4
1-3 研究目的	11
1-3-1 舊式史蒂芬生拍翼機構	12
1-3-2 舊式史蒂芬生拍翼機構存在之問題	15
第二章 拍翼尺度律與拍翼機規格	16
2-1 拍翼生物尺度律	16
2-2 拍翼飛行器之輕量化	18
2-3 拍翼動作與飛行器自身振動	19
第三章	懸停拍翼機構設計與分析	20
3-1 懸停機構設計	20
3-2 拍翼行程角	21
3-3 拍翼相位差	21
3-4機構設計流程	24
3-5 第一代拍翼機構	25
3-5-1 相位差	26
3-5-2 拓譜構造	27
3-6 第二代拍翼機構	30
3-6-1 相位差	31
3-6-2 拓譜構造	31
3-6-3 傳力角	33
3-7 伊氏拍翼機構	34
3-7-1 拓譜構造	35
3-7-2 機構尺寸設定	36
3-7-3 相位差	38
3-7-4傳力角	40
3-7-5 改變翼面與水平線之傾斜角	41
3-7-6 減速齒輪配置	43
3-8 伊氏與舊式史蒂芬生拍翼機構比較	45
第四章 拍翼機構製作	47
4-1 材料選擇	47
4-2 加工方式	47
4-3 機構組裝	49
第五章 實驗與量測	51
5-1 拍翼頻率量測	51
5-2 拍翼機構消耗扭矩量測	58
5-3 拍翼行程角與相位差分析	62
5-4 拍翼微飛行器升力與推力量測	64
第六章 射出成型開模製造	71
6-1 應力分析軟體介紹	71
6-2 桿件強化之應力與變形量分析	72
6-3 機構多種配置設計	80
6-4 模具與射出成型之零件	83
第七章 實際飛行測試	86
7-1 遙控接收機	86
7-2 拍翼微飛行器整體重量分佈	89
7-3 實際飛行測試	92
第八章 結論與未來展望	98
8-1 結論 	98
8-2 未來展望	99
參考文獻	101

 
圖目錄
圖1-1 初探者	3
圖1-2 初航者	3
圖1-3 第一代金探子	3
圖1-4 PRO-金探子	3
圖1-5雙側桿機構	3
圖1-6 實際飛行	3
圖1-7 AEROVIRONMENT蜂鳥懸停拍翼微飛行器	4
圖1-8 ROBOBEES蒼蠅拍翼微飛行器	5
圖1-9 HOON CHEOL PARK仿甲蟲拍翼微飛行器	5
圖1-10仿甲蟲拍翼微飛行器組成解說	6
圖1-11 球萵拍翼機構	6
圖1-12 雙對翼拍翼機構	7
圖1-13 雙曲柄單翼拍翼機構	7
圖1-14可變行程角之拍翼機構	7
圖1-15拍撲動作連續圖	8
圖1-16球面拍翼機構	8
圖1-17 拍翼軌跡	8
圖1-18 淡江蜂鳥	11
圖1-19 美國蜂鳥拍翼機構組成	12
圖1-20 舊式史蒂芬生拍翼機構	13
圖1-21 瓦特近似直線機構	13
圖1-22 拍翼行程角	13
圖1-23 拍翼行程角	14
圖1-24 桿件加厚	15
圖1-25 馬達與拍翼中心位置	15
圖2-1 「翼展VS.質量」尺度律	17
圖2-2 「拍翼頻率 VS.質量」尺度律	17
圖2-3 高速攝影機拍攝「金探子」	19
圖3-1 紅喉北蜂鳥	20
圖3-2 巨型蜂鳥	20
圖3-3 「金探子」四連桿拍翼機構	22
圖3-4 拍翼相位差	22
圖3-5 升力相位差與行程角相位差之關係	23
圖3-6 直線拍翼機構	23
圖3-7 美國蜂鳥拍翼機構示意圖	24
圖3-8 金探子四連桿機構	25
圖3-9 第一代拍翼機構	25
圖3-10 第一代拍翼機構簡圖	25
圖3-11  N型機構	26
圖3-12  A點之軌跡圖	26
