§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2708201410211900
DOI 10.6846/TKU.2014.01132
論文名稱(中文) 使用掃流微過濾結合活性碳吸附在海水淡化前處理中去除微生物與有機物質
論文名稱(英文) Use of cross-flow microfiltration combined with activated carbon adsorption for removal of microbes and organic materials in the pretreatment of seawater desalination
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 林筠喬
研究生(英文) Yun-Chiao Lin
學號 602400078
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-07-14
論文頁數 108頁
口試委員 指導教授 - 黃國楨(kjhwang@mail.tku.edu.tw)
委員 - 童國倫(kuolun@ntu.edu.tw)
委員 - 鄭東文(twcheng@mail.tku.edu.tw)
關鍵字(中) 掃流微過濾
海水淡化前處理
活性碳
吸附
關鍵字(英) cross-flow microfiltration
desalination pre-treatment
activated carbon
adsorption
第三語言關鍵字
學科別分類
中文摘要
本研究以掃流過濾進行海水淡化之前處理,使用多孔性粉末狀活性碳(PAC)附著在薄膜表面上,形成適當厚度的動態膜,利用其攔截與吸附能力,期望能將海水中之微生物與有機物質有效的去除,減少後續薄膜程序中薄膜結垢的發生。
首先針對PAC之吸附性能進行分析,結果顯示Freundlich isotherm是比較適合的等溫吸附模式。在模擬海水的掃流過濾實驗中,可以發現過濾阻力之來源主要為海水中之有機物及微生物附著在濾膜上所造成。因此,藉由結合PAC與海水之掃流過濾系統,當動態膜形成後,活性碳會吸附與分解海水中的有機物及微生物,水質淨化結果可從懸浮液端與濾液端的濃度、濁度、化學需氧量(COD)及溶解有機碳(DOC)進行分析。結果顯示:海水的腐質酸濃度與濁度藉由PAC動態膜過濾後皆下降至0,而COD及DOC值分別下降約67%及92%,表示在濾膜上生成的動態膜對海水中汙染物進行吸附與攔截,可以達到海水淡化前處理之效果。除了COD值,其餘指標皆達RO進水之標準,由於COD值會受還原性物質影響。
隨著動態膜厚度的增加,其汙染物的貫穿時間也隨之增加,由此可知PAC動態膜厚度越厚其達吸附平衡的時間越長,可以操作更長時間。由實驗得知最佳操作條件在掃流速度為0.3m/s、過濾壓差為100kPa且動態膜厚度為0.31公分,會有較高的濾速,其DOC去除效率可達92 %,且其達吸附平衡的時間亦愈久。由理論計算結果得知,在高過濾壓差及低掃流速度下是最有效提升整體膜過濾系統之效益,因此選擇在高過濾壓差及低掃流速度下,能使濾速較快且活性碳吸附達平衡的時間較長。
英文摘要
In this study, the cross-flow microfiltration in the pretreatment of seawater desalination. Using the porous powdered activated carbon (PAC) attached to the membrane surface, forming a dynamic membrane of appropriate thickness, the use of the interception and adsorption capacity, can effectively remove organic materials and microbes in the seawater to reduce the subsequent membrane fouling occurs.
First, the analysis for the adsorption capacity of PAC showed that Freundlich isotherm is more suitable for the adsorption isotherm model. In the artificial seawater cross-flow filtration experiments, filtration resistance sources can be found in seawater composition of organic matter and microbes attached to the membrane caused. Thus, by combining the PAC and seawater filtration systems, when the dynamic membrane formation, which carbon will adsorption and decomposition organic matter and microbes in seawater, the effluent quality from the filtrate side, concentration of organic, turbidity, chemical oxygen demand (COD) and dissolved organic carbon (DOC) for analysis. The results showed that the concentration and turbidity of seawater by the PAC dynamic membrane filtration are down to zero, and COD and DOC values decreased by about 67% and 92%, respectively, indicating that the dynamic membrane adsorption and interception of pollutants in seawater , you can reach the desalination the effect of pre-treatment. In addition to the COD value, the other indexes are up to standard water of the RO, because the COD value will be affected by the impact of reducing substances.
