淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2708201213461600
中文論文名稱 化學混凝去除水中鉬、銦之研究
英文論文名稱 Removal of molybdenum and indium from water by chemical coagulation process
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 蘇憶安
研究生英文姓名 Yi-An Su
學號 600480098
學位類別 碩士
語文別 中文
口試日期 2012-07-13
論文頁數 46頁
口試委員 指導教授-康世芳
委員-王根樹
委員-李柏青
中文關鍵字     鐵鹽  鋁鹽  化學混凝 
英文關鍵字 molybdenum  Indium  coagulation  ferric salt  aluminum salt 
學科別分類 學科別應用科學環境工程
中文摘要 我國環保署於2009年增訂鉬(molybdenum, Mo)、銦(Indium, In)限值皆為0.07 mg/L,但淨水程序去除鉬、銦之研究相當少。本研究探討化學混凝去除鉬、銦,以混凝劑種類(硫酸鋁、多元氯化鋁與氯化鐵)與加藥量、pH及金屬初始濃度為實驗參數。採瓶杯實驗(Jar test),In(III)採用ICP-MS 分析級(In),Mo採用AA分析級((NH4)2MoO4),Mo、In之分析採用ICP-MS感應耦合電漿質譜儀。
研究結果顯示,天然水體 pH 5-9 範圍時,鉬主要以溶解態帶負電MoO42-型態存在,銦則主要為非溶解態不帶電In(OH)3(aq)型態存在。混凝劑去除鉬之效果依序為氯化鐵>多元氯化鋁>硫酸鋁,鋁鹽混凝劑去除鉬不佳(低於20%),鐵鹽混凝劑去除鉬可達75%以上,單位鐵鹽混凝劑Mo之去除量為鋁鹽混凝劑之1.6-3.5倍,建議去除鉬採用鐵鹽混凝劑。鐵鹽混凝劑去除鉬最適pH範圍為4-6,pH於5之單位鐵鹽Mo之去除量為pH於7之約2.8倍。鉬初始濃度愈高單位鐵鹽混凝劑Mo之去除量亦愈高。
銦則主要為非溶解態不帶電In(OH)3(aq)型態存在,混凝去除銦較去除鉬所需混凝劑加藥量低,且三種混凝劑(硫酸鋁、多元氯化鋁與氯化鐵)單位加藥量In去除量約相同,三種混凝劑皆適合用於去除銦。氯化鐵、硫酸鋁及多元氯化鋁混凝去除銦之最適pH分別為pH 7-9、pH 6-8及pH 8-9,於最適pH去除率皆可達90%以上。銦初始濃度愈高單位鐵鹽、鋁鹽混凝劑之In去除量亦愈高。
英文摘要 The Environmental Protection Administration (EPA) Taiwan sets regulated limitation of molybdenum (Mo) and Indium (In) as 0.07 mg/L in 2009. However, researches in removal of Mo and In from drinking water by chemical coagulation process are scarcely reviewed. This study investigated removal of Mo and In by coagulation process. The operational parameters of coagulation are type and dosage of coagulant (ferric chloride, aluminum sulfate and poly aluminum chloride), pH and initial concentration of Mo and In.
The results show that in the natural water when pH ranging from 5 to 9, the predominant species of Mo is in dissolved form of MoO42- and In in un-dissolved non-charged form of In(OH)3(aq). The removal efficiency of Mo by different coagulants is following the order of ferric chloride> poly aluminum chloride >aluminum sulfate. The removal efficiency of Mo by aluminum is low (lower than 20%), while removal by ferric chloride could reach more than 75% of efficiency. The amount of Mo been removed by unit mass of ferric is 1.6 to 3.5 times larger than aluminum salt. It is recommended that to use ferric chloride as a coagulant to remove Mo. The optimum pH range to remove Mo by ferric salt is from 4.5 to 6.0. The amount of Mo been removed by unit mass of ferric is 2.8 times larger in pH 5.0 than in pH 7.0. The removal of Mo in unit mass of ferric is higher in higher initial concentration of Mo.
