§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2707201514411500
DOI 10.6846/TKU.2015.00978
論文名稱(中文) 孕核層對於微波電漿化學氣相沉積法偏壓成長之鑽石薄膜導電性的影響
論文名稱(英文) Influence of nucleation layer on the conductivity of diamond films synthesized by bias-enhanced microwave plasma CVD process
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系碩士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 張信澤
研究生(英文) Hsin-Tse Chang
學號 602210063
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-06-23
論文頁數 104頁
口試委員 指導教授 - 林諭男(inanlin@mail.tku.edu.tw)
委員 - 柯文政(wcke@mail.ntust.edu.tw)
委員 - 黃柏仁
關鍵字(中) 超奈米晶鑽石
施加偏壓成核
化學氣相沉積
關鍵字(英) BEN
BEG
N-UNCD
MPCVD
第三語言關鍵字
學科別分類
中文摘要
鑽石擁有高硬度、極佳耐磨耗、良好場發射性、高導熱等優點。應用在表面聲波元件、微機電元件、生醫材料、場發射元件等材料,薄膜是需要的良好場發射性、導電性鑽石。鑽石薄膜依據表面形貌可以分為微晶鑽石(MCD)、奈米晶鑽石(NCD)、超奈米晶鑽石(UNCD),其中超奈米晶鑽石具備更低的良好場發射性、表面粗糙度及較佳的導電性質。
第一部份,我們首先探討不同基板對場發射性的影響包括矽基板、不施加偏壓成核UNCD的矽基板以及施加偏壓成核(Bias Enhanced Nucleation, BEN)UNCD的矽基板,接者在這三種基板上利用(i)甲烷(CH4)與氮氣(N2)以及(ii)滲入少量氫氣以施加固定負偏壓成長(BEG)成長的鑽石薄膜進行比較。
第二部份,我們找出最佳條件基板,繼續利用(i)甲烷(CH4)與氮氣(N2)以及滲入(ii)少量氫氣以負偏壓成長(BEG)製程,不同時間成長鑽石薄膜。去探討不同時間對微結構、場發射性以及導電性的的影響。
研究發現不同的基板對於鑽石薄膜的表面形貌、電子場發射特性有很大的影響。而以不施加偏壓成核UNCD基板利用甲烷(CH4)與氬氣(N2)電漿BEG成長出來的鑽石薄膜場發射特性優於一般UNCD,場發射特性最佳(σ=1099(1/Ωcm),E_0=2.48(V/μm))。利用穿透式電子顯微鏡(TEM)分析UNCD基板上利用甲烷(CH4)與氮氣(N2)固定施加負偏壓(BEG)30min成核成長出來的薄膜,鑽石結晶粒為針狀結構且其外面包一層石墨。晶粒尺寸約150nm,比一般甲烷(CH4)與氬氣(Ar)電漿成長出來的UNCD 晶粒尺寸約100nm很明顯較細長,滲入少量氫氣(0.1%H_2),則可針狀鑽石晶粒之尺寸度幅減少至50nm,因此場發射特性大幅減少(σ=384/Ωcm),E_0=7.54μm))。
英文摘要
Diamond films possess high hardness, god tribological properties, superb electron field (EFE) properties and high thermal conductivity. They have great potential for applications such as electron field emitters, microelectromechanical devices, biomaterials, surface acoustic wave devices. Diamond films can be microcrystalline (MCD), nanocrystalline (NCD) an ultrananocrystalline (UNCD), among which the UNCD films exhibit the most smooth surface, the best conductivity and moreover, the best EFE properties.
In first part of research, we investigated the effect of different substrate materials on the growth behavior of UNCD films. We grew diamond films on (i) bare-Si, (ii) UNCD coated Si (non-biased) and (iii) UNCD/SI (bias grown) using CH4(6%)/N2 plasma, without bias or under bias. In the second part of research, based on the optimum parameters developed in the first part of research, we bias-enhanced grew diamond films on UNCD/Si (without bias) for 10-60 min, examine the development of microstructure of the UNCD films and the related EFE properties. We observed that the CH4/N2 beg-grown diamond films on UNCD (no bias)?Si substrates exhibit superior conductivity/EFE properties to other kind of diamond films.
