§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2707201515384300
DOI 10.6846/TKU.2015.00979
論文名稱(中文) 反應氣體對於熱燈絲化學氣相沈積系統成長鑽石薄膜行為之研究
論文名稱(英文) Effect of reaction gas on the growth behavior of diamond films synthesized by hot-filament CVD process
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系碩士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 陳琮民
研究生(英文) Tsung-Min Chen
學號 601210197
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-06-23
論文頁數 95頁
口試委員 指導教授 - 林諭男
委員 - 黃柏仁
委員 - 柯文政
關鍵字(中) 微波電漿
熱燈絲
化學氣相沉積
超奈米晶鑽石
關鍵字(英) Microwave
plasma
HF
CVD
UNCD
第三語言關鍵字
學科別分類
中文摘要
鑽石是一種擁有高導熱以及高耐磨性的材料,在工業領域應用上極為廣泛。也因此,能夠大面積生長鑽石薄膜是一個很重要的研究領域。鑽石薄膜依據表面形貌可以分為微晶鑽石(MCD)、奈米晶鑽石(MCD)、超奈米晶鑽石(UNCD),而其中超奈米晶鑽石具備更低的表面粗糙度以及優秀的導電性質,在微機電、聲波元件等領域更具有應用的潛力。

  熱燈絲化學氣相沈積系統是以化學氣相沈積方法成長鑽石中較早發展的系統,他具備有設備架構簡單、便宜,容易製成大面積等優點,然而在成長超奈米晶鑽石方面,由於熱燈絲系統相較於微波電漿系統而言,在高含量之氬氣環境下產生C2物種的比率並不高,造成超奈米晶鑽石並不容易成長。本論文將利用自行組建之熱燈絲系統,透過一系列的氣體變化來尋找可能的奈米晶成長條件,並透過微波電漿系統輔助氣體分子解離,來達成以熱燈絲成長超奈米晶鑽石之目的。 

  實驗將分成三部分,第一部份利用最容易成長鑽石的氫氣-甲烷環境,改變不同基板溫度與燈絲溫度,來尋找在這一套熱燈絲系統上的成長條件。第二部份為在不變動基板溫度、氣體流量氣壓等條件下逐步增加氬氣含量,成長鑽石薄膜並檢測其拉曼峰值與表面形貌。第三部份為先利用微波電漿源輔助解離氣體分子,在透過熱燈絲系統進行再次活化,在高氬氣環境下成長薄膜並與第二部份的結果進行比較。
英文摘要
Diamond films are high thermal conductivity and high tribological characteristics. They have great potential for industrial applications. The capability for growing diamond d films in large area is an important research issue. The granular structure of diamond films varied with the growth parameters. Among the microcrystalline diamond (MCD), nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD), the UNCD films possess characteristics of extreme smooth surface and superb electrical conductivity, which is very useful for device application.

    Hot filament chemical vapor deposition HFCVD process is simple, low cast and has large area capability. However, this process cannot produce C2 species and therefore is difficult in growing diamond with nano-sized grains. 

    In this research, we re-design an HF-CVD system, explored the effect of growing parameters in microstructure development of diamond films. Moreover, we introduce C2 species, which were produced by MWCVD process into the HFCVD system so as to reduce the grain size of the diamond films. This research included 3 points: (I) We grow diamond films using CH4/H2 gas and optimize the growth parameter by systematic varying the substrate temperature and filament temperature. (II) With fixed substrate temperature, we add Ar gas into CH4/H2 Gas to systematically control the morphology of diamond films. (III) We introduce C2 species into HF-CVD system by exciting the CH4/Ar/H2 gas into plasma using microwave CVD process, so that granular structure of diamond films can be modified.