圖3-13  A點之X軸偏移量	27
圖3-14 拍翼行程角	27
圖3-15 桿件命名	28
圖3-16 桿件編號	28
圖3-17 拍翼下行程連續圖	29
圖3-18 五連桿拍翼機構	30
圖3-19 曲柄搖桿機構	30
圖3-20 曲柄搖桿機構接點編號	30
圖3-21 曲柄搖桿機構運動軌跡	30
圖3-22 X軸之偏移量	31
圖3-23 拍翼行程角	31
圖3-24 桿件命名	32
圖3-25 接點編號	32
圖3-26 輸出桿與連桿夾角Α	34
圖3-27 傳力角	34
圖3-28 伊氏拍翼機構	35
圖3-29 伊氏近似直線機構	35
圖3-30 桿件命名	36
圖3-31 接點編號	36
圖3-32 翼桿兩軸孔縮短	37
圖3-33 齒輪軸孔間距	37
圖3-34 翼桿與碳纖維棒契合	38
圖3-35 伊氏近似直線機構之軌跡	39
圖3-36 X軸偏移量	39
圖3-37 拍翼行程角	39
圖3-38 傳動角	40
圖3-39 輸出桿與連桿夾角Α	40
圖3-40 蜂鳥拍翅動作連續圖	41
圖3-41 套環卡入翼桿	41
圖3-42 碳纖維棒套入卡件	41
圖3-43 完成組裝	42
圖3-44 上拍與下拍之翼面角度	42
圖3-45 實際組裝	42
圖3-46 高速攝影機拍攝翼面運動	43
圖3-47 機構有無翅膀之拍翼頻率比較	44
圖3-48 減速齒輪配置	45
圖3-49 機座長度比較	45
圖3-50 馬達與拍翼中心位置	46
圖3-51 懸停姿態比較	46
圖4-1 放電線切割	48
圖4-2 切割導孔	49
圖4-3 機座尺寸補償	49
圖4-4 翼桿墊高	50
圖4-5 墊片	50
圖4-6 機構爆炸圖	50
圖5-1 20CM翼展翅膀	51
圖5-2 7*16MM馬達	51
圖5-3 實驗架構圖	52
圖5-4 連續拍翼動作	53
圖5-5 無翅膀拍翼頻率	54
圖5-6 裝翅膀拍翼頻率	55
圖5-7 拍翼頻率與齒輪比關係	56
圖5-8 與舊式史蒂芬生拍翼機構無裝翅膀比較	56
圖5-9 與舊式史蒂芬生拍翼機構有裝翅膀比較	57
圖5-10 實驗架構	58
圖5-11 無翅膀整體消耗扭矩	60
圖5-12 有翅膀整體消耗扭矩	60
圖5-13 無翅膀整體消耗扭矩比較	61
圖5-14 有翅膀整體消耗扭矩比較	61
圖5-15 無運轉行程角	63
圖5-16 機構空轉行程角	63
圖5-17  3.7V下行程角比較	63
圖5-18 實驗架構	64
圖5-19 六軸力規軸向配置	65
圖5-20 減速齒輪比16 之升推力數據	66
圖5-21 減速齒輪比20 之升推力數據	67
圖5-22 減速齒輪比21.3 之升推力數據	68
圖5-23 減速齒輪比26.67 之升推力數據	69
圖5-24升力比較	70
圖5-25 推力比較	70
圖6-1機械結構應力分析模擬軟體	71
圖6-2 金探子機座與伊氏拍翼機構機座	72
圖6-3 與射出成型機座比較	73
圖6-4 翼桿連接位置	73
圖6-5應力分佈	74
圖6-6 變形量分佈	74
圖6-7 翼桿連接位置強化	74
圖6-8應力分佈	74
圖6-9變形量分佈	74
圖6-10 伊氏近似直線機構軸孔	75
圖6-11應力分佈	75
圖6-12變形量分佈	75
圖6-13 強化位置	76
圖6-14應力分佈	76
圖6-15變形量分佈	76
圖6-16 金探子翼桿	77
圖6-17 模擬設定	77