We examined the granular structure of thus obtained UNCD films using TEM and observed that these films contain needle-like diamond grains encased with nano-graphitic layers. The size of needle-like diamond grains is 5 nm in diameters and ~150 nm in length, which has better aspect ratio than conventional diamond films with wire-like granules structure. The incorporation of 0.1%H2 resulted in needle-like diamond grains of smaller aspect ratio, which degraded the conductivity/EFE properties of the UNCD films.
第三語言摘要
論文目次
目錄
摘要	II
Abstract:	III
致謝	IV
目錄	V
圖目錄	VII
表目錄	IX
第 1 章 研究動機	1
第 2 章 序論	5
2.1 鑽石薄膜的特性與應用	5
2.1.1 鑽石及鑽石薄膜的特性	5
2.1.2 鑽石薄膜之應用	8
2.1.3 微米微晶及超奈米微晶鑽石薄膜	10
2.2 微米微晶及超奈米微晶鑽石薄膜之合成方法與理論	12
2.2.1 鑽石薄膜相關合成方法	12
2.2.2 鑽石薄膜成核相關理論	19
第 3 章 研究方法及實驗步驟	44
3.1 微波電漿CVD 鍍鑽石薄膜結構及原理	45
3.2 鑽石薄膜實驗方法	46
3.2.1 懸浮液之製備及孕核:(超音波震盪法(UM)-鑽石/鈦懸浮液)	46
3.2.2 鍍膜流程	47
3.3 薄膜之特性分析	51
3.3.1 掃描式電子顯微鏡(圖3-5)	51
3.3.2 拉曼光譜分析(Raman Spectrum)	52
第 4 章 不同基板偏壓成長滲入少量氫氣(H2)N-UNCD對場發射性之研究	60
4.1 實驗步驟	60
4.2 樣品分析	63
4.2.1 OES光放射光譜分析	63
4.2.2 偏壓電流分析	63
4.2.3 掃描式電子顯微結構分析	63
4.2.4 拉曼光譜分析	64
4.2.5 電子場發射分析	64
4.3 結果	64
第 5 章 不同時間偏壓成長滲入少量氫氣(H2)的N-UNCD對場發射性、導電性之研究	75
5.1 實驗步驟	75
5.2 樣品分析	76
5.2.1 OES光放射光譜分析	76
5.2.2 偏壓電流分析	76
5.2.3 掃描式電子顯微結構分析	76
5.2.4 拉曼光譜分析	77
5.2.5 電子場發射分析	77
5.2.6 Hall measure分析	77
5.3 結果	78
第 6 章 結果討論與未來展望	97
第 7 章 參考文獻	98

 
圖目錄
圖 1-1偏壓成長薄膜 偏壓成長薄膜 偏壓成長薄膜 偏壓成長薄膜 偏壓成長薄膜 偏壓成長薄膜 對鑽石薄膜顆粒大小及表面形貌之影響 對鑽石薄膜顆粒大小及表面形貌之影響 對鑽石薄膜顆粒大小及表面形貌之影響 ................................ ..... 3
圖 1-2 鑽石薄膜拉曼光譜 ................................ ................................ ................................ .... 3
圖 1-3場發射圖 ................................ ................................ ................................ ..................... 4
圖 1-4 F4 F -N圖 ................................ ................................ ................................ ......................... 4

圖 2-1鑽石的結晶構造 [85] ................................ ................................ ................................ ... 29
圖 2-2石墨的結晶構造 [85] ................................ ................................ ................................ ... 29圖 2-3鑽石的熱傳導係 數[85] ................................ ................................ ............................... 30
圖 2-4 微米晶至超奈鑽石薄膜表面型態 微米晶至超奈鑽石薄膜表面型態 ................................ .......................... 32
圖 2-5以 HRTEM 分析超奈米微晶鑽石粒及界 分析超奈米微晶鑽石粒及界 [29] ................................ ....................... 33
圖 2-6超奈米微晶鑽石粒間距及繞射圖 超奈米微晶鑽石粒間距及繞射圖 [29] ................................ ................................ ... 34
圖 2-7不同波長的超奈米微晶鑽石薄膜拉曼光譜 不同波長的超奈米微晶鑽石薄膜拉曼光譜 [33] ................................ ....................... 34
圖 2-8C -H-O三相圖 [36] [36] ................................ ................................ ................................ ......... 34
圖 2-9微波電漿 CVD 設備圖 [40] [40] ................................ ................................ ........................... 35
圖 2-10 10 熱燈絲法設備圖 [41] ................................ ................................ ................................ 35