 
第三語言摘要
論文目次
目錄
摘要	I
Abstract:	II
致謝	IV
目錄	V
圖目錄	VII
表目錄	IX
第 1 章 研究動機	1
第 2 章 序論	4
2.1 鑽石薄膜的特性與應用	4
2.1.1 鑽石及鑽石薄膜的特性	4
2.1.2 鑽石薄膜之應用	6
2.1.3 微米晶及超奈米晶鑽石薄膜	7
2.2 微米晶及超奈米晶鑽石薄膜之合成方法與理論	9
2.2.1 鑽石薄膜相關合成方法	9
2.2.2 鑽石薄膜成核相關理論	13
第 3 章 研究方法與實驗步驟	37
3.1 熱燈絲化學氣相沉積系統結構與原理	37
3.1.1 燈絲前處理	38
3.2 熱燈絲化學氣相沉積系統實驗流程	39
3.2.1 孕核懸浮液製備與基板孕核前處理	39
3.2.2 鍍膜流程	39
3.3 薄膜特性分析	40
3.3.1 掃描式電子顯微鏡表面分析	40
3.3.2 拉曼光譜分析	41
3.4 電漿光激發光譜量測	42
第 4 章 氫氣-甲烷環境下,溫度與燈絲溫度對成膜影響之研究	49
4.1 實驗參數與步驟	49
4.2 樣品分析	51
4.2.1 掃描式電子顯微鏡表面分析	51
4.2.2 拉曼光譜分析	51
4.3 結果	52
第 5 章 氬氣-氫氣-甲烷環境下,氣體比例對成膜影響之研究	59
5.1 實驗參數與步驟	59
5.2 樣品分析	60
5.2.1 掃描式電子顯微鏡表面分析	60
5.2.2 拉曼光譜分析	61
5.2.3 穿透式顯微鏡分析	61
5.3 結果	62
第 6 章 微波電漿源輔助解離氣體再以熱燈絲系統成模之研究	73
6.1 實驗參數與步驟	73
6.2 光激發光譜分析	75
6.3 樣品分析	75
6.2.1 掃描式電子顯微鏡分析	75
6.2.2 拉曼光譜分析	75
6.2.3 穿透式電子顯微鏡分析	76
6.4 結果	76
第 7 章 結論與未來展望	88
7.1 結論	88
7.2 未來展望	88
參考文獻	90


圖目錄
圖 1-1 線性微波源電漿示意圖[87]	3
圖 2-1 鑽石的結晶構造[89]	21
圖 2-2 石墨的結晶構造[89]	21
圖 2-3 鑽石的熱傳導係數[89]	22
圖 2-4 微米微晶至超奈米微晶鑽石薄膜表面型態[89]	24
圖 2-5 以HRTEM分析超奈米微晶鑽石晶粒及晶界[29]	25
圖 2-6 超奈米微晶鑽石晶粒間距及繞射圖[29]	26
圖 2-7 不同波長的超奈米微晶鑽石薄膜拉曼光譜[33]	26
圖 2-8 C-H-O三相圖[36]	27
圖 2-9 微波電漿CVD設備圖[40]	27
圖 2-10 熱燈絲法設備圖[41]	28
圖 2-11 微波電漿放電系統設備圖[42]	28
圖 2-12 高週波電漿放電系統設備圖[43]	29
圖 2-13 電子迴旋共振設備圖[44]	29
圖 2-14 鑽石之椅狀堆積構造[89]	30
圖 2-15 石墨及鑽石的活化能相對圖[89]	30
圖 2-16 薄膜與基材之早期成核方式[55]	31
圖 2-17 與基材不反應者之孕核、成長機制[2]	31
圖 2-18 與基材形成碳化物之孕核、成長機制[2]	32
圖 2-19 偏壓輔助孕核法的反應機制[63]	33
圖 2-20 偏壓輔助成核示意圖[66]	34
圖 2-21 超音波振盪法[72]	35
圖 2-22 偏壓輔助孕核法超音波振盪法[72]	36
圖 3-1 熱燈絲系統示意圖	43
圖 3-2 載台與電極實照	43
圖 3-3 質量流量控制器-控制面板	44
圖 3-4 MKS 600 Series pressure controller	44
圖 3-5 測溫裝置示意圖	44
圖 3-6 測溫裝置實照	45
圖 3-7 燈絲碳化時之電流操作與溫度反應關係圖	46
圖 3-8 ZEISS SIGMA Series 掃描式電子顯微鏡系統	46
圖 3-9 EnSpectr R532 拉曼測量系統	47
圖 4-1 第一組 – 燈絲-基板距離變化結果之SEM影像圖	55
圖 4-2 第一組 - 基板溫度變化結果之拉曼光譜圖	56
圖 4-3 第二組 - 基板溫度變化結果之SEM影像圖	57
圖 4-4 第二組 - 基板溫度變化結果之拉曼光譜圖	58
圖 5-1 氬氣對基板升溫影響比較圖	64
圖 5-2 氬氣-氫氣比例變化結果之拉曼光譜圖	65
圖 5-3 氬氣-氫氣比例變化結果之SEM影像圖	66
圖 5-4 Ar80% - 明場與暗場相	67
圖 5-5 Ar80% - HRTEM	69
圖 5-6 Ar90% - 明場與暗場相	70
圖 5-7 Ar90% - HRTEM	71
圖 5-8 Ar80% 與Ar90% - Core-energy electron loss spectra	72
圖 5-9 Ar80% 與Ar90% - low-energy electron loss spectra	72
圖 6-1 微波電漿之光激發光譜	78
圖 6-2 微波電漿成長鑽石薄膜之拉曼光譜 (325 nm)	79