圖6-18應力分佈	77
圖6-19 變形量分佈	77
圖6-20 伊氏拍翼機構翼桿	78
圖6-21 模擬設定	78
圖6-22 應力分佈	78
圖6-23 變形量分佈	78
圖6-24 伊氏拍翼機構桿件	79
圖6-25 桿件軸孔墊高	79
圖6-26 輸出桿軸孔墊高	79
圖6-27 機座齒輪比配置	81
圖6-28 輸出桿齒輪比配置	81
圖6-29 翼面角度控制組裝示意圖	81
圖6-30 組裝示意圖	82
圖6-31 翼面控制桿組裝示意圖	82
圖6-32 翼面角度變化	83
圖6-33 固定翼面角度控制桿	83
圖6-34 單翼安裝	83
圖6-35 模具零件配置	84
圖6-36 模具	84
圖6-37 射出成型零件	84
圖6-38 機構組裝爆炸圖	85
圖6-39不同材質機構比較	85
圖6-40 拍翼行程角	85
圖7-1 舊式IR接收機、鋰電池	86
圖7-2 新舊式IR接收機尺寸比較	87
圖7-3 18MAH 25C 鋰電池	87
圖7-4 飛行姿態比較	87
圖7-5  900MHZ與IR接收機尺寸比較	88
圖7-6 18MAH、70MAH鋰電池尺寸比較	88
圖7-7  900MHZ遙控器	89
圖7-8 鋰電池充電板	89
圖7-9 各零件重量百分比	90
圖7-10各零件重量百分比	90
圖7-11 伊氏拍翼機構整體重量	91
圖7-12各零件重量百分比	91
圖7-13 接收機與鋰電池安裝位置圖	92
圖7-14 地面垂直起飛	92
圖7-15接收機與鋰電池安裝位置圖	93
圖7-16 高攻角飛行	93
圖7-17接收機與鋰電池安裝位置圖	94
圖7-18 穩定飛行姿態	94
圖7-19 室內飛行高度測試	95
圖7-20 室外飛行高度測試	96
圖7-21 史蒂芬生拍翼微飛行器實際飛行	97

表目錄
表1-1 相位差與拍翼行程角	10
表3-1 蜂鳥種類與尺度律之比較	21
表3-2 第一代機構拓譜構造	28
表3-3 第二代機構拓譜構造	32
表3-4 第三代拓譜構造	36
表3-5 桿件尺寸	38
表4-1 7075鋁合金特性	47
表4-2 機台規格	48
表5-1 有無安裝翅膀拍翼頻率比較	55
表5-2 與舊式史蒂芬生拍翼頻率比較	57
表5-3 整體消耗扭矩比較	62
表5-4 有無翅膀行程角比較	64
表6-1 強化前後應力值變形量比較	75
表6-2強化前後應力值變形量比較	76
表6-3強化前後應力值變形量比較	79
表7-1 各零件重量	89
表7-2 各零件重量	90
表7-3 各零件重量	91
參考文獻
參考文獻
[1] C.P. Ellington,"The novel aerodynamics of insect flight: applications to micro-air vehicles, " The Journal of Experimental Biology, vol. 202, pp. 3439-3448, 1999.
[2] S. Ho, H. Nasseh, N. Pornsinsirirak, Y.C. Tai and C.M. Ho, "Unsteady aerodynamic and flow control for flapping wing flyers, " Progress in Aerospace Science, vol. 39, pp. 635-681, 2003.