圖 2-11 11 微波電漿放系統設備圖 微波電漿放系統設備圖 [42] ................................ ................................ ................ 36
圖 2-12 12 高週波電漿放系統設備圖 高週波電漿放系統設備圖 [43] ................................ ................................ ............ 36
圖 2-13 電子迴旋共振設備圖 [44] [44] ................................ ................................ ......................... 37
圖 2-14 鑽石之椅狀堆積構造 [85] [85] ................................ ................................ ......................... 37
圖 2-15 石墨及鑽的活化能相對圖 石墨及鑽的活化能相對圖 [85] ................................ ................................ ............. 38
圖 2-16 薄膜與基材之早期成核方式 薄膜與基材之早期成核方式 [55] ................................ ................................ ............. 38
圖 2-17 與基材不反應者之孕核、成長機制 與基材不反應者之孕核、成長機制 [2] ................................ ................................ .. 39
圖 2-18 與基材形成碳化物之孕核、長機制 與基材形成碳化物之孕核、長機制 [2] ................................ .............................. 39
圖 2-19 偏壓輔助孕核法的反應機制 偏壓輔助孕核法的反應機制 [63] ................................ ................................ ............. 40
圖 2-20 偏壓輔助成核示意圖 [66] [66] ................................ ................................ ......................... 41
圖 2-21 超音波振盪法 [72] ................................ ................................ ................................ ..... 42
圖 2-22 偏壓輔助孕核 法 超音波振盪法 超音波振盪[72] ................................ ................................ ......... 43
圖 3-1 IPLAS CRYNNUS I MPECVD1 IPLAS CRYNNUS I MPECVD 1 IPLAS CRYNNUS I MPECVD 1 IPLAS CRYNNUS I MPECVD 系統 ................................ ................................ ............. 54
圖 3-2 IPLAS2 IPLAS 系統示意圖 ................................ ................................ ................................ ... 55
圖 3-3 IPLAS3 IPLAS 實驗前部分 儀器示意圖 儀器示意圖 ................................ ................................ ............... 56
圖 3-4 IPLAS4 IPLAS 電源控制、 Vacuum controller Vacuum controller Vacuum controller 示意圖 ................................ .................... 56
圖 3-5掃描式電子微顯鏡( SEM ) ................................ ................................ ................. 57
圖 3-6拉曼系統 ................................ ................................ ................................ ................... 58
圖 3-7拉曼系統示意圖 ................................ ................................ ................................ ....... 58
圖 3-8電子場發射(EFE)特性量測系統 ................................ ................................ ............. 59
圖 4-1偏壓系統示意圖 ................................ ................................ ................................ ....... 65
圖 4-2 不同基板成長 N-UNCD UNCD 光放射譜 ................................ ................................ ........ 65
VI
圖 4-3 不同基板成長 N-UNCD UNCD ퟎ.ퟏ%푯ퟐ光放射譜 ................................ ......................... 66
圖 4-4 不同基板成長 N-UNCD UNCD ퟏ%푯ퟐ光放射譜 ................................ ............................. 66
圖 4-5不同基板偏壓成長 N-UNCD 之電流趨勢 ................................ ................................ . 67
