淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2708200712072600
中文論文名稱 拍撲式微飛行器之製作改良及其飛行訊息傳輸之整合
英文論文名稱 Improvement on the Flapping MAV and the Integration of Air Data Transmission
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 馮國華
研究生英文姓名 Guo-Hua Feng
學號 694340331
學位類別 碩士
語文別 中文
口試日期 2007-07-10
論文頁數 72頁
口試委員 指導教授-楊龍杰
委員-宛同
委員-施文彬
中文關鍵字 拍撲式微飛行器  parylene翼膜  PVDF  RF無線傳輸模組 
英文關鍵字 Flapping MAV  PVDF  Radio frequency wireless transmission module 
學科別分類 學科別應用科學機械工程
中文摘要 本研究前半部利用微機電系統技術製作拍撲式微飛行器之聚對二甲苯(parylene)機翼薄膜與鈦合金機翼,並結合非微機電製程製作之拍撲式傳動機構、機身骨架與尾翼,成為全機重6gw以下,翼展尺寸為16cm之拍撲式飛行器。並放置於風洞內進行升力及推力量測進行討論。
 本研究另使用聚乙烯氟化物(PVDF)壓電薄膜材料,製作拍撲式機翼結構於風洞測試中進行現地量測(on-site lift measurement),並將機翼之壓電輸出訊號與風洞測力計升力訊號,進行比對探討。
 本研究後半部利用RF無線傳輸模組成功量測日常生活週遭溫度變化;並將傳輸模組置放於壓力測試機台腔體之中,達成對腔體內部進行溫度監控。未來寄望能夠搭載於微飛行器之上,於飛行時即時擷取空氣動力訊號與飛行姿態之掌握,進而實現空中監控的目標。
英文摘要 This research utilized MEMS technology layering parylene film as the wing skin and titanium alloy as the wing skeleton. The transmission system with reduction ratio of 26.6 is also fabricated. The total mass of the flapping MAV is less than 6 grams and the wing span is 16 cm. Then we measured and discussed the lift and thrust force of the MAV at the wind tunnel test.
The signals from a load cell in the wind tunnel and a PVDF sensor embedded in parylene wings are acquired simultaneously. Both of the lift signals from the PVDF and the load cell are basically similar with the same flapping frequency and with the qualitative behavior.
In addition, we successful measured the temperature changes byutilizing a commercial Radio frequency wireless transmission module in our daily living. We set the module and monitored temperture changes in a pressure test chamber. We expect this module to combine with our MAV, and receive the aerodynamic signals to detect the gesture of the MAV during flying. The final goal of this research is to accomplish the real time MAV monitoring in the sky.
論文目次 目 錄
中文摘要.....................................................................................I
英文摘要......................................................................................II
目錄...........................................................................................III
圖目錄.........................................................................................V
表目錄..............................................................................................VIII
第一章 緒論
1-1 研究背景..............................................1
1-2 參考文獻..............................................4
1-3 研究目的與架構........................................7
第二章 拍撲式飛行與相關氣動力量測
2-1 拍撲飛行概述..........................................9
2-2 撲翼機設計原理........................................11
2-3 微飛行器所處之雷諾數範圍..............................14
2-4 非穩態空氣動力場......................................15
2-5 Strouhal number ........................................15
2-6 拍撲式為飛行器氣動力量測..............................17
2-7 拍撲式微飛行器能量估算................................28
第三章 微飛行器製作
3-1 微飛行器製作架構......................................20
3-2 拍撲式傳動機構製作....................................21
3-3 機翼製作..............................................23
3-4 機身主要結構製作..................................31
3-5 控制晶片與動力源..................................33
3-6 組裝完成的拍撲式微飛行器..........................36
第四章 RF無線傳輸模組應用
4-1 RF無線傳輸模組測試應用說明.......................40
4-2 RF無線傳輸模組架設...............................40