With the increase of dynamic membrane thickness, it also increases breakthrough time, it can be seen dynamic membrane thickness thicker its reach adsorption equilibrium time longer. From the experimental results, the optimum operating conditions in the cross-flow velocity of 0.3 m/s, filtration pressure is 100 kPa and dynamic membrane thickness of 0.31 cm, there will be a higher filtration rate, which DOC removal efficiency of up to 92%, and its reach adsorption equilibrium time also the longer. Calculated from the theoretical results that, at high pressure and low cross-flow velocity is the most effective to enhance the effectiveness of the overall membrane filtration system, so choose under high pressure and low cross-flow velocity, enabling faster filtration rate and activated carbon adsorption reached equilibrium time longer.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	IV
圖目錄	VIII
表目錄	XIV
第一章 緒 論 1
1-1前言 1
1-2薄膜分離技術 3
1-3研究動機與目標 6
第二章 文獻回顧 7
2-1掃流微過濾之特性 7
2-2掃流過濾中動態膜之形成	10
2-3動態膜的性質與影響分離效能之因素 12
2-4動態膜形成機制和其結構	13
2-5助濾劑 15
2-6薄膜過濾前處理 16
2-7活性碳吸附 18
第三章 理論 20
3-1阻力串聯模式 20
3-2濾餅的性質 21
3-2-1 濾餅平均過濾比阻與孔隙度 21
3-2-2 濾餅平均過濾比阻、孔隙度與固體壓縮壓力的關係 22
3-3粒子附著在膜面之力平衡模式 23
3-4等溫吸附模式 25
3-4-1 Langmuir等溫吸附模式 25
3-4-2 Freundlich等溫吸附模式 26
3-5活性碳貫穿時間	 27
第四章 實驗裝置與方法 28
4-1掃流過濾實驗裝置 28
4-2實驗物料與濾膜	 30
4-2-1 實驗進料與配置方法	30
4-2-2 實驗用濾膜	33
4-3分析儀器 34
4-4實驗步驟與分析方法 36
4-4-1 掃流微過濾之實驗步驟 36
4-4-2	出水品質之分析方法 38
4-4-2.1腐植酸濃度之測量方法 38
4-4-2.2水質濁度檢測方法 38
4-4-2.3海水中化學需氧量(COD)檢測方法 39
4-4-2.4海水中溶解有機碳(DOC)檢測方法 40
第五章 結果與討論  41
5-1粉末活性碳之等溫吸附模式 41
5-2粉末活性碳之掃流微過濾	44
5-2-1 粉末狀活性碳之掃流微過濾濾速	44
5-2-2 過濾阻力分析 47
5-2-3 濾餅性質分析 49
5-2-4 濾餅壓縮性質分析 56
5-2-5 粉末狀活性碳動態膜厚度分析 58
5-2-5.1實驗分析	58
5-2-5.2理論計算估計 59
5-3模擬海水掃流微過濾分析	64
5-3-1 純海水之掃流微過濾濾速 64
5-3-2 過濾阻力分析 67
5-3-3 濾餅性質分析 69
5-3-4 濾餅壓縮性質分析 71
5-4複合式海水淡化前處理系統 73
5-4-1 結合PAC與模擬海水之過濾系統	73
5-4-1.1實驗分析 73
5-4-1.2理論計算估計 76
5-4-2 出水品質分析 78
5-4-3 不同種類動態膜過濾模擬海水之出水品質	83
5-4-4 SEM之分析	84
5-4-5 利用PAC動態膜過濾海水之貫穿實驗 88
5-4-6 等溫吸附實驗與貫穿實驗結合	90
5-4-7 結果與過去的研究比較 93
5-5未來方向 94
第六章 結論 95
符號說明	97
參考文獻	101
附錄 105
附錄A 動態膜使用的物料 105
附錄B氧化鋁動態膜厚度分析	106
附錄C活性碳吸附相關參數 108

 
圖目錄
第一章
Fig.1-1 The classification of membrane filtration process.	4
Fig.1-2 Schematics of (a) dead-end filtration and (b) cross-flow filtration. 5
Fig.1-3 A hybrid system for seawater pretreatment. 6

第二章
Fig.2-1 Different combinations of relative rejection and relative permeate flux. (y = distance form membrane surface, u (y) = tangential fluid velocity at y, γ=shear rate.) (Meier,2010) 11
Fig.2-2 Structure of dynamic membrane.(Liu et al,2009)	14

第三章
Fig.3-1 The resistance of microfiltration. 20

第四章
Fig.4-1 A schematic diagram of cross-flow filtration system.	29
Fig.4-2 The microphotograph of E.coli with 900 times. 32
Fig.4-3 SEM images of polyvinylidene fluoride membrane (a) top view and (b) side view(3kx). 33
Fig.4-4 The absorbance vs. concentration of humic acid solution. 38

第五章
Fig.5-1 Langmuir isotherm for the adsorption of HA on PAC in artificial seawater. 42
Fig.5-2 Freundlich isotherm for the adsorption of HA on PAC in artificial seawater.	43
Fig.5-3 Time course of filtration flux during cross-flow microfiltration under various cross-flow velocities. 45
Fig.5-4 Time course of filtration flux during cross-flow microfiltration under various filtration pressures. 46
Fig.5-5 Cross-flow velocities course of pseudo-steady filtration rates in cross-flow microfiltration with various filtration pressures. 46
Fig.5-6 Filtration resistances in cross-flow filtration under different filtration pressures. 48