圖 4-6不同基板偏壓成長 N-UNCD ퟎ.ퟏ%푯ퟐ之電流趨勢 ................................ .................. 67
圖 4-7不同基板偏壓成長 N-UNCD ퟏ%푯ퟐ之電流趨勢................................ ...................... 68
圖 4-8不同基板氮氣電漿成長 與偏壓成長的 掃描式電子顯結構 ................................ ... 68
圖 4-9不同基板摻入ퟎ.ퟏ%푯ퟐ電漿成長 與偏壓成長的 掃描式電子顯結構 ................... 69
圖 4-10 不同基板摻入ퟏ%푯ퟐ電漿成長 與偏壓成長的 掃描式電子顯結構 ..................... 69
圖 4-11 不同基板氮氣電漿成長 與偏壓成長拉曼光譜 ................................ ..................... 70
圖 4-12 不同基板摻入ퟎ.ퟏ%푯ퟐ氮氣電漿成長 與偏壓成長拉曼光譜 ............................. 70
圖 4-13 13 不同基板摻入ퟏ%푯ퟐ氮氣電漿成長 與偏壓成長拉曼光譜 ................................ 71
圖 4-14 14 不同基板氮氣電漿偏壓成長場發射圖 氮氣電漿偏壓成長場發射圖 ................................ ................................ 72
圖 4-15 15 不同基板氮氣電漿成長場發射圖 氮氣電漿成長場發射圖 ................................ ................................ ........ 72
圖 4-16 16 不同基板摻入ퟎ.ퟏ%푯ퟐ氮氣電漿偏壓成長場發射圖 氮氣電漿偏壓成長場發射圖 ................................ ........ 73
圖 4-17 17 不同基板摻入ퟎ.ퟏ%푯ퟐ氮氣電漿成長場發射圖 氮氣電漿成長場發射圖 ................................ ................ 73
圖 4-18 18 不同基板摻入ퟏ%푯ퟐ氮氣電漿偏壓成長場發射圖 氮氣電漿偏壓成長場發射圖 ................................ ............ 74
圖 4-19 不同基板摻入ퟏ%푯ퟐ氮氣電漿成長場發射圖 氮氣電漿成長場發射圖 ................................ ..................... 74
圖 5-1不同時間成長 N-UNCD UNCD光放射譜 ................................ ................................ ......... 80
圖 5-2 不同時間成長 N-UNCD UNCD ퟎ.ퟏ%푯ퟐ光放射譜 ................................ ......................... 80
圖 5-3 不同時間成長 N-UNCD UNCD ퟏ%푯ퟐ光放射譜 ................................ ............................. 81
圖 5-4不同時間偏壓成長 N-UNCD 之電流趨勢 ................................ ................................ . 81
圖 5-5不同時間偏壓成長 N-UNCD ퟎ.ퟏ%푯ퟐ之電流趨勢 ................................ .................. 82
圖 5-6不同時間偏壓成長 N-UNCD ퟏ%푯ퟐ之電流趨勢................................ ...................... 82
圖 5-7不同時間氮氣電漿成長 與偏壓成長的 掃描式電子顯結構 ................................ ... 83
圖 5-8不同時間摻入ퟎ.ퟏ%푯ퟐ電漿成長 與偏壓成長的 掃描式電子顯結構 ................... 83
圖 5-9不同時間摻入ퟏ%푯ퟐ電漿成長 與偏壓成長的 掃描式電子顯結構 ....................... 84
圖 5-10 10 不同時間氮氣電漿成長拉曼光譜 氮氣電漿成長拉曼光譜 ................................ ................................ ........ 84
圖 5-11 11 不同時間氮氣電漿偏 壓成長拉曼光譜 ................................ ................................ 85
圖 5-12 不同時間摻入ퟎ.ퟏ%푯ퟐ氮氣電漿成長拉曼光譜 氮氣電漿成長拉曼光譜 ................................ ................. 85
圖 5-13 13 不同時間摻入ퟎ.ퟏ%푯ퟐ氮氣電漿偏 壓成長拉曼光譜 ................................ ........ 86
圖 5-14 不同時間摻入ퟏ%푯ퟐ氮氣電漿成長拉曼光譜 氮氣電漿成長拉曼光譜 ................................ ..................... 86
圖 5-15 不同時間摻入ퟏ%푯ퟐ氮氣電漿偏 壓成長拉曼光譜 ................................ ............. 87
圖 5-16 不同時間氮氣電漿偏壓成長場發射圖 氮氣電漿偏壓成長場發射圖 ................................ ................................ . 87
圖 5-17 不同時間氮氣電漿成長場發射圖 氮氣電漿成長場發射圖 ................................ ................................ ......... 88
圖 5-18 不同時間摻入ퟎ.ퟏ%푯ퟐ氮氣電漿偏壓成長場發射圖 氮氣電漿偏壓成長場發射圖 ................................ ......... 88
圖 5-19 不同時間摻入ퟎ.ퟏ%푯ퟐ氮氣電漿成長場發射圖 氮氣電漿成長場發射圖 ................................ ................. 89