[3] C.S. Lin, C. Hwu and W.B. Young, "The thrust and lift of an ornithopter’s membrane wings with simple flapping motion," Aerospace Science and Technology, vol. 10, pp. 111-119, 2006.
[4] L.J. Yang, C.K. Hsu, J.Y. Ho, and C.K. Feng, "Flapping wings with PVDF sensors to modify the aerodynamic forces of a micro aerial vehicle," Sensors and Actuators A: Physical, vol. 139, pp. 95-103, 2007.
[5] B.J. Tsai and Y.C. Fu, "Design and aerodynamic analysis of a flapping-wing micro air vehicle," Aerospace Science and Technology, vol. 13, pp. 383-392, 2009.
[6] J.H. Wu and M. Sun, "Unsteady aerodynamic forces of a flapping wing," Journal of Experimental Biology, vol. 207( 7), pp. 1137-50, 2004. 
[7] L.J. Yang, F.Y. Hsiao, W.T. Tang and I.C. Huang, "3D flapping trajectory of a micro-air-vehicle and its application to unsteady flow simulation," International Journal of Advanced Robotic Systems, vol. 10, paper no. 264, 2013.
[8] J.M. Miao and M.H. Ho, "Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil," Journal of Fluids and Structures, vol. 22, pp. 401-419, 2006.
[9] S. Heathcote and I. Gursul, "Flexible flapping airfoil propulsion at low Reynolds numbers," AIAA Journal, vol. 45, pp. 1066-1079, 2007.
[10] L. J. Yang, "The micro-air-vehicle Golden Snitch and its figure-of-8 flapping," Journal of Applied Science and Engineering, vol. 15, pp. 197-212, 2012.
[11] L.-J. Yang, A.F. Kuo and C.K. Hsu, "Wing stiffness on light flapping micro aerial vehicles," Journal of Aircraft,  vol. 49(2), pp. 423-431, 2012.
[12] W. Shyy, M. Berg and D. Ljungqvist, "Flapping and flexible wings for biological and micro air vehicles," Progress in Aerospace Science, vol. 35, pp. 455-505, 1999.
[13] W. Shyy, H. Aono, S.K. Chimakurthi, P. Trizila, C.K. Kang, C.E.S. Cesnik and H. Liu, "Recent progress in flapping wing aerodynamics and aeroelasticity," Progress in Aerospace Science, vol. 46, pp. 284-327, 2010.
[14] R. Barrett et al., "Post-buckled precompressed (PBP) elements: a new class of flight control actuators enhancing high-speed autonomous VTOL MAVs," Proceedings of SPIE - The International Society for Optical Engineering, vol. 5762,  pp. 111-122, 2005.
[15] A. Atuchin, "Four wings good, two wings better- why Microraptor became extinct," The Economist, Nov. 10, 2012.
[16] X. Zheng et al., "Hind wings in Basal birds and the evolution of leg feathers," Science, vol. 339, pp. 1309-1312, 2013.
[17] M. Balter, "Dramatic fossils suggest early birds were biplane," Science, vol. 339, p. 1261, 2013.
[18] M.H. Dickinson, F.D. Lehman and S.P. Sane, "Wing rotation and the aerodynamic basis of insect flight," Science, vol. 284, pp. 1954-1960, 1999. 
[19] R. B. Srygley and A.L.R. Thomas, "Unconventional lift-generating mechanisms in free-flying butterflies," Nature, vol. 420, pp. 660-664, 2002.
[20] S.P. Sane, "The aerodynamics of insect flight," The Journal of Experimental Biology, vol. 26, pp. 4149-4208, 2003.