圖 6-3 微波電漿成長鑽石薄膜之SEM影像	79
圖 6-4 微波電漿源熱燈絲系統示意圖與工程模擬圖	80
圖 6-5 共振腔與金屬網	80
圖 6-6 紅外線測溫儀與觀測窗	80
圖 6-7 觀測窗觀察燈絲情況	81
圖 6-8 微波電漿在不同壓力下之光激發光譜變化	81
圖 6-9 以微波電漿源輔助解離之光激發光譜	82
圖 6-10 複合氣相沉積系統成長鑽石薄膜之SEM影像	83
圖 6-11 複合氣相沉積系統成長鑽石薄膜之拉曼光譜	83
圖 6-12 HBAr90-370-D45 - 明場與暗場相	84
圖 6-13 HBAr90-370-D45 - HRTEM	86
圖 6-14 HBAr90-370-D45 - Core-energy electron loss spectra	87
圖 6-15 HBAr90-370-D45 - low-energy electron loss spectra	87

表目錄
表 1-1 不同條件下在表面附近的各種物種濃度[86]	3
表 2-1 鑽石的各種性質[1]	19
表 2-2 鑽石的各種應用[13]	20
表 2-3 鑽石之耐熱衝擊指數比較[89]	22
表 2-4 天然鑽石、鑽石膜及類鑽石膜之性質比較[89]	23
表 2-5 微米微晶鑽石與超奈米微晶鑽石的特性比較[28]	25
表 3-1 鎢與碳化鎢材料特性	45
表 3-2 結構的各種拉曼峰值	47
表 3-3 微波電漿成長鑽石常見的光激發光譜峰值表[88]	48
表 4-1 第一組 – 燈絲-基板距離變化參數	54
表 4-2 第二組 - 基板溫度變化參數	54
表 5-1 不同氣體之導熱係數	64
表 5-2 氬氣-氫氣比例變化參數	64
表 6-1 微波電漿系統成長參數	78
表 6-2 以微波電漿源輔助解離之實驗參數	82
參考文獻
[1]. Field, “The Properties of Diamonds”, (Academic, London, 1979). 
[2].  Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages”, Noyes (1995). 
[3].  P. Kulkarni, L. M. Porter, F. A. M. Koeck, Y.-J. Tang, and R. J. Nemanich, “Electrical and photoelectrical characterization of undoped and S-doped nanocrystalline diamond films”, J. Appl. Phys. 103 084905 (2008). 
[4].  M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, and A. A. Balandin, “Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon”, J. Appl. Phys. 103 083538 (2008). 
[5]. X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “ Low temperature growth of ultrananocrystalline diamond”, J. Appl. Phys. 96 2232 (2004). 
[6]. Li-Ju Chen, Nyan-Hwa Tai, Chi-Young Lee, and I-Nan. Lin, “ Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond”, J. Appl. Phys. 101 064308 (2007). 
[7]. K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, “ Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films”, J. Appl. Phys. 88 2967 (2000). 
[8].  Maki A. Angadi, Taku Watanabe, Arun Bodapati, Xingcheng Xiao, and Simon R. Phillpot, “Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films”, J. Appl. Phys. 99 114301 (2006). 
[9]. D.M. Gruen, “Nanocrystalline diamond films”, Annu. Rev. Mater. Sci. 29 211 (1999). 
[10].  J. A. Carlisle, O. Auciello; Electrochem. Soc. Interface (2003) (Spring).