圖 5-20 不同時間摻入ퟏ%푯ퟐ氮氣電漿偏壓成長場發射圖 氮氣電漿偏壓成長場發射圖 ................................ ............. 89
圖 5-21 不同時間摻入ퟏ%푯ퟐ氮氣電漿成長場發射圖 氮氣電漿成長場發射圖 ................................ ..................... 90
圖 5-22 22 U基板氮氣電漿偏壓成 氮氣電漿偏壓成 10 min -明暗場圖(surface) ................................ .... 91
圖 5-23 23 U基板氮氣電漿偏壓成 氮氣電漿偏壓成 10 min -HR圖(surface) ................................ ........... 92
VII
圖 5-24 24 U基板氮氣電漿偏壓成 10 min -明暗場圖(interface) ................................ .. 92
圖 5-25 25 U基板氮氣電漿偏壓成 10 min - HR圖(interface) ................................ ....... 93
圖 5-26 26 U基板氮氣電漿偏壓成 30 min -明暗場圖(surface) ................................ ...... 93
圖 5-27 27 U基板氮氣電漿偏壓成 30 min -HR圖(surface) ................................ ............. 94
圖 5-28 28 U基板氮氣電漿偏壓成 60 min -明暗場圖(surface) ................................ ...... 94
圖 5-29 29 U基板氮氣電漿偏壓成 60 min -HR圖(surface) ................................ ............. 95
圖 5-30 30 U基板氮氣電漿偏壓成 60 min -明暗場圖(interface) ................................ .. 95
圖 5-31 31 U基板氮氣電漿偏壓成 60 min -HR圖(interface) ................................ ......... 96
表目錄
表 2-1鑽石的各種性質 [1] ................................ ................. 27
表 2-2鑽石的各種應用 13] ................................ ................. 28
表 2-3鑽石之耐熱衝擊指數比較 鑽石之耐熱衝擊指數比較 [85] ................................ ......... 30
表 2-4 天然鑽石、膜及類之性質比較 天然鑽石、膜及類之性質比較 [85] .......................... 31
表 2-5微米晶鑽石與超奈的特性比較 微米晶鑽石與超奈的特性比較 [28] [28] ......................... 33
表 3-1結構的各種拉曼峰值 ................................ ............... 57
表 4-1實驗參數值 ................................ ....................... 62
表 5-1不同時間氮氣電漿成長 與偏壓氮氣電漿成長 與偏壓hall measure hall measure 實驗參數 實驗參數 .............. 90
表 5-2不同時間摻入ퟎ.ퟏ%푯ퟐ氮氣電漿成長 與偏壓氮氣電漿成長 與偏壓hall measure hall measure 實驗參數 實驗參數 .. 90
表 5-3不同時間摻入ퟏ%푯ퟐ氮氣電漿成長 與偏壓氮氣電漿成長 與偏壓hall measure hall measure 實驗參數 實驗參數 .... 91
參考文獻
[1].	Field, “The Properties of Diamonds”, (Academic, London, 1979). 
[2].	Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages”, Noyes (1995). 
[3].	P. Kulkarni, L. M. Porter, F. A. M. Koeck, Y.-J. Tang, and R. J. Nemanich, “Electrical and photoelectrical characterization of undoped and S-doped nanocrystalline diamond films”, J. Appl. Phys. 103 084905 (2008). 
[4].	M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, and A. A. Balandin, “Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon”, J. Appl. Phys. 103 083538 (2008). 
[5]. 	X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “ Low temperature growth of ultrananocrystalline diamond”, J. Appl. Phys. 96 2232 (2004). 
[6]. 	Li-Ju Chen, Nyan-Hwa Tai, Chi-Young Lee, and I-Nan. Lin, “ Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond”, J. Appl. Phys. 101 064308 (2007). 
[7]. 	K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, “ Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films”, J. Appl. Phys. 88 2967 (2000). 
[8]. 	Maki A. Angadi, Taku Watanabe, Arun Bodapati, Xingcheng Xiao, and Simon R. Phillpot, “Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films”, J. Appl. Phys. 99 114301 (2006). 