Fig.5-7 Filtration resistances in cross-flow filtration under different cross-flow velocities.	48
Fig.5-8 Effect of cake mass under various filtration pressures for different cross-flow velocities.	49
Fig.5-9 Particle size distribution of cake under ∆P=20 kPa and various cross-flow velocities. 52
Fig.5-10 Particle size distribution of cake under ∆P=100 kPa and various cross-flow velocities. 52
Fig.5-11 The average particle size of the cake under different cross-flow velocities. 53
Fig.5-12 Particle size distribution of cake under ∆P=20、100 kPa and various cross-flow velocities.	54
Fig.5-13 Particle size distribution of cake under us=0.2 m/s and various filtration pressures. 55
Fig.5-14 Effect of cake porosity under various filtration pressures for different cross-flow velocities.	55
Fig.5-15 Effect of the specific filtration resistance under various filtration pressures for different cross-flow velocities. 57
Fig.5-16 The relationships between 1-εav and filtration pressure under various cross-flow velocities. 57
Fig.5-17 The cake thickness under various filtration pressures and cross-flow velocities. 58
Fig.5-18 Effect of Ft/Fn on the thickness of PAC cake. 61
Fig.5-19 Filtration pressures course of pseudo-steady filtration rates in cross-flow microfiltration with various cross-flow velocities. 61
Fig.5-20 Comparisons of filtration flux between calculated results and experimental data. 62
Fig.5-21 Comparisons of cake thickness between calculated results and experimental data. 62
Fig.5-22 The cake thickness under various filtration pressures and cross-flow velocities. 63
Fig.5-23 Time course of filtration flux during cross-flow microfiltration under various cross-flow velocities. 65
Fig.5-24 Time course of filtration flux during cross-flow microfiltration under various filtration pressures. 66
Fig.5-25 Cross-flow velocities course of pseudo-steady filtration rates in cross-flow microfiltration with various filtration pressures. 66
Fig.5-26 Filtration resistances in cross-flow filtration under different filtration pressures. 68
Fig.5-27 Filtration resistances in cross-flow filtration under different cross-flow velocities.	68
Fig.5-28 Effect of cake mass under various filtration pressures for different cross-flow velocities.	70
Fig.5-29 Effect of cake porosity under various filtration pressures for different cross-flow velocities.	70
Fig.5-30 Effect of the specific filtration resistance under various filtration pressures for different cross-flow velocities. 72
Fig.5-31 The relationships between 1-εav and filtration pressure under various cross-flow velocities. 72
Fig.5-32 Time course of filtration flux during cross-flow microfiltration under various operating conditions. 74
Fig.5-33 Different operating conditions course of pseudo-steady filtration rates in cross-flow microfiltration under various system.	75
Fig.5-34 The cake resistances during cross-flow microfiltration under various operating conditions with different system. 76
Fig.5-35 Cross-flow velocities course of pseudo-steady filtration rates in cross-flow microfiltration with various filtration pressures. 77
Fig.5-36 Comparisons of filtration flux between calculated results and experimental data. 77
Fig.5-37 The humic acid concentration under various operating conditions for different system. 80
Fig.5-38 Different operating conditions course of the permeate turbidities under various system. 80
Fig.5-39 Different operating conditions course of the permeate COD under various system. 81