4-3 RF無線傳輸模組設備介紹...........................41
4-4 RF無線傳輸模組測試結果...........................47
第五章 風洞實驗量測
5-1 風洞實驗測試初步架構說明..........................54
5-2 風洞實驗架設..........................................54
5-3 風洞實驗設備介紹..................................56
5-4 風洞實驗測試與結果...............................69
第六章 結論與未來建議
6-1 結論..................................................62
6-2 未來建議..............................................67
參考文獻.................................................69








圖目錄
圖 1.1 . 軍事偵察.........................................2
圖 1.2 微飛行器分類:(a)定翼式,(b)旋翼式,(c)拍撲翼式.......3
圖 1.3 自然界飛行生物翼展與重量之關係........................4
圖 2.1 柏努力效應造成之升力L(垂直氣流)與阻力D(平行氣流).....9
圖 2.2 鳥類飛行之示意圖.....................................10
圖 2.3 鳥類滑翔時產生的升力方式.............................11
圖 2.4 鳥類飛行利用摺疊翅膀以減少負升力的產生................11
圖 2.5 .Penaud製作之撲翼機..................................12
圖 2.6 .Penaud之撲翼力學分析.................................12
圖 2.7 精子利用波動運動(plane wave)得到前進的動力.............13
圖 2.8 鳥類振翅行程與升力、阻力、推力與相對風速關係圖........13
圖 2.9 .DARPA之微型飛行載具MAV定義之示意圖...........14
圖 2.10 .(a)速度對時間關係圖;(b)功率對時間關係圖,數字標號各代表(1)起飛,(2)巡航飛行,(3)降落........................................19
圖 3.1 本研究微飛行器製作之架構.............................20
圖 3.2 Ornithopter zone設計軟體分析Ornithopter zone設計軟體分 析(a)傳動連桿尺寸,(b)機翼拍動對稱性.............................21
圖 3.3 拍撲機構運作時機翼之擺動之示意圖(由a至d回到a為一週期)22
圖 3.4 (a)減速齒輪的基座,(b)非同一平面之連桿組................23
圖 3.5 機翼骨架的示意圖......................................25
圖 3.6 本研究採用之paryleneC及其化學式......................25
圖 3.7 聚對二甲苯沉積過程....................................26
圖 3.8 蝕刻完成後之鈦合金機翼骨架............................27
圖 3.9 曲率半徑5.5公分之模板................................27
圖 3.10 parylene機翼完成圖....................................28
圖 3.11 鈦合金機翼之微機電製作流程............................28
圖 3.12 曲度膜面機翼之微機電製作流程.........................29
圖 3.13 含PVDF壓電薄膜之機翼............................….29
圖 3.14 含PVDF與parylene機翼之微機電製作流程圖...........30
圖 3.15 傳動機構基座之機身骨架插孔...........................30
圖3.16 尾翼固定架...........................................32
圖3.17 機身結構完成之實體....................................32
圖3.18 尾翼..................................................33
圖3.19 尾翼致動器............................................33
圖 3.20 高分子鋰電池..........................................34
圖 3.21 本研究使用之四頻無線遙控器............................35
圖 3.22 本研究使用之速度控制與無線接收器晶片模組..............35
圖 3.23 組裝完成之具有曲度膜面拍撲翼微飛行器..................36
圖 3.24 組裝完成含無線接收晶片拍撲翼微飛行器..................36
圖 3.25 微飛行器之試飛測試....................................38
圖 4.1 RF無線傳輸模組應用架構.............................40
圖 4.2 RF無線傳輸模組之基本架設完成圖.....................41
圖 4.3 Sensor Data Acquistion Boards..........................41
圖 4.4 Mote Process/Radio Platforms..........................42
圖 4.5 Gateways and Network Interfaces (MIB520)..............42
圖 4.6 MoteView基本介面..................................43
圖 4.7 Data數據觀測.......................................44
圖 4.8 資料更新顯示設定......................................44
圖 4.9 LED燈號測試區....................................45
圖 4.10 即時趨勢圖.........................................45
圖 4.11 即時定位的功能與畫面...............................46
圖 4.12 本圖面顯示本研究群實驗室的隔間佈局與感測點傳回的溫度訊息,未來啟用增添了GPS的Zigbee模組後,將同時顯示量測點的測溫值與座標..........................................................46
圖 4.13 淡江大學微機電無塵室週遭位置圖........................47
圖 4.14 無塵室週遭溫度分布...................................48
圖4.15 淡江大學商管停車場監測...............................48