[21] 何仁揚,「拍撲式微飛行器之製作及其現地升力之量測研究」,淡江大學機械與機電工程學系碩士論文,2005年六月。
[22] 施宏明,「結合PVDF現地量測之拍撲式微飛行器製作」,淡江大學機械與機電工程學系碩士論文,2007年六月。
[23] 徐振貴,「拍翼式微飛行器之設計、製造與測試整合」,淡江大學機械與機電工程學系碩士論文,2008年六月。 
[24] 高敏維,「微拍翼機可撓翼之氣動力實驗」,淡江大學機械與機電工程學系碩士論文,2008年六月。
[25] L.J. Yang, C.K. Hsu, H.C. Han, J.M. Miao, “Light flapping micro-aerial-vehicle using electrical discharge wire cutting technique,” Journal of Aircraft, Vol. 46(6), pp. 1866-1874, 2009.  
[26] 高崇瑜,「應用精密模造技術於微飛行器套件組之設計與製造」,淡江大學機械與機電工程學系碩士論文,2009年六月。
[27] L.J Yang, C.Y Kao, and C.K. Huang, “Development of flapping ornithopters by precision injection molding,” Applied Mechanics and Materials, Vol. 163, pp. 125-132, 2012.
[28] 廖俊瑋,「翼展10公分之拍翼式微飛行器研製」,淡江大學機械與機電工程學系碩士論文,2009年六月。
[29] 鄭杰明,「仿蜂鳥懸停機構初探」,淡江大學機械與機電工程學系碩士論文,2013年。
[30] S. Ashley, “Palm-size spy plane,” American Society of Mechanical Engineers, Vol. 74-78, 1998.
[31] M.Keennon et al. “Tailless flapping wing propulsion and control development for the Nano Hummingbird micro air vehicle,” American Heliwpter Society Future Verticle Lift Aircraft Design Conference, Jan. 18-20, 2012, San Francisco, California.
[32] Z. Jane Wang and D. Russell, "Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight," Physical Review Letters, Vol.99, No. 14,no. 148101,2007
[33] M.Karasek, I.Romanescu and A.Preumont,"Pitch moment generation and measurement in a robotic Hummingbird, " International Journal of Micro Air Vehicles (IMAV 2013), Vol. 5 Issue 4, p299, 2013
[34] Q.V. Nguyen, et al. "Characteristics of a beetle’s free flight and a flapping-wing system that mimics beetle flight," Journal of Bionic Engineering, Vol. 7, pp. 77–86, 2010.
[35] Q.V. Nguyen, et al. "Measurement of force produced by an insect-mimicking flapping-wing system," Journal of Bionic Engineering, Vol. 7(Suppl), pp. S94-S102, 2010.
[36] R. Zbikowski, C. Galinski and C.B. Pedersen, "Four-bar linkage mechanism for insectlike flapping wings in hover: concept and an outline of its realization," Journal of Mechanical Design, vol. 127, pp. 817-824, July 2005.
[37] J. Ge, G. Song, J. Zhang, W. Wang, Z. Li and Y. Wang, "Prototype design and performance test of an in-phase flapping wing robot, "IEEE International Symposium on Industrial Electronics (ISIE 2013), Taipei, Taiwan, May 2013, pp. 1- 6.
[38] C. Wang, C. Zhou, X. Zhang and C. Liu, "An optimization on single-crank-double-rocker flapping wing mechanism," 2010 Fourth International Conference on Genetic and Evolutionary Computing, Shenzhen, China, 2010, pp. 337-340.
[39] J.H. Park, E.P. Yang, C. Zhang and S.K. Agrawal, "Kinematic design of an asymmetric in-phase flapping mechanism for MAVs," IEEE Int. Conf. Robotics and Automation, pp. 5099–5104, 2012.
[40] J.-S Han and J.W. Chang, "Flow visualization and force measurement of an insect-based flapping wing," 48th AIAA Aerospace Sciences Meeting, Orlando, FL, 2010, pp. 1-10.
[41] S. Mukherjee and S. Sanghi, "Design of a six-link mechanism for a micro air vehicle," Defence Science Journal, vol. 54, pp. 271-276, 2004.
