淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2707201517581900
中文論文名稱 陡坡對於高層建築風力特性的影響
英文論文名稱 The influence of escarpment on wind load characteristics of high-rise buildings
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 103
學期 2
出版年 104
研究生中文姓名 游宸瑋
研究生英文姓名 Chen-Wei Yu
學號 602380064
學位類別 碩士
語文別 中文
口試日期 2015-06-24
論文頁數 71頁
口試委員 指導教授-鄭啟明
委員-姚忠達
委員-蕭葆羲
中文關鍵字 高層建築  陡坡  設計風載重  風洞實驗 
英文關鍵字 High-rise buildings  Escarpment  Design Wind Load  Wind Tunnel Test 
學科別分類 學科別應用科學土木工程及建築
中文摘要 現今隨著經濟的迅速發展以及建造建物技術的進步,高層建築有效解決都市用地狹小、人口稠密之問題,加上工程材料及施工技術之改良,部分建築也有往山坡地開發的趨勢。近年高層建築的設計高度逐漸增高,故對位處於強風盛行地區的台灣,高層建築所受的橫向側力除了地震力之外,風力之影響也日趨重要。
本研究主要以鄉鎮地形其地況係數為0.24,陡坡坡度為11.3˚的條件下作為逼近流場,分別量測平地與陡坡的風速剖面與紊流強度。從實驗結果顯示風速剖面在陡坡的情況下會有逐漸加速的現象產生,而紊流強度則逐漸減小。並選用深寬比1,高寬比3之矩柱模型,以進行量測建築物表面風壓之風洞試驗。
平均風壓係數之分佈則由等壓線圖得知在有陡坡情況下平均風壓係數不論在迎風面、側風面和背風面與平地結果相近,擾動風壓則可看出陡坡在側風面的部分明顯大於平地。橫風向風力頻譜在0.1的位置有明顯的窄頻尖峰其原因為渦散作用於模型體所造成。有陡坡的頻譜數值則明顯大於平地,說明了在陡坡的影響下橫風向渦散現象的影響更為顯著。在高頻處平地與陡坡趨於一致,代表共振部分影響很小,對低層建築設計風力影響較大,反之高層建築則影響較小。另根據實驗計算出建築物在有陡坡的情況下順風向設計風力、橫風向設計風力和矩扭轉向設計風力均與現行《建築物耐風設計規範》做比較,從結果得知規範在順風向雖有考慮加速現象但在迎風面與背風面外風壓係數仍比實驗值小,故在順風向風力規範趨於保守,橫風向因規範低估建築物在陡坡渦散效應的影響所以較不保守,扭轉向的部分差異不大,其原因為正方形結構體較不容易受到扭矩的影響有關。
英文摘要 Due to the progress of architectural technology and building materials, high-rise buildings became a viable solution to the irreversible trend of urbanization and population concentration. To overcome the short of land or for getting better view, many tall buildings are built on hill top or escarpment. However, the design wind loads for those tall buildings are based on same procedure for buildings on flat terrain with some adjustment on wind speed. This thesis studied the wind profile and aerodynamic characteristics of a square shaped tall building on an escarpment.
Firstly, wind tunnel experiment was carried out to study the flow field characteristics of wind passing over an upwind slope of 11.3˚ escarpment in suburban terrain (α=0.24). The mean wind speed and turbulence statistics are investigated. Results indicate that wind speed-up phenomenon (increase of speed) occurred significantly around the tip of the upwind slope. The turbulence intensity decreases gradually as the wind flows from the toe of upwind slope.
An acrylic square shaped building model with side ratio of L/B=1 and aspect ratio h/√A=3 was constructed for wind pressure measurement. Results indicate that the escarpment casts little effects on the mean pressure coefficients. The R.M.S. pressure coefficients are significantly larger in the case of escarpment than on ground level. The acrosswind force spectrum exhibits distinct peak at reduced frequency fB/UH=0.1 due to vortex shedding. Square building has larger spectral peak when locates on escarpment than on the ground. However, both cases has similar spectral estimates in the higher frequency region that close to the building natural frequencies. In other words, the resonance part doesn’t have much influence, hence, it doesn’t has much influence on the acrosswind design wind load of high-rise buildings. Then, the alongwind, acrosswind and torsional design wind loads were calculated based on the wind tunnel measurements and compared with those of building wind code. The results show that the current wind code tends to significantly underestimate the alongwind design wind load.
論文目次 目錄 I
圖目錄 IV
表目錄 VI
第一章 緒論 1
1.1 前言 1
1.2 研究內容與方法 2
1.3 本文內容簡述 3
第二章 文獻回顧 4
2.1 風洞實驗之模擬 4
2.1.1 大氣邊界層模擬 4
2.1.2 阻塞效應(blockage effect) 5
2.1.3 雷諾數效應 5
2.2 陡坡之流場特性 6
2.3 矩柱之風力特性 7
2.3.1 模型幾何形狀對風力係數之影響 7
(1)對拖曳力係數之影響 7
(2)對昇力係數之影響 8
(3)對扭力係數之影響 8
2.3.2 紊流對風力係數之影響 9
(1)對拖曳力係數之影響 9
(2)對昇力係數之影響 10
(3)對扭力係數之影響 10
2.3.3 風力之相互關係 10
第三章 理論背景 12
3.1 大氣邊界層 12
3.1.1 平均風速剖面 12
3.1.2 紊流強度 13
3.1.3 紊流長度尺度(Length scales of turbulence) 14
3.1.4 縱向擾動風速頻譜 15
3.1.4 縱向擾動風速交相關頻譜(cross-spectra) 17
3.2 風與結構體的相互關係 18
3.2.2 風力作用下的反應 19
3.3 散漫數據分析 22
第四章 風洞實驗配置與量測分析 24
4.1 實驗設備 24
4.1.1 風洞 24
4.1.2 量測儀器 25
4.2 逼近流場 29
4.3 風壓模型 30
4.4 參考風速量測 33
4.5 訊號處理與數據分析 33
4.5.1 風壓訊號之管線修正 33
4.5.2 數據採樣技術 36
4.5.3 數據分析之方法 36
第五章 分析結果與討論 38
5.1風速剖面量測 38
5.2 風速剖面與規範比較 44
5.3風壓係數 46
5.3.1 平均風壓係數 48
5.2.2 擾動風壓係數 50
5.4風力頻譜 52
5.4.1 順風向基底彎矩無因次化頻譜 53
5.4.2 橫風向基底彎矩無因次化頻譜 54
5.4.3 扭轉向基底扭矩無因次化頻譜 55
5.5設計風載重計算模式 56
5.5.1 順風向設計風力模式 56
5.5.2 橫風向設計風力模式 58
5.5.3 扭轉向設計風力模式 59
5.5.4 規範與實驗設計風力之比較 60
第六章 結論與展望 62
6.1 結論 62
6.2 展望 64
參考文獻 65
圖目錄
圖3- 1紊流長度尺度參數C、W與高度Z0的關係圖 15