圖4.16 淡江大學商管停車場溫度監測...........................49
圖4.17 淡江大學操場位置圖...................................49
圖4.18 淡江大學操場溫度監測.................................50
圖 4.19 烤箱環境溫度訊號之監測...............................51
圖 4.20 本研究群自行開發之壓力測試機台,應用無線傳輸技術後,訊號接線將大幅減少.....................................52
圖 4.21 壓力測試機台腔體內溫度監測...........................52
圖 5.1 風洞量測初步架構.....................................54
圖 5.2 風洞實驗設備架構.....................................55
圖 5.3 低速風洞.............................................56
圖 5.4 單軸測力計...........................................57
圖 5.5 六軸力規.............................................57
圖 5.6 數據擷取器...........................................58
圖 5.7 PVDF壓電薄膜材料....................................59
圖 5.8 PVDF以銀膠黏接導線示意圖............................60
圖 5.9 PVDF輸出電壓與測力計訊號擷取圖......................60
圖 5.10 .平面機翼與曲面機翼之升力係數與J之關係圖..............63
圖 5.11 .平面機翼與曲面機翼之推力係數與J之關係圖..............63
表目錄
表1鈦合金材料成分組成...................................24
表2鈦合金材料機械性質...................................24
表3鋰電池之規格........................................34
表4 各組件重量表........................................37
表5 六軸力規規格表.....................................58
參考文獻 參考文獻
[1] http://www.pladaily.com.cn/pladaily/photo/
[2] S. Ashley, “Palm-Size Spy Plane,” The American Society of Mechanical Engineers, February, p. 74, 1998.
[3] W. Shyy, M. Berg, and D. Ljungqvist, “Flapping and flexible wings for biological and micro air vehicles,” Progress in Aerospace Sciences, Vol. 35, p. 455, 1999.
[4] A.Vironment, Inc., Design Development Center, 4685-3H Industrial St., Simi Vally, CA 63063,(805) 581-2187, http://www.aeroviroment .com
[5] T. Weis-Fogh, “Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production,” Journal of Experimental Biology, vol. 59, pp. 169-230, 1973.
[6] P. Scott, “A Bug’s Lift,” Scientific American, vol. 280, no. 4, April 1999.
[7] U.M. Norberg Vertebrate flight: mechanics, physiology, morphology, ecology and evolution, New York: Springer, 1990.
[8] Michael H. Dickinson, Fritz-Olaf Lehmann, S. P. Sane, “Wing Rotation and the Aerodynamic Basis of Insect Flight,” SCIENCE, Vol. 284, 1999.
[9] Lijiang Zeng, Qun Hao, Keiji Kawachi, “A scanning projected line method for measuring a beating bumblebee wing,” Optics Communications, vol. 183, pp. 37-43, 2000.
[10] Z. Jane Wang, “Vortex shedding and frequency selection in flapping flight,” J. Fluid Mech., vol. 410, pp. 323-341, 2000.
[11] M. Sitti, “PZT actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax,” in Proc. of the IEEE Int. Conf. on Robotics and Automation, 2001.
[12] T. Nick Pornsin-sirirak, et al., “Titanium-alloy MEMS wing technology for a micro aerial vehicle application,” Sensors and Actuators A: physical, vol. 89, pp. 95-103, 2001.
[13] T. Nick Pornsin-sirirak, et al., “Flexible parylene-valved skin for adaptive flow control,” Proceeding of the 15th IEEE MEMS conference, Las Vegas, USA, pp. 101-104, 2004.
[14] S. Sunada; C. P. Ellington, “A new method for explaining the generation of aerodynamic forces in flapping fight,” MATHEMATICAL METHODS IN THE APPLIED SCIENCES Math. Meth. Appl. Sci. vol. 24, pp. 1377–1386, 2001.
[15] Matthieu Liger, Nick Pornsin-Sirirak, Yu-Chong Tai, “LARGE-AREA ELECTROSTATIC VALVED SKINS FOR ADAPTIVE FLOW CONTROL ON ORNITHOPTER WINGS,” Solid-State Sensor, Actuator and Microsystems Workshop Hilton Head Island, South Carolina, 2002.