[11]. F. Mubarok, J. M. Carrapichano, F. A. Almeida, A. J. S. Fernandes, R. F.Silva, “ Enhanced sealing performance with CVD nanocrystalline diamond films in self-mated mechanical seals”, Diamond Relat. Mater., 17 1132 (2008).
[12]. A. Lavoisier, “Elements of Chemistry”, Dover Publications (1772). 
[13]. Y. Tzeng, M. Yoshikawa, M. Murakawa and Feldman, “The Applications of Diamond Films and Related Materials”, eds, Elsevier, New York, (1991). 
[14]. P. W. Bridgman, “Synthetic diamonds”, Scient. Am., 193 42 (1955). 
[15]. W. G. Eversole, U.S. Patent No. 3, 030 188 (1962). 
[16]. J. C. Angus, H. A. Will and W. S. Stanko, “Growth of Diamond Seed Crystals by Vapor Deposition”, J. Appl. Phys., 39 2915 (1968).
[17]. B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces”, J. Cryst. Growth, 52 219 (1981). 
[18]. C. Y. Wang, F. L. Zhang, T. C. Kuang, C. L. Chen, “ Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO and KNO33”, Thin Solid Films, 496 698 (2006). 
[19]. Nevin N. Naguib, Jeffrey W. Elam, James Birrell, Jian Wang, David S. Grierson, Bernd Kabius, “Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers”, Chemical Physics Letters, 430 345 (2006). 
[20]. L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, Y. Chen, “Nanocrystalline diamond from carbon nanotubes”, Applied Physics Letters, 84 (15), 2901 (2004). 
[21]. P. W. May and Yu. A. Mankelevich, “Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth”, J. Appl. Phys. 100 024301 (2006). 
[22]. L. Kreines, G. Halperin, I. Etsion, M. Varenberg, A. Hoffman, R. Akhvlediani, “Fretting wear of thin diamond films deposited on steel substrates”, Diamond and Related Materials, 13 1731 (2004).
[23]. C.K. Lee, “Wear-corrosion behavior of ultra-thin diamond-like carbon nitride films on aluminum alloy”, Diamond and Related Materials, 17 306 (2008). 
[24]. J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “ Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond”, Applied Physics Letters, 81 (12), 2235 (2002). 
[25]. M. Nesladek, D. Tromson, Bergonzo, P. Hubik, P. Mares, J.J. Kristofik, J. Kindl, Gruen, D., “Low-temperature magnetoresistance study of electrical transport in N- and B-doped ultrananocrystalline and nanocrystalline diamond films”, Diamond & Related Materials, 15 (4) 607 (2006). 
[26]. Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires”, Diamond and Related Materials, 17 753 (2008). 
[27]. P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “ Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films”, J. Appl. Phys. 103 043720 (2008). 
[28]. T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond”, Encyclopedia of Nanoscience and Nanotechnology, X, I (2003). 
[29]. S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2”, Journal of Applied Physics, 90, 118 (2001). 
[30]. Ferrari, Andrea Carlo / Robertson, John, “ Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362 2477 (2004). 
[31]. M. Veres, S. Toth, and M. Koos, “Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering”,Appl. Phys. Lett. 91 031913 (2007). 
[32]. M. Veres, S. Toth, E. Perevedentseva, A.Karmenyan, M. Koos, “Raman Spectroscopy Of UNCD Grain Boundaries”,Volume . ISBN 978-1-4020-9915-1. Springer Netherlands, 2009, p. 115.
[33]. A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond”, Phys. Rev. B 63 121405(R) (2001). 
[34]. James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond”, J. Appl. Phys. 93 5606 (2003). 
[35]. Peter K. Bachmann, Dieter Leers, Hans Lydtin, “Towards a general concept of diamond chemical vapour deposition”, Diamond and Related Materials, 1 1 (1991). 
[36]. G. Balestrino, M. Marinelli, E. Milani, A. Paoletti, I. Pinter, and A. Tebano, “Growth of diamond films: General correlation between film morphology and plasma emission spectra”, Appl. Phys. Lett. 62, 879 (1993). 
[37]. Y. Mitsuda, K. Tanaka, and T. Yoshida, Journal of Applied Physics, “In situ emission and mass spectroscopic measurement of chemical species responsible for diamond growth in a microwave plasma jet”, J. Appl. Phys. 67 3604 (1990). 
[38]. C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D'Evelyn, “Growth kinetics of (100), (110), and (111) homoepitaxial diamond films”, Appl. Phys. Lett. 61 1393 (1992). 