圖4- 1 淡江大學一號邊界層風洞實驗室 25
圖4- 2IFA-300智慧型風速儀、探針及校正儀 26
圖4- 3 壓力量測系統[文獻4-1] 27
圖4- 4 壓力訊號處理系統(RADBASE3200)[文獻4-1] 28
圖4- 5 64頻道壓力感應器模組[文獻4-1] 28
圖4- 6 α=0.24逼近流場平均風速、紊流強度及長度尺度剖面 30
圖4- 7風壓模型幾何尺寸、風壓孔佈設位置及實驗配置 31
圖4- 8本實驗X座標 32
圖4- 9 陡坡風壓實驗配置 32
圖4- 10本文130cm風壓管之管線修正使用之頻率域轉換函數 35

圖5- 1 0cm、25cm無因次化風速剖面 39
圖5- 2 50cm、75cm無因次化風速剖面 39
圖5- 3 100cm無因次化風速剖面 39
圖5- 4 115、155cm無因次化風速剖面 40
圖5- 5 175cm無因次化風速剖面 41
圖5- 6 0cm、25 cm紊流強度剖面 41
圖5- 7 50、75 cm紊流強度剖面 42
圖5- 8 100cm 、115 cm紊流強度剖面 42
圖5- 9 155cm、175 cm紊流強度剖面 43
圖5- 10 115cm無因次化風速剖面與規範比較 44
圖5- 11 155cm無因次化風速剖面與規範比較 44
圖5- 12 175cm無因次化風速剖面與規範比較 45
圖5- 13 來流方向與建築物示意圖 46
圖5- 14無因次化平均風壓係數 48
圖5- 15無因次化平均風壓係數(相對於平地) 49
圖5- 16無因次化擾動風壓係數 50
圖5- 17無因次化擾動風壓係數(相對於平地) 51
圖5- 18順風向基底彎矩無因次化頻譜 53
圖5- 19橫風向基底彎矩無因次化頻譜 54
圖5- 20扭轉向基底彎矩無因次化頻譜 55

表目錄
表3- 1不同地況之指數率參數 13

表5- 1 實驗與規範各方向設計風力 60
表5- 2 相同地形下實驗與規範各方向風力之差異 60
表5- 3有陡坡情況下實驗與規範各方向風力之差異 60

參考文獻 第一章
1-1 內政部營建署,(2006),「建築物耐風設計規範及解說」,營建雜誌社。
1-2 ASCE (2002). “Minimum design loads for buildings and other structures.” ASCE 7-02, Reston, Va., USA.
1-3 Architectural Institute of Japan. (1996) “Recommendations for loads on buildings.” , Japan.