[42] J.P. Khatait, S. Mukherjee and B. Seth, "Compliant design for flapping mechanism: a minimum torque approach," Mechanism and Machine Theory, vol. 41 (1), pp. 3–16, 2006.
[43] R.J. Wood, "Design, fabrication, and analysis of a 3DOF, 3cm flapping-wing MAV," Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, Oct 29 - Nov 2, 2007, pp. 1577-1581.
[44] Z. E. Teoh and R. J. Wood, "A Flapping-wing microrobot with a differential angle-of-attack mechanism," IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May 6-10, 2013, pp. 1381-1388.
[45] M. Mcdonald and S.K. Agarwal, "Design of a bio-inspired spherical four-bar mechanism for flapping-wing micro air-vehicle applications," Journal of Mechanisms and Robotics, vol. 2, pp. 021012:1-6, 2010.
[46] M.A.A. Fenelon and T. Furukawa, "Design of an active flapping wing mechanism and a micro aerial vehicle using a rotary actuator," Mechanism and Machine Theory, vol. 45(2), pp. 137–146, 2010.
[47] T. Fujikawa and K. Kikuchi, "Motion analysis of small flapping robot for various design and control parameters," IEEE International Conference on Robotics and Biomimetics, pp. 13-18, 2007.
[48] J. Yan, R.J. Wood and Z.A. Agrawal and S.K. Khan, "Towards flapping wing control for a micromechanical flying insect," IEEE International Conference on Robotics and Automation, New York, NY, 2001, pp. 3901-3908.
[49] H. Tanaka, K. Hoshino, K. Matsumoto and I. Shimoyama, "Flight dynamics of a butterfly-type ornithopter," International Conference on Intelligent Robots and Systems, 2005, pp. 2706-2711.
[50] K.M. Isaac, "Force measurements on a flapping and pitching wing at low Reynolds numbers," 44th AIAA Aerospace Sciences Meeting, Reno, NV, 2006, pp. 1-14.
[51] M. Syaifuddin, H.C. Park and N.S. Goo, "Design and evaluation of a LIPCA-actuated flapping device," Smart Materials and Structures, vol. 15, pp. 1225-1230, 2006.
[52] B.M. Finio, B. Eum, C. Oland and R.J. Wood, "Asymmetric flapping for a robotic fly using a hybrid power-control actuator," Proceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems, St. Louis, MO, 2009, pp. 2755-2762.
[53] T.Y. Hubel and C. Tropea, "Experimental investigation of a flapping wing model," Experiments in Fluids, vol. 46, pp. 945-961, 2009.
[54] W. Lai, J. Yan, M. Motamed and S. Green, "Force measurements on a scaled mechanical model of dragonfly in forward flight," International Conference on Advanced Robotics, 2005, pp. 595-600.
[55] M. Mcdonald and S.K. Agarwal, "Design of a bio-inspired spherical four-bar mechanism for flapping-wing micro air-vehicle applications," Journal of Mechanisms and Robotics, vol. 2, pp. 021012:1-6, 2010.
[56] R. Madangopal, Z.A. Khan and S.K. Agrawal, "Energetics-based design of small flapping-wing micro air vehicles," IEEE/ASME Transactions on Mechatronics, vol. 11, no. 4, pp. 433-438, 2006.
[57] C. DiLeo and X. Deng, "Experimental testbed and prototype development for a dragonfly-inspired robot," Conference on Intelligent Robots and Systems, San Diego, CA, 2007, pp. 1594-1599
[58] Z.A. Khan and S.K. Agrawal, "Design and optimization of a biologically inspired flapping mechanism for flapping wing micro air vehicles," IEEE International Conference on Robotics and Automation, Roma, Italy, 2007, pp. 373-378
[59] D. Lentink, F.T. Muijres, F. Donker-Duyvis and J.L. van Leeuwen, "Vortex-wake interactions of a flapping foil that models animal swimming and flight," The Journal of Experimental Biology, vol. 211, pp. 267-273, 2008.