The removal efficiency of In by different coagulants is the same. The optimum pH range to remove In by ferric salt and aluminum salt is from 7.0 to 9.0 、 6.0 to 8.0(alum) and 8.0 to 9.0(PACL). The capability of removing In by unit mass of ferric and aluminum are higher in higher initial concentration of In.
論文目次 目錄
目錄 I
圖目錄 III
表目錄 IV
第一章 前言 1
1-1研究背景 1
1-2研究目的 2
第二章 文獻回顧 3
2-1 鉬、銦水化學 3
2-1-1 鉬 3
2-1-2 銦 5
2-2 國、內外飲用水水質標準鉬、銦之限值及控制技術 7
2-2-1 國、內外飲用水水質標準鉬、銦之限值 7
2-2-2 淨水處理去除鉬、銦技術 8
2-3 化學混凝原理及去除水中金屬 10
2-3-1 化學混凝原理 10
2-3-2化學混凝去除水中金屬 15
第三章 研究方法與材料 17
3-1 實驗材料 17
3-1-1 實驗藥品 17
3-1-2 實驗設備 17
3-2化學混凝實驗方法 18
3-3 水質分析 18
第四章 結果與討論 21
4-1 鉬、銦之水化學 21
4-1-1 pH對鉬化學物種分佈之影響 21
4-1-2 pH對銦化學物種分佈之影響 21
4-1-3 pH對鉬、銦溶解度之影響 25
4-2 混凝劑種類對去除鉬、銦之影響 26
4-2-1 混凝劑種類對去除鉬之影響 26
4-2-2 混凝劑種類對去除銦之影響 28
4-3 pH對去除鉬、銦之影響 30
4-3-1 pH對去除鉬之影響 30
4-3-2 pH對去除銦之影響 33
4-4 初始濃度對去除鉬、銦之影響 35
4-4-1 鉬初始濃度對去除鉬之影響 35
4-4-2 銦初始濃度對去除銦之影響 38
第五章 結論 42
參考文獻 43

圖目錄
圖2-1 鉬物種與pH之平衡分佈圖 (C=10-5 M) 5
圖2-2 銦物種與pH之平衡分佈圖 (C=10-6M) 6
圖2-3 電雙層之斥力曲線及凡得瓦爾力之引力曲線 10
圖2-4 Fe(III)與Al(III)物種與pH之平衡分佈圖 14
圖4-1a pH對鉬化學物種分佈之影響 22
圖4-1b pH對鉬化學物種分佈之影響 23
圖4-2a pH對銦化學物種分佈之影響 23
圖4-2b pH對銦化學物種分佈之影響 24
圖4-3 pH對鉬、銦溶解度之影響 25
圖4-4 混凝劑種類對去除鉬之影響 27
圖4-5 混凝劑種類對去除銦之影響 29
圖4-6 pH對去除鉬之影響 32
圖4-7 pH對去除鉬之影響 32
圖4-8 pH對去除銦之影響 34
圖4-9 初始濃度對去除鉬之影響(Fe3+) 36
圖4-10 初始濃度對去除鉬之影響(硫酸鋁) 37
圖4-11 初始濃度對去除鉬之影響(PACL) 37
圖4-12 初始濃度對去除銦之影響(Fe3+) 40
圖4-13 初始濃度對去除銦之影響(硫酸鋁) 40
圖4-14 初始濃度對去除銦之影響(PACL) 41

表目錄
表2-1 各國飲用水水質標準鉬、銦管制現況 7
表3-1 感應耦合電漿質譜儀操作參數 19




參考文獻 Abbas, Q. and Binder, L. (2011) The electrochemical dissolution of molybdenum in non-aqueous media. International Journal of Refractory Metals and Hard Materials, 29, 542-546.
Atia, A.A., Donia, A.M. and Awed, H.A. (2008) Synthesis of magnetic chelating resins functionalized with tetraethylenepentamine for adsorption of molybdate anions from aqueous solutions. Journal of Hazard Mater., 155, 100-108.
Chappell, W.R., Meglen, R.R., Moure-Eraso, R., Solomons, C.C., Walravens, T.A. and Winston, P.W. (1979) Human health effects of molybdenum in drinking water. US Environmental Protection Agency, EPA-600A-679-006.