第二章
2-1 C. F. Cowdery, (1986), “Two topics of interesting experimental industrial aerodynamic”, symposium on wind effects on buildings and structures, National physical laboratory, Teddington.
2-2 D. J. Cockrell and S. E. Lee, (1964), “Methods and consequences of atmospheric boundary layer simulation”, paper 13-AGARD conference proc. No.48 on aerodynamic of atmospheric shear flows, Munich.
2-3 J. Counihan﹐(1970)﹐" Further Measurements in a Simulated Atmospheric Bounday Layer "﹐Atmospheric Environment﹐Vol.4﹐pp.159-275.
2-4 J. Counihan﹐(1970)﹐" An Improved Method of Simulation Atmospheric Boundary Layer "﹐Atmospheric Environment﹐Vol.4﹐pp.159-275.
2-5 J. Counihan﹐(1973)﹐" Simulation of an Adiabatic Urban Boundary Layer in a Wind Tunnel "﹐Atmospheric Environment﹐Vol.7﹐pp.673-689.
2-6 N. M. Standen﹐(1972)﹐" A Spire Array for Generating Thick Turbulent Shear Layers for Natural Wind Simulation in Wind Tunnels"﹐Rep. LTR-LA-94﹐National Aeronautical Establishment﹐Ottawa﹐Canada.
2-7 R. V. Barret, (1972), " A Versatile Compact Wind Tunnel for Industrial Aerodynamics"﹐Technical note﹐Atmospheric Environment﹐Vol.6﹐pp.491-495.
2-8 N. J. Cook﹐(1973)﹐"On Simulating the lower Third of the Urban Adiabatic Boundary Layer in a Wind Tunnel"﹐Atmospheric Environment﹐Vol.7﹐ pp.691-705.
2-9 J. E. Cermak﹐J. A. Peterka﹐(1974)﹐ " Simulation of Atmospheric Flows in Short Wind Tunnel Test Sections"﹐Center for Building Technology﹐IAT﹐National Bureau of Standards Washington﹐D.C.﹐June.
2-10 J. E. Cermak﹐J. A. Peterka﹐(1974)﹐ " Simulation of Atmospheric Flows in Short Wind Tunnel Test Sections"﹐Center for Building Technology﹐IAT﹐National Bureau of Standards Washington﹐D.C.﹐June.
2-11 Jesen﹐M.﹐1958﹐"The Model Law for Phenomena in Natural Wind " Ingeioen International Edition﹐Vol.2﹐No.4﹐pp.121-123.
2-12 R. E. Whitbread﹐(1963)﹐" Model Simulation of Wind Effects on Structures" Proceeding of the Conference on Wind Effects on Buildings and Structures﹐pp.284-306.
2-13 J. M. Biggs﹐(1954)﹐" Wind Load on Truss Bridges"﹐ASCE﹐pp.879.
2-14 A. Hunt﹐(1982)﹐" Wind Tunnel Measurement of Surface Pressure on Cubic Building Models at Several Scales " J. Wind Eng. Ind. Aero.﹐Vol. 10﹐pp.137-163.
2-15 Y. Nakamura, Y. Ohya, (1984), “ The effects of turbulence on the mean flowpast two dimensional rectangular cylinders ” , J. of Fluid. Mech., Vol.149, pp.255-273.
2-16 A. Townsend, (1956), “The structure of turbulent shear flow” , Cambridge Univ. Press. pp. 315
2-17 Ben-Jue Tsai and Bao-Shi Shiau, (2011), “Experimental study on the flow characteristics for wind over a two-dimensional upwind slope escarpment” Journal of marine science and technology, vol.19, No.5, pp.453-459
2-18 Cao, S. and Tamura, T., “Effects of roughness blocks on atmospheric boundary layer flow over a two-dimensional low hill with/without sudden roughness change” Journal of Wind Engineering and Industrial