[39]. Stephen J. Harris, “Gas-phase kinetics during diamond growth: CH4 as-growth species”, J. Appl. Phys. 65 3044 (1989). 
[40]. Chao Liu, Xingcheng Xiao, Hsien-Hau Wang, Orlando Auciello, and John A. Carlisle , “Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films”, J. Appl. Phys. 101 123924 (2007). 
[41]. M. Wiora, K. Bruhne, A. Floter, P. Gluche, T. M. Willey, S. O. Kucheyev, A. W. Van Buuren, H. J. Fecht, “Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD”, Diamond & Related Materials, 18 927 (2009). 
[42]. S. J. Ray, G. M. Hieftje, “ Microwave plasma torch — atmospheric-sampling glow discharge modulated tandem source for the sequential acquisition of molecular fragmentation and atomic mass spectra ”, Analytica Chimica Acta, 445 (1) 35 (2001). 
[43]. A. T. Sowers, B. L. Ward, S. L. Englih and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films”, J. Appl. Phys., 86 3973 (1999). 
[44]. K. H. Chen, D. M. Bhusari, J. R. Yang, S. T. Lin, T. Y. Wang, L. C. Chen,“Highly transparent nano-crystalline diamond films via substrate pretreament and methane fraction optimization”, Thin Solid Films, 332 34 (1998). 
[45]. D. A. Homer, L. A. Curtiss, and D. M. Gruen, “ A theoretical study of the energetics of insertion of dicarbon (C) and vinylidene into methane C-H bonds2”, Chemical Physics Letters, 233 243 (1995). 
[46]. K. Subramaniana, W. P. Kanga, J. L. Davidsona, R. S. Takalkara, B. K. Choia, M. Howella and D.V. Kerns, “ Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH/H/N plasma-deposited nanodiamond422”, Diamond and Related Materials, 15 1126 (2006). 
[47]. T. K. Ku, C.D. Yang, F.G. Tarntair, C.C. Wang, H.C. Cheng, S.H. Chen, N.J. She, I. J. Hsieh, “Enhanced electron emission from phosphorus- and boron-doped diamond-clad Si field emitter arrays”, Thin Solid Films, 290 176 (1996). 
[48]. Yongde Xia, Gavin S. Walker, David M. Grant, Mokaya, Robert , “Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping”, Journal of the American Chemical Society, 131 16493 (2009). 
[49]. H. Yoshikawa, C. Morel, and Y. Koga, “Synthesis of nanocrystalline diamond films using microwave plasma CVD”, Diamond and Related Materials, 10 1588 (2001). 
[50]. J. Lee, R. W. Collins, R. Messier, and Y. E. Strausser, “Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition”, Applied Physics Letters, 70 1527 (1997). 
[51]. N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, Journal of Crystal Growth, 242 362 (2002). 
[52]. T. Sharda, M. Vmeno, T. Soga, and T. Jimbo, “CJrowth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth”, Applied Physics Letters, 77 26) 4304 (2000). 
[53]. W. Zhu, G P. Kochanski, and S. Jin, “Low-field emission from undopednanostructured diamond”, Science, 282 1471 (1998).
[54]. A. Gohl, A. N. Alimova, T. Habennann, A. L. Mescheryakova, and G Huller,“Integral and local field emission analyses of nanodiamond coating for power applications”, J. Vac. Sci. Technol. B, 17 670 (1999). 
[55]. J. E. Green, S. A. Barnett, J. E. Sundgren, and A. Rockett, “Plasma-surface Interactions And Processing Of Materials”, 28-31(1990). 
[56]. X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, “Epitaxial diamond thin films on (001) silicon substrate”, Appl. Phys. Lett., 62 3438 (1993). 
[57]. S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films”, Applied Physics Letters, 57 (25) 2646 (1990). 
[58]. Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz, “Orientation relationship between chemical vapor deposited diamond and graphite substrates”, Journal of Applied Physics, 73(2) 711 (1993). 
[59]. D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth”, Applied Physics Letters, 54 (5) 416 (1989). 
[60]. N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate”, Journal of Materials Research, 9 (10) 2695 (1994). 
[61]. W. L. Wang, K. J. Liao, L. Fang, J. Esteve, M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition”, Diamond and Related Materials, 10 383 (2001). 