Chou, W.L. and Huang, Y.H. (2009) Electrochemical removal of indium ions from aqueous solution using iron electrodes. Journal of Hazard Mater., 172, 46-53.
Chwirka, J.D., Colvin, C., Gomez, J.D. and Mueller, P.A. (2004) Arsenic removal from drinking water using the coagulation/microfiltration proces. Journal American Water Works Association, 96, 106-114.
Chwirka, J.D., Thomson, B.M. and III, J.M.S. (2000) Removing arsenic from groundwater. Journal American Water Works Association, 92, 70-88.
Duan, J. and Gregory, J. (2003) Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 100-102, 475-502.
El-Moselhy, M.M., Sengupta, A.K. and Smith, R. (2011) Carminic acid modified anion exchanger for the removal and preconcentration of Mo(VI) from wastewater. Journal of Hazard Mater., 185, 442-446.
Farnwouth, C.G. (1970) Study of molybdenum in public water supply. Water & Sewage Works, 117, 418-423.
Gregor, J. (2001) Arsenic removal during conventional aluminium-based drinking water treatment. Water Research, 35, 1659-1664.
Guo, X., Wu, Z. and He, M. (2009) Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS). Water Research, 43, 4327-4335.
Kang, M., Kamei, T. and Magara, Y. (2003) Comparing polyaluminum chloride and ferric chloride for antimony removal. Water Research, 37, 4171-4179.
LeGendre, G.R. and Runnells, D.D. (1975) Removal of dissolved molybdenum from wastewaters byprecipitates of ferric iron. Environmental Science & Technol, 9, 744-749.
Li, T., Zhu, Z., Wang, D., Yao, C. and Tang, H. (2006) Characterization of f loc size, strength and structure under various coagulation mechanisms. Powder Technology, 168, 104 - 110.
McCurdy, K., Carlson, K. and Gregory, D. (2004) Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants. Water Research, 38, 486 - 494.
Pang, F.M., Kumar, P., Teng, T.T., Omar, A.K.M. and Wasewar, K.L. (2011) Removal of lead, zinc and iron by coagulation–flocculation. Journal of the Taiwan Institute of Chemical Engineers, 42, 809 - 815.
Plattes, M., Bertrand, A., Schmitt, B., Sinner, J., Verstraeten, F. and Welfring, J. (2007) Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes. Journal of Hazard Mater., 148, 613-615.
Qu, J. and Liu, H. (2004) Optimum conditions for Al13 polymer formation in PACl preparation by electrolysis process. Chemosphere, 55, 51-56.
Tangri, S.K., Suri, A.K., Gupta, C.K (1998) Development of solvent extraction processes for production of high purity oxides of molybdenum, tungsten and vanadium. Transactions of the Indian Institute of Metals, 5, 27-39.
WHO (2003) molybdenum in Drinking-water Background document for development of WHO Guidelines for Drinking water Quality.
WHO (2011) Guidelines for Drinking-water quality. 4thed.
Wood, S. and Samson, I. (2006) The aqueous geochemistry of gallium, germanium, I ndium and scandium. Ore Geology Reviews, 28, 57-102.
Wu, C.H., Lo, S.L., Lin, C.F. and Kuo, C.Y. (2001) Modeling Competitive Adsorption of Molybdate, Sulfate, and Selenate on gamma-Al(2)O(3) by the Triple-Layer Model. Journal of Colloid Interface Science, 233, 259-264.
Wu, M. (2004) Effect of operating variables on rejection of indium using nanofiltration membranes. Journal of Membrane Science, 240, 105-111.
Xu, N., Christodoulatos, C. and Braida, W. (2006) Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: effect of pH and competitive anions. Chemosphere, 62, 1726-1735.
Zemansky, G.M. (1974) Removal of trace metals during conventional water treatment. Journal American Water Works Association, 62, 606-609.
Zeng, L. and Yong Cheng, C. (2009) A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalystsPart II: Separation and purification. Hydrometallurgy, 98, 10-20.
曲波,李雪飛,王帆,李慶輝 (2007) 硫酸銦急性毒性和致突變作用研究,毒理學雜誌,第21期。
行政院環境保護署 (2009) 飲用水水質標準第三條修正草案條文對照表,民國98年9月17日。

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信