[9].	D.M. Gruen, “Nanocrystalline diamond films”, Annu. Rev. Mater. Sci. 29 211 (1999). 
[10].	J. A. Carlisle, O. Auciello; Electrochem. Soc. Interface (2003) (Spring).
[11].	F. Mubarok, J. M. Carrapichano, F. A. Almeida, A. J. S. Fernandes, R. F.Silva, “ Enhanced sealing performance with CVD nanocrystalline diamond films in self-mated mechanical seals”, Diamond Relat. Mater., 17 1132 (2008).
[12].	A. Lavoisier, “Elements of Chemistry”, Dover Publications (1772). 
[13].	Y. Tzeng, M. Yoshikawa, M. Murakawa and Feldman, “The Applications of Diamond Films and Related Materials”, eds, Elsevier, New York, (1991). 
[14].	P. W. Bridgman, “Synthetic diamonds”, Scient. Am., 193 42 (1955). 
[15].	W. G. Eversole, U.S. Patent No. 3, 030 188 (1962). 
[16].	J. C. Angus, H. A. Will and W. S. Stanko, “Growth of Diamond Seed Crystals by Vapor Deposition”, J. Appl. Phys., 39 2915 (1968).
[17].	B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces”, J. Cryst. Growth, 52 219 (1981). 
[18].	C. Y. Wang, F. L. Zhang, T. C. Kuang, C. L. Chen, “ Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO and KNO33”, Thin Solid Films, 496 698 (2006). 
[19].	Nevin N. Naguib, Jeffrey W. Elam, James Birrell, Jian Wang, David S. Grierson, Bernd Kabius, “Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers”, Chemical Physics Letters, 430 345 (2006). 
[20].	L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, Y. Chen, “Nanocrystalline diamond from carbon nanotubes”, Applied Physics Letters, 84 (15), 2901 (2004). 
[21].	P. W. May and Yu. A. Mankelevich, “Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth”, J. Appl. Phys. 100 024301 (2006). 
[22].	L. Kreines, G. Halperin, I. Etsion, M. Varenberg, A. Hoffman, R. Akhvlediani, “Fretting wear of thin diamond films deposited on steel substrates”, Diamond and Related Materials, 13 1731 (2004).
[23].	C.K. Lee, “Wear-corrosion behavior of ultra-thin diamond-like carbon nitride films on aluminum alloy”, Diamond and Related Materials, 17 306 (2008). 
[24].	J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “ Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond”, Applied Physics Letters, 81 (12), 2235 (2002). 
[25].	M. Nesladek, D. Tromson, Bergonzo, P. Hubik, P. Mares, J.J. Kristofik, J. Kindl, Gruen, D., “Low-temperature magnetoresistance study of electrical transport in N- and B-doped ultrananocrystalline and nanocrystalline diamond films”, Diamond & Related Materials, 15 (4) 607 (2006). 
[26].	Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires”, Diamond and Related Materials, 17 753 (2008). 
[27].	P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “ Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films”, J. Appl. Phys. 103 043720 (2008). 
[28].	T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond”, Encyclopedia of Nanoscience and Nanotechnology, X, I (2003). 
[29].	S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2”, Journal of Applied Physics, 90, 118 (2001). 
[30].	Ferrari, Andrea Carlo / Robertson, John, “ Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362 2477 (2004). 
[31].	M. Veres, S. Tóth, and M. Koós, “Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering”,Appl. Phys. Lett. 91 031913 (2007). 
[32].	M. Veres, S. Tóth, E. Perevedentseva, A.Karmenyan, M. Koós, “Raman Spectroscopy Of UNCD Grain Boundaries”,Volume . ISBN 978-1-4020-9915-1. Springer Netherlands, 2009, p. 115.
[33].	A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond”, Phys. Rev. B 63 121405(R) (2001). 
[34].	James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond”, J. Appl. Phys. 93 5606 (2003). 
[35].	Peter K. Bachmann, Dieter Leers, Hans Lydtin, “Towards a general concept of diamond chemical vapour deposition”, Diamond and Related Materials, 1 1 (1991). 