Fig.5-40 Different operating conditions course of the permeate DOC concentration under various system.	81
Fig.5-41 A schematic diagram of seawater in the cross-flow microfiltration. 82
Fig.5-42 A schematic diagram of PAC dynamic membrane with seawater in the cross-flow microfiltration. 82
Fig.5-43 The photo of filtrate.(a) Seawater suspension、(b) Seawater filtrate、(c) Aluminium oxide dynamic membrane filtered seawater、(d) PAC dynamic membrane filtered seawater. 84
Fig.5-44 (a)The side view of the cake in the seawater filtration (1kx).(b)The facade view of the cake in the seawater filtration(3kx).(us=0.4 m/s,∆P=20 kPa)	85
Fig.5-45 SEM images of PAC cake.(a)1kx、(b)5kx、(c)10kx.(us=0.4 m/s,∆P=20 kPa)	86
Fig.5-46 SEM images of PAC adsorption humic acid in the cake.(a)1kx、(b)5kx、(c)10kx. (us=0.4 m/s,∆P=20 kPa)	87
Fig.5-47 Variation of turbidity with time for five different operating condition. 89
Fig.5-48 The breakthrough time under various cake thickness.	89
Fig.5-49 Comparisons of the breakthrough time between calculated results and experimental data. 90
Fig.5-50 The pseudo-steady filtration rates and the breakthrough time in calculated results in cross-flow microfiltration under various filtration pressures. 91
Fig.5-51 The pseudo-steady filtration rates and the breakthrough time in calculated results in cross-flow microfiltration under various cross-flow velocities. 92
Fig.5-52 The experimental flow chart. 94

附錄
Fig.B-1 Size distribution of powder activated carbon and Aluminum oxide.	106

 
表目錄
Table 2-1 Desalination pretreatment for membrane filtration related research. 16
Table 3-1 The average specific filtration resistance and permeability. 21
Table 4-1 Characteristics of powdered activated carbon used in this study.	30
Table 4-2 Composition of artificial seawater 31
Table 4-3 Properties of artificial seawater. 32
Table 4-4 The operating condition used in this study. 37
Table 5-1 Freundlich and Langmuir isotherms parameter.	43
Table 5-2 Analysis of powdered activated carbon for thickness under various operating conditions.	59
Table 5-3 Different dynamic membrane filtered seawater which effluent quality. (us=0.4m/s,∆P=40kPa)	83
Table 5-4 A comparison of the removal efficiency of organic matter with the literature. 93
Table B-1 Analysis of aluminum oxide for thickness under various operating conditions. 107
Table C-1 Activated carbon adsorption parameters under various operating conditions. 108
參考文獻
Duan, J., F. Wilson, N. Graham and J. H. Tay, “Adsorption of humic acid by powdered activated carbon in saline water conditions”, Desalination, 151, 53-66 (2002).
Du, L. H., X. Chen, W. P. Li and Q. X. Zhu, “A Study on Enhancement of Filtration Process with Filter Aids Diatomaceous Earth and Wood Pulp Cellulose”, Chin. J. Chem. Eng., 19, 792-798 (2011).
Eusebio, R. C., J. S. Kang and H. S. Kim, “Application of integrated microfiltration and PAC adsorption for the removal of humic acid as a pretreatment in seawater desalination”, Desalin. Water Treat., 34, 81-87 (2011).
Hwang, K. J., Y. H. Cheng and K. L. Tung, “Modeling of Cross-Flow Mirofiltration of Fine Particle/Macromolecule Binary Suspension”, J. Chem. Eng. Jpn, 36(12), 1488-1497 (2003).
Hwang, K. J., Y. L. Hsu and K. L. Tung, “Effect of particle size on the performance of cross-flow microfiltration”, Adv. Powder Technol., 17, 189-206 (2006).
Jeong, S., T. V. Nguyen and S. Vigneswaran, “Pretreatment of seawater for organic removal using powder activated carbon”, In: IDAWC on Desalination and Water Reuse, 5-9 September, Perth, Australia. (2011).