2-19 Nakaguchi, K. Hashimoto, and Muto, (1968), “An experimental study of aerodynamic drag of rectangular cylinders” , J. Japan Soc. Aero. Sci., Vol. 168, pp. 1-5
2-20 J. D. Holmes , (2001), “Wind loading of structures” , Spon Press, London.
2-21 N. Lin, C. Letchford, Y. Tamura, B. Liang, O. Nakamura, (2005), “Characteristics of wind forces acting on tall buildings.” , Journal of Wind Engineering and Industrial Aerodynamics Vol.93, pp.217– 242.
2-22 C. Scruton and E. W. E. Rogers, (1972), “Steady and unsteady wind loading of buildings and structures” , Philosophical Transactions Royal Society, A 269, pp. 353-383
2-23 P. W. Bearman, (1980), “Aerodynamic loads on buildings and structures”, Wind engineering in the eightiex porc. CIRIA conf. London U.K.
2-24 B. J. Vickery, (1966), “Fluctuating lift and drag on a long cylinder 80 of square cross-section in a smooth and in a turbulence stream’’ , J. of Fluid Mech., Vol.25, pp.481-494.
2-25 A. Kareem, 1990, “Measurement of pressure and force filed on building model in simulated atmospheric flows” , J. of Indust. Aerodynamic, vol.36, pp.589-599.
2-26 N. Isyumov and M. Pool, (1983), “Wind induced Torque on Squar and Rectangular Buildings Shapes” , J. of Indust. Aerodynamic, vol.13, pp.183-196.
2-27 呂銘洋,(1992), “以力平衡儀探討建築物在邊界層流場中所 受風力特性’’,淡江大學土木工程研究所碩士論文。
2-28 B. E. Lee, (1975), “The effect of turbulence on the surface pressure field of a square prism.” , J. Fluid Mech., Vol. 69, part 2, pp.263- 282.
2-29 A. Laneville, I. S. Gartshore and G. V. Parkinson, (1977), “An explanation of some effects of turbulence on bluff bodies” , Proceedings forth international conference, wind effects on buildings and structures, Cambridge, U.K.
2-30 P. W. Bearman, (1980), “Aerodynamic loads on buildings and structures” , Wind engineering in the eightiex porc. CIRIA conf. London U.K.
2-31 Y. Nakamura, Y. Ohya, (1984), “The effect of turbulence on the mean fiow past two dimensional rectangular cylinders’’ , J. of Fluid Mech., Vol.149, pp.255-273.
2-32 Gartshore, I .S December (1984), “Some effect of upstream turbulence on steady lift force imposed on prismatic two 81 dimensional bodies” , Transactions of the ASME 418/Vol.106.
2-33 B. J. Vickery, (1966), “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulence stream’’ , J. of Fluid Mech.,Vol.25,pp. 481-494.
2-34 A. Kareem, (1985), “Lateral-torsional motion of tall buildings to Wind Load” , J. Struct. Div., ASCE, Vol.111, No.11, pp.2479-2496.
2-35 傅仲麟,(1997),“三維矩柱扭力特性之風洞實驗研究”,淡江 大學土木工程研究所碩士論文。
2-36 Y. Tamura, H. Kikuchib, K. Hibib, (2003), “Quasi-static wind load combinations for low- andmiddle-rise buildings” , J. Wind Eng Ind. Aero., Vol.91 pp.1613–1625.
2-37 Y. Tamura, Hirotoshi Kikuchi, Kazuki Hibi, (2008), “ Peak normal stresses and effects of wind direction on wind load combinations for medium-rise buildings” , J. Wind Eng Ind. Aero. , Vol.96, pp.1043–1057.