[36].	G. Balestrino, M. Marinelli, E. Milani, A. Paoletti, I. Pinter, and A. Tebano, “Growth of diamond films: General correlation between film morphology and plasma emission spectra”, Appl. Phys. Lett. 62, 879 (1993). 
[37].	Y. Mitsuda, K. Tanaka, and T. Yoshida, Journal of Applied Physics, “In situ emission and mass spectroscopic measurement of chemical species responsible for diamond growth in a microwave plasma jet”, J. Appl. Phys. 67 3604 (1990). 
[38].	C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D'Evelyn, “Growth kinetics of (100), (110), and (111) homoepitaxial diamond films”, Appl. Phys. Lett. 61 1393 (1992). 
[39].	Stephen J. Harris, “Gas-phase kinetics during diamond growth: CH4 as-growth species”, J. Appl. Phys. 65 3044 (1989). 
[40].	Chao Liu, Xingcheng Xiao, Hsien-Hau Wang, Orlando Auciello, and John A. Carlisle , “Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films”, J. Appl. Phys. 101 123924 (2007). 
[41].	M. Wiora, K. Bruhne, A. Floter, P. Gluche, T. M. Willey, S. O. Kucheyev, A. W. Van Buuren, H. J. Fecht, “Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD”, Diamond & Related Materials, 18 927 (2009). 
[42].	S. J. Ray, G. M. Hieftje, “ Microwave plasma torch — atmospheric-sampling glow discharge modulated tandem source for the sequential acquisition of molecular fragmentation and atomic mass spectra ”, Analytica Chimica Acta, 445 (1) 35 (2001). 
[43].	A. T. Sowers, B. L. Ward, S. L. Englih and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films”, J. Appl. Phys., 86 3973 (1999). 
[44].	K. H. Chen, D. M. Bhusari, J. R. Yang, S. T. Lin, T. Y. Wang, L. C. Chen,“Highly transparent nano-crystalline diamond films via substrate pretreament and methane fraction optimization”, Thin Solid Films, 332 34 (1998). 
[45].	D. A. Homer, L. A. Curtiss, and D. M. Gruen, “ A theoretical study of the energetics of insertion of dicarbon (C) and vinylidene into methane C-H bonds2”, Chemical Physics Letters, 233 243 (1995). 
[46].	K. Subramaniana, W. P. Kanga, J. L. Davidsona, R. S. Takalkara, B. K. Choia, M. Howella and D.V. Kerns, “ Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH/H/N plasma-deposited nanodiamond422”, Diamond and Related Materials, 15 1126 (2006). 
[47].	T. K. Ku, C.D. Yang, F.G. Tarntair, C.C. Wang, H.C. Cheng, S.H. Chen, N.J. She, I. J. Hsieh, “Enhanced electron emission from phosphorus- and boron-doped diamond-clad Si field emitter arrays”, Thin Solid Films, 290 176 (1996). 
[48].	Yongde Xia, Gavin S. Walker, David M. Grant, Mokaya, Robert , “Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping”, Journal of the American Chemical Society, 131 16493 (2009). 
[49].	H. Yoshikawa, C. Morel, and Y. Koga, “Synthesis of nanocrystalline diamond films using microwave plasma CVD”, Diamond and Related Materials, 10 1588 (2001). 
[50].	J. Lee, R. W. Collins, R. Messier, and Y. E. Strausser, “Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition”, Applied Physics Letters, 70 1527 (1997). 
[51].	N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, Journal of Crystal Growth, 242 362 (2002). 
[52].	T. Sharda, M. Vmeno, T. Soga, and T. Jimbo, “CJrowth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth”, Applied Physics Letters, 77 26) 4304 (2000). 
[53].	W. Zhu, G P. Kochanski, and S. Jin, “Low-field emission from undopednanostructured diamond”, Science, 282 1471 (1998).
[54].	A. Göhl, A. N. Alimova, T. Habennann, A. L. Mescheryakova, and G Huller,“Integral and local field emission analyses of nanodiamond coating for power applications”, J. Vac. Sci. Technol. B, 17 670 (1999). 
[55].	J. E. Green, S. A. Barnett, J. E. Sundgren, and A. Rockett, “Plasma-surface Interactions And Processing Of Materials”, 28-31(1990). 