Jeong, S., G. Naidu and S. Vigneswaran, “Submerged membrane adsorption bioreactor as a pretreatment in seawater desalination for biofouling control”, Bioresour. Technol., 141, 57-64 (2013).
Jiao, D., M. M. Sharma, “Mechanism of Cake Build up in Crossflow Filtration of Colloidal Suspensions”, J. Colloid inter. Sci., 162(2), 454-462 (1994).
Kumar, S. A., S. Adam and W. Pearce, “Investigation of seawater reverse osmosis fouling and its relationship to pre-treatment type”, Environ. Sci. Technol., 40, 2037–2044 (2006).
Liu, H., C. Yang, W. Pu and J. Zhang, “Formation mechanism and structure of dynamic membrane in the dynamic membrane bioreactor”, Chem. Eng. J., 148, 290-295 (2009).
Ma, W., Y. Zhao and L. Wang, “The pretreatment with enhanced coagulation and a UF membrane for seawater desalination with reverse osmosis”, Desalination, 203, 256–259 (2007).
Meier, J., “Mechanical influence of PAC particles on membrane processes”, J. Membr. Sci., 360, 404-409 (2010).
Naidu, G., S. Jeong, S. Vigneswaran and S. A. Rice, “Microbial activity in biofilter used as a pretreatment for seawater desalination”, Desalination, 309, 254–260 (2013).
Profio, G. D., X. Ji, E. Curcio and E. Drioli, “Submerged hollow fiber ultrafiltration as seawater pretreatment in the logic of integrated membrane desalination systems”, Desalination, 269, 128–135 (2011).
Resosudarmo, A., Y. Ye, P. Le-Clech and V. Chen, “Analysis of UF membrane fouling mechanisms caused by organic interactions in seawater”, Water Res., 47, 911-921 (2013).
Song, Y., B. Su, X. Gao and C. Gao, “The performance of polyamide nanofiltration membrane for long-term operation in an integrated membrane seawater pretreatment system”, Desalination, 296, 30–36 (2012).
Tansakul, C., S. Laborie and C. Cabassud, “Study on performance of ultrafiltration membrane-based pretreatment for application to seawater reverse osmosis desalination”, Water Sci. Technol., 62, 1984-1990 (2010).
Tansakul, C., S. Laborie and C. Cabassud, “Adsorption combined with ultrafiltration to remove organic matter from seawater”, Water Res., 45, 6362-6370 (2011).
Wakeman, R. J. and E. S. Tarleton, “Understanding Flux Dec-line in Cross-flow Microfiltration: Part I – Effects of Particle and Pore Size”, Trans. IchemE., 71, Part A, 399-410 (1993).
Wakeman, R. J. and E. S. Tarleton, “Understanding Flux Dec-line in Cross-flow Microfiltration: Part II – Effects of Process Parameters”, Trans. IchemE., 72, Part A, 431-440 (1994).
Wang, L. K., J. P. Chen, Y-T. Hung and N. K. Shammas, “Advanced Membrane Fouling Characterization in Full-Scale Reverse Osmosis Processes”, Membr. & Desalin. Technol.,13,101-134 (2011).
Wolf, P. H., S. Siverns and S. Monti, “UF membranes for RO desalination pretreatment”, Desalination, 182, 293–300 (2005).
Wood, G. O. and E. M. Moyer, “A Review of the Wheeler Equation and Comparison of Its Applications to Organic Vapor Respirator Cartridge Breakthrough Data”, Am. Ind. Hyg. Assoc. J., 50, 400-407 (1989).
Xu, J., C. Y. Chang and C. Gao, “Performance of a ceramic ultrafiltration membrane system in pretreatment to seawater desalination”, Sep. Purif. Technol., 75, 165–173 (2010).
李曉波,胡保安,顧平,“動態膜分離技術研究進展”,膜科學與技術,第27卷,第4期,91-94(2007).
羅鴻兵,劉曉玲,羅麟,梁潔,“我國動態膜技術在水處理中的研究進展”,水處理技術,第34卷,第5期,1-6 (2008).
呂維明 編著,“固液過濾技術”,高立圖書館有限公司,台北,台灣(2004).
黃福全,「活性碳添加金屬氧化物對甲基乙基酮及醋酸吸附效能的影響」,碩士論文,淡江大學水環系 (1998).
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信