第三章
3-1 A. G. Davenport, (1956), "The Relationship of Wind Structure to Wind Loading", Proc. Symp. on Wind Effects on Buildings and Structures, Vol.1, National Physical Laboratory, Teddington, U.K. Her Majesty's Stationary Office, London, p53-102.
3-2 American National Standard A58.1-1982 Minimum American National Standard Institute, Inc., New York.
3-3 J. Counihan, "Adiabatic Atmospheric Boundary Layers: A Review and Analysis of Data from the Period 1880-1972 ", Atmospheric Environment, Vol. 9, 1975, pp. 871-905.
3-4 A. G. Davenport, (1961), "The Spectrum of Horizontal Gustiness Near the Ground in High Winds", J. Royal Meteorol. Soc., 87 , p194-211.
3-5 J. C. Kaimal, (1972), "Spectral Characteristics of Surface Layer Turbulence " J. Royal Meterol Soc. ﹐Vol.87﹐pp.563-589.
3-6 J.D. Holmes, (2001), Wind loading of structures, Spon Press.
3-7 A. G. Davenport, (1968), “The dependence of wind load upon meteorological parameters.”, in proceedings of the international research seminar on wind effects on buildings and structures, University of Toronto Press, Toronto, 19-82.
3-8 A. Kareem, (1981), “Wind excited response of buildings in higher modes”, J. Struct. Div., ASCE, vol. 107, no. ST4, pp. 701-706.

第四章
4-1 “RAD3200 System Instruction and Service Manual”, Scanivalve Corp.

第五章
5-1 鄭啟明,王人牧,(2012),“設計風載重資料庫之應用研究”,內政部建築研究所委託報研究報告.
5-2 鄭啟明,蔡明樹,(2006),“高層建築順風向設計風載重之修正研究”,中華民國第八屆結構工程研討會,Sep.1-3,2006.
5-3 鄭啟明,蔡明樹,(2006),“高層建築順風向設計風載重分析模式語風洞實驗之研究”,九十六年電子計算機於土木水利工程應用研討會.
5-4 蔡明樹,(2008),“高層建築順風向等值靜態設計風載重之研究”,淡江大學土木工程學系博士班論文,Jun.2008.
5-5 賴子晴,(2013),“不同矩形斷面之高層建築設計風荷載研究”,淡江大學土木工程學系碩士班論文,Jun.2013.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-07-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-07-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信