[56].	X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, “Epitaxial diamond thin films on (001) silicon substrate”, Appl. Phys. Lett., 62 3438 (1993). 
[57].	S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films”, Applied Physics Letters, 57 (25) 2646 (1990). 
[58].	Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz, “Orientation relationship between chemical vapor deposited diamond and graphite substrates”, Journal of Applied Physics, 73(2) 711 (1993). 
[59].	D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth”, Applied Physics Letters, 54 (5) 416 (1989). 
[60].	N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate”, Journal of Materials Research, 9 (10) 2695 (1994). 
[61].	W. L. Wang, K. J. Liao, L. Fang, J. Esteve, M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition”, Diamond and Related Materials, 10 383 (2001). 
[62].	S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Applied Physics Letters, 58 (10) 1036 (1991). 
[63].	B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass, “ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy”, Phys. Rev. B, 45 11067 (1991). 
[64].	J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on ilicon”, Journal of Applied Physics, 79 (8) 4388 (1996). 
[65].	P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films” , Physical Review B, 56 (4) 2183 (1997). 
[66].	R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films”, Journal of Applied Physics, 79 768 (1996). 
[67].	R. Stöckel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions”, J. Appl. Phys. 83 531 (1998). 
[68].	J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si”, Applied Physics Letters, 66 (24) 3287 (1995). 
[69].	S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond”, Applied Physics Letters, 66 (23) 3117 (1995). 
[70].	L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100) ”, Journal of Applied Physics 76 (11) 7483 (1994). 
[71].	S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”. Journal of Applied Physics 84 (4) 1870 (1998). 
[72].	Debabrata Pradhan, Li-Ju Chen, Yen-Chih Lee, Chi-Young Lee, Nyan-Hwa Tai, I-Nan Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature”, Diamond and Related Materials, 15 1779 (2006). 
[73].	J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor- deposition”, Journal of Materials Science, 27 (23) 6324 (1992). 
[74].	W. Zhu, “Vacuum microelectronics”, John Wiley & Sons (2001). 
[75].	I. Han, N. Lee, S. W. Lee, S. H. Kim, “Field emission of nitrogen-doped diamond films”, J. Vac. Sci. Technol. B, 16(4), 2052 (1998).
[76].	W. Zhu, G. P. Kochanski, S. Jin, “Low-Field Electron Emission from Undoped Nanostructured Diamond”, SCIENCE, 282, 1471 (1998).
[77].	Chiharu Kimura, Satoshi Koizumi, Mutsukazu Kamo, Takashi Sugino, “Behavior of electron emission from phosphorus-doped epitaxial diamond films”, Diamond and Related Materials, 8, 759 (1999).
[78].	You, Min-Sheng, et al. "Low temperature growth of highly transparent nanocrystalline diamond films on quartz glass by hot filament chemical vapor deposition." Diamond and Related Materials 18.2 (2009): 155-159.
[79].	Yu-Feng, Zhang, et al. "Synthesis of nano-crystalline diamond film in hot filament chemical vapour deposition by adding Ar." Chinese Physics Letters18.2 (2001): 286.
[80].	Klauser, Frederik, et al. "Raman Studies of Nano‐and Ultra‐nanocrystalline Diamond Films Grown by Hot‐Filament CVD." Chemical Vapor Deposition16.4‐6 (2010): 127-135.
[81].	May, P. W., and Yu A. Mankelevich. "Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH 4/H 2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth." Journal of applied physics 100.2 (2006): 024301-024301.
[82].	Hao, Tianliang, et al. "Nano-crystalline diamond films synthesized at low temperature and low pressure by hot filament chemical vapor deposition."Surface and Coatings Technology 201.3 (2006): 801-806.
[83]. Barbosa, D. C., et al. "Influence of substrate temperature on formation of ultrananocrystalline diamond films deposited by HFCVD argon-rich gas mixture." Diamond and Related Materials 18.10 (2009): 1283-1288.
[84].	Kromka, A., et al. "Investigation of carburisation of tungsten-carbide formation by hot-filament CVD technique." (2001).
[855].	Chen Huang-Chin. "Microstructures and electron field emission properties of ultra nanocrystalline diamond films." (2010).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信