[62]. S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Applied Physics Letters, 58 (10) 1036 (1991). 
[63]. B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass, “ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy”, Phys. Rev. B, 45 11067 (1991). 
[64]. J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on ilicon”, Journal of Applied Physics, 79 (8) 4388 (1996). 
[65]. P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films” , Physical Review B, 56 (4) 2183 (1997). 
[66]. R. Stockel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films”, Journal of Applied Physics, 79 768 (1996). 
[67]. R. Stockel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions”, J. Appl. Phys. 83 531 (1998). 
[68]. J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si”, Applied Physics Letters, 66 (24) 3287 (1995). 
[69]. S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond”, Applied Physics Letters, 66 (23) 3117 (1995). 
[70]. L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100) ”, Journal of Applied Physics 76 (11) 7483 (1994). 
[71]. S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”. Journal of Applied Physics 84 (4) 1870 (1998). 
[72]. Debabrata Pradhan, Li-Ju Chen, Yen-Chih Lee, Chi-Young Lee, Nyan-Hwa Tai, I-Nan Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature”, Diamond and Related Materials, 15 1779 (2006). 
[73]. J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor- deposition”, Journal of Materials Science, 27 (23) 6324 (1992). 
[74]. W. Zhu, “Vacuum microelectronics”, John Wiley & Sons (2001). 
[75]. I. Han, N. Lee, S. W. Lee, S. H. Kim, “Field emission of nitrogen-doped diamond films”, J. Vac. Sci. Technol. B, 16(4), 2052 (1998).
[76]. W. Zhu, G. P. Kochanski, S. Jin, “Low-Field Electron Emission from Undoped Nanostructured Diamond”, SCIENCE, 282, 1471 (1998).
[77]. Chiharu Kimura, Satoshi Koizumi, Mutsukazu Kamo, Takashi Sugino, “Behavior of electron emission from phosphorus-doped epitaxial diamond films”, Diamond and Related Materials, 8, 759 (1999).
[78]. You, Min-Sheng, et al. "Low temperature growth of highly transparent nanocrystalline diamond films on quartz glass by hot filament chemical vapor deposition." Diamond and Related Materials 18.2 (2009): 155-159.
[79]. Yu-Feng, Zhang, et al. "Synthesis of nano-crystalline diamond film in hot filament chemical vapour deposition by adding Ar." Chinese Physics Letters18.2 (2001): 286.
[80]. Klauser, Frederik, et al. "Raman Studies of Nano‐and Ultra‐nanocrystalline Diamond Films Grown by Hot‐Filament CVD." Chemical Vapor Deposition16.4‐6 (2010): 127-135.
[81]. May, P. W., and Yu A. Mankelevich. "Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH 4/H 2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth." Journal of applied physics 100.2 (2006): 024301-024301.
[82]. Hao, Tianliang, et al. "Nano-crystalline diamond films synthesized at low temperature and low pressure by hot filament chemical vapor deposition."Surface and Coatings Technology 201.3 (2006): 801-806.
[83].  Barbosa, D. C., et al. "Influence of substrate temperature on formation of ultrananocrystalline diamond films deposited by HFCVD argon-rich gas mixture." Diamond and Related Materials 18.10 (2009): 1283-1288.
[84]. Kromka, A., et al. "Investigation of carburisation of tungsten-carbide formation by hot-filament CVD technique." (2001).
[85]. Kang, Min-Sik, Wook-Seong Lee, and Young-Joon Baik. "Morphology variation of diamond with increasing pressure up to 400 torr during deposition using hot filament CVD." Thin solid films 398 (2001): 175-179.
[86]. May, Paul W., and Yuri A. Mankelevich. "From ultrananocrystalline diamond to single crystal diamond growth in hot filament and microwave plasma-enhanced CVD reactors: a unified model for growth rates and grain sizes." The Journal of Physical Chemistry C 112.32 (2008): 12432-12441.
[87]. KROMKA, A., et al. Linear antenna microwave plasma CVD deposition of diamond films over large areas. Vacuum, 2012, 86.6: 776-779.
[88].  Vandevelde, T., et al. "Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition."Thin solid films 340.1 (1999): 159-163.
[89]. Chen Huang-Chin. "Microstructures and electron field emission properties of ultra nanocrystalline diamond films." (2010)
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信