[16] 有關聚對二甲苯的說明參考網址: http://parylene.com
[17] Magdalena D. Bugajska and Alan C. Schultz, “Coevolution of Form and Function in the Design of Micro Air Vehicles,” Proceedings of the NASA/DOD Conference on Evolvable Hardware 2002 IEEE.
[18] H.Y. Wu and Z.Y. Zhou and D. Sun, “Autonomous Hovering Control and Test for Micro Air Vehicle,” Proceedings of the 2003 IEEE International Conference on Robotics &Automation.
[19] F. Ruffier, S. Viollet, S. Amic. N. Franceschini, “BIO-INSPIRED OPTICAL FLOW CIRCUITS FOR THEVISUAL GUIDANCE OF MICRO-AIR VEHICLES,” Proceedings - IEEE International Symposium on Circuits and Systems, Vol. 3, pp. 846-849.
[20] H.Y. Wu, D. Sun , Z.Y. Zhou, S.S. Xiong , and X.H. Wang, “Micro Air Vehicle: Architecture and Implementation,” Proceedings -2003 IEEE International Conference on Robotics and Automation, Vol. 1, pp. 534-539.
[21] Z. Jane Wang, “The role of drag in insect hovering,” Journal of Experimental Biology, Vol. 207, pp. 4147-4155, 2004.
[22] Anderson Hedenström, “A general law for animal locomotion”, Trends in Ecology and Evolution, Vol. 19, pp. 217-219, 2004.
[23] S. Todorovic and M. C. Nechyba, “A vision system for intelligent mission profiles of micro air vehicles,” IEEE Transactions on Vehicular Technology, Vol. 53, pp. 1713-1725, 2004.
[24] R. Żbikowski, C. Galiński, C. B. Pedersen, “Four-Bar Linkage Mechanism for Insectlike Flapping Wings in Hover: Concept and an Outline of Its Realization,” Journal of Mechanical Design, Transactions of the ASME, Vol. 127, pp. 817-824, 2005.
[25] S. K. Banala, S. K. Agrawal, “Design and Optimization of a Mechanism for Out-of-Plane Insect Winglike Motion With Twist,” Journal of Mechanical Design, Transactions of the ASME, Vol. 127, pp. 841-844, 2005.
[26] H. Tanaka, K. Hoshino, K. Matsumoto, and I. Shimoyama, “Flight Dynamics of a Butterfly-type Ornithopter,” Intelligent Robots and systems, 2005. (IROS 2005)2005 IEEE/RSJ International conference, p. 310~315, 2005.
[27] M. Syaifuddin, H. C. Park and N. S. Goo, “Design and evaluation of a LIPCA-actuated flapping device,” Smart Materials and Structures, Vol. 15, art. no. 009, pp. 1225-1230, 2006.
[28] C.S. Lin, Chyanbin Hwu, W.B. Young, “The thrust and lift of an ornithopter’s membrane wings with simple flapping motion,” Aerospace Science and Technology, Vol. 10, pp. 111-119, 2006.
[29] S. H. McIntosh, Fellow, IEEE, S. K. Agrawal, Member, IEEE, and Z. Khan, “Design of a Mechanism for Biaxial Rotation of a Wing for a Hovering Vehicle,” IEEE/ASME Transactions on Mechatronics Vol. 11, pp. 145-153, 2006.
[30] T. N. Pornsin-sirirak, “Parylene MEMS Technology for Adaptive Flow Control of Flapping Flight,” Degree of Doctor of Philosophy, Caltech, 2002.
[31] 鳥類飛行方式參考網站:http://www.ornithopter.org/flapflight/home.html
[32] J. D. DeLaurier, “An ornithopter wing design,” Canadian Aeronautics and Space Journal, Vol. 40, No. 1, pp. 10-18, 1994.
[33] J. M. Birch and M. H. Dickinson, “The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight,” The Journal of Experimental Biology, Vol. 206, pp. 2257-2272, 2003.
[34] H. J. Lugt, Vortex flow in nature and technology, p. 52, John Wiley and Sons. Inc., 1983.