[60] S.K. Banala and S.K. Agrawal, "Design and optimization of a mechanism for out-of-plane insect winglike motion with twist," Journal of Mechanical Design/  Transactions of the ASME, vol. 127(4), pp. 841-844, 2005.
[61] S. Avadhanula, R.J. Wood, E. Steltz, J. Yan and R.S. Fearing, "Lift force improvements for the micromechanical flying insect," IEEE International Conference on Intelligent Robotics and Systems, Las Vegas, NV, 2003, pp. 1350-1356.
[62]  T. Yokoyama, K. Tanaka and H. Ohtake, "Development of a variable-wing mechanism based on flapping motion of birds," SICE Annual Conference, The University Electro-Communications, Japan, August 20-22, 2008, pp. 168-173.
[63] J. Yan and R. Fearing, "Wing force map characterization and simulation for the micromechanical flying insect," IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, 2003, pp. 1343-1349.
[64] W.J. Maybury and F.O. Lehmann, "The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings," The Journal of Experimental Biology, vol. 207, pp. 4707-4726, 2004.
[65] S.L. Thomson et al., "Experiment-based optimization of flapping wing kinematics," 47th AIAA Aerospace Sciences Meeting, Orlando, FL, 2009, pp. 1-8.
[66] R.B. George, M.B. Colton, C.A. Mattson and S.L. Thomson, "A differentially driven flapping wing mechanism for force analysis and trajectory optimization," International Journal of Micro Air Vehicles, vol. 4, no. 1, pp. 31-49, 2012.
[67] S. Mukherjee and R. Ganguli, "Non-linear dynamic analysis of a piezoelectrically actuated flapping wing," Journal of Intelligent Material Systems and Structures, vol. 21, pp. 1157-1167, 2010.
[68] M. Keennon, K. Klingebiel, H. Won and A. Andriukov, "Development of the Nano Hummingbird: a tailless flapping wing micro air vehicle," AIAA Paper, 2012, 0588.
[69] 國科會提升私校研發能量專案計畫-「淡江蜂鳥—生態觀察尖兵」,計畫編號NSC 101-2632-E-032-001-MY3,2012-2015年。
[70] U.M. Norberg, Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology and Evolution, 1st ed., Springer, New York, 1990.
[71] L-J Yang, K-C Hung, and C-K Feng,"On the scaling laws of flapping UAVs", Asian-Pacific Conference on Aerospace Technology and Science, Taipei, May 23-26, 2013.  
[72] T. L. Hedrick, B.W. Tobalske, I.G. Ros, D.R. Warrick and A.A. Biewener, "Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio," Proceedings of the Royal Society B, doi:10.1098/rspb.2011.2238.  
[73] 維基百科 http://zh.wikipedia.org/wiki/紅喉北蜂鳥 
[74]  GiantHummingbird,IBC http://ibc.lynxeds.com/photo/giant-hummingbird-patagona-gigas/individual-adult 
[75] 顏鴻森、吳隆庸,機構學,pp. 22-28,東華書局中華民國95年。
[76] The Diversity of Animal Life,Biocyclopedia.com http://www.eplantscience.com/index/general_zoology/form_and_function03.php
[77] 何明輝,苗志銘,戴昌賢,"振翅八字形拍撲飛行特性之數值研究",2006
[78] 瑪琍歐玩具股份有限公司 website, from:http://www.mariotoys.com.tw/about.aspx
[79] Lissaman, P.B.S. and Shollenberger, C.A., “Formation flight of birds,” Science, 168: 1003-1005, 1970.
[80] Hsiao, Fei-Bin, “The formational flight control for UAVs,” Invited plenary talk of the 8th International Conference on Intelligent Unmanned Systems (ICIUS 2012), Oct. 22-24, 1012, Singapore.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信