[35] J. M. McMichael, “Micro air vehicles - toward a new dimension in flight,” http://www.fas.org/irp/program/collect/docs/mav_auvsi.htm
[36] M. Sfakiotakis, D. M. Lane and J. B. C. Davies, “Review of fish swimming modes for aquatic locomotion,” IEEE Journal of Oceanic Engineering, Vol. 24, No. 2, pp. 237-252, 1999.
[37] C. Y. Lee, L. J. Yang and P. H. Chen, “ The zeroth order solution of the velocity field around micro comb structures with lateral oscillation,” Journal of the Chineses Institute of Engineers, Vol. 25, No. 1, pp. 57-65 , 2002.
[38] I. G. Currie, Fundamental mechanics of fluids, p. 115, McGraw-Hill, Inc., 1974.
[39] F. Jiang, G. B. Lee, Y. C. Tai and C. M. Ho, “A flexible micromachine- based shear-stress sensor array and its application to separation-point detection,” Sensors and Actuators A: Physical, Vol. 79, pp. 194-203, 2000.
[40] G. B. Lee, C. Shih, Y. C. Tai, T. Tsao and C. M. Ho, “Robust vortex control of a delta wing using distributed MEMS actuators,” AIAA Journal of Aircraft, Vol. 37, No. 4, pp. 697-706, 2000.
[41] G. B. Lee, A. M. Huang, F. Jiang, C. Grosjean, C. M. Ho and Y. C. Tai, “Sensing and Control of Aerodynamic Separation by MEMS,” The Chinese Journal of Mechanics, Series A, Vol. 16, No. 1, pp. 45-52, 2000.
[42] G. Rizzoni, Principles and application of electrical engineering, p. 420, 4thed. Irwin, 2003.
[43] T. N. Pornsin-Sirirak, S.W. Lee, H. Nassef, J. Grasmeyer, Y.C.Tai, C. M. Ho and M. Keennon, “MEMS wing technology for a battery-powered ornithopter,” Proceedings of the 13th IEEE Annual International Conference on MEMS, pp. 709-804, 2000.
[44] 加州理工學院微加工研究群:http://mems.caltech.edu
[45] S. K. Agrawal, R. Madangopal and Z. A. Khan, “Energetics based design of small flapping wing air vehicles,” International Conference on Roboticts and Automation, pp. 2367-2372, 2004.
[46] 機構分析軟體參考網址:http://www.ornithopter.org
[47] 鈦規格:http://www.presico.com.tw
[48] 陳錫銘,「利用壓電薄膜做為建築物在邊界層流所受風力量測可行性研究」,淡江大學水資源及環境工程研究所碩士論文,1994.
[49] 高分子鋰電池興能高科技公司:http://www.synergy-scientech.com.tw
[50] A. Pohl, G. Ostermayer, L. Reindl, F. Seifert, “Monitoring the tire pressure at cars using passive SAW sensors,” Proceedings of the IEEE Ultrasonics Symposium, Vol. 1 , pp. 471-474, 1997.
[51] W. R. Nichols II, M. G. Amin, “Modeling systems based on bluetooth wireless connectivity,” Microwaves and RF, Vol. 39, pp. 121-134, 2000.
[52] L.-J. Yang et al., “A test machine for micro sensors subject to different states of pressure and temperature,” IEEE ICM /HIMA-2005, 10-12, Jul., 2005, Taipei, pp. 805-810.
[53] Crossbow無線傳輸模組參考網站http://www.xbow.com/
[54] Bulusu, N., Heidemann, J., Estrin, D. “GPS-less low-cost outdoor localization for very small devices,” IEEE Personal Communications, Vol. 7, pp. 28-34, 2000.
[55] L.-J. Yang et al., “Flapping wings with PVDF sensors to modify the aerodynamic forces of a micro aerial vehicle,” Sensors and Actuators A: Phys., 2007.
[56] 路非遙,“振動翼微型飛行載具之空氣動力特性測試與分析”, 國立成功大學 航空太空工程學系碩士論文,2001.
[57] D. L. Raney et al. “Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles,” Society of automotive Engineers, 2003-01-3042.
[58] 施宏明,“結合PVDF現地量測之拍撲式微飛行器製作”, 淡江大學機械與機電工程學系碩士論文,2007.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-08-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-08-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信