§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2707201116434600
DOI 10.6846/TKU.2011.00984
論文名稱(中文) 以偏壓輔助微波電漿化學氣相沉積成長奈米晶鑽石薄膜之研究
論文名稱(英文) Studies of bias enhanced growth of nanocrystalline diamond films by microwave plasma chemical vapor deposition
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系碩士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 曾冠欽
研究生(英文) Kuan-Chin Tseng
學號 697210283
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2011-06-27
論文頁數 118頁
口試委員 指導教授 - 林諭男
委員 - 葉炳宏
委員 - 施文欽
關鍵字(中) 偏壓輔助成核
偏壓輔助成長
奈米晶鑽石薄膜
微波電漿化學汽相沉積
關鍵字(英) BEN
BEG
NCD
MPCVD
第三語言關鍵字
學科別分類
中文摘要
因為鑽石與矽基材的晶格常數不匹配,所以在成長鑽石薄膜之前必須要先預孕核或是破壞矽基材表面降低鑽石與矽基材的表面能差,一般常用的方式是將矽基材放入添加鑽石粉與鈦粉的溶液中以超音波震盪45分鐘,其缺點就是成核時間長而且成核密度低。成核完後利用微波電漿化學汽相沉積法(Microwave Plasma Chemical Vapor Deposition, MWPCVD)以甲烷(CH4)與氬氣(Ar)電漿成長超奈米晶鑽石(Ultrananocrystalline Diamond, UNCD)薄膜。本研究開發利用甲烷(CH4)與氫氣(H2),以負偏壓成核(Bias Enhanced Nucleation, BEN)及負偏壓成長(Bias Enhanced Growth, BEG)製程,合成奈米晶鑽石薄膜(nanocrystalline diamond, NCD)。
在第一部份,我們首先是固定成長時間60分鐘,改變負偏壓(Negative Bias Voltage)、微波功率(Power)、氣體壓力(Pressure)與甲烷濃度 (Methane Concentration),並且找出一組可以獲得最佳場發射NCD薄膜的製程條件。接著在第二部份,我們固定一組場發射最佳條件,成核10分鐘後改變不同偏壓成長60分鐘,去探討不同偏壓對微結構的影響。在第三個部份,我們比較BEN-BEG製程與「二階段製程」的不同。所謂「二階段製程」是利用超音波震盪後在成長一UNCD薄膜當作孕核層,之後再成長一層微晶鑽石(Micro-crystalline Diamond, MCD)。我們在施加偏壓成核與成長過程中,會利用光放射光譜  (Optic Emission Spectroscopy, OES)與偏壓電流(Bias Current)監測製程,並利用拉曼光譜、SEM分析表面形貌、電子場發射量測(EFE)鑽石薄膜的特性。
研究發現不同的製程參數對於鑽石薄膜的成分、表面形貌電子場發射特性有很大的影響。而甲烷(CH4)與氫氣(H2)電漿BEN-BEG成長出來的鑽石薄膜場發射特性優於一般UNCD。最後利用穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)分析BEN-BEG與超音波震盪成核成長出來的薄膜,BEN-BEG的晶粒尺寸約50nm,與一般甲烷(CH4)與氫氣(H2)電漿成長出來的MCD 晶粒尺寸約500nm很明顯變小,但尚未達到UNCD晶粒尺寸等級,另一方面再去分析基材與鑽石的介面成核機制,則可以發現偏壓輔助成核與超音波震盪成核兩者的機制有很大的不同;偏壓輔助成核可以避免在孕核層型成非晶形碳(amorphous carbon),且在NCD薄膜中會形成石墨絲(graphitic filament),這或許可以解釋BEN-BEG場發射起始電場比UNCD低的原因。
英文摘要
Due to the mismatch in the lattice parameters of diamond and silicon, prenucleation process is necessary to grow diamond on the Si-substrate. The conventional way of nucleating the Si-substrates, the ultrasonication in diamond and Ti-powder solution, requires long processing time (i.e., 45 min) and imposed significant damage on the Si-substrates. Once prenucleated, the diamond films are readily grown on the Si-substrates by using the Microwave Plasma Chemical Vapor Deposition (MWPCVD) process in CH4/Ar or CH4/H2 plasma. In this study, we developed an bias-enhanced nucleation and bias-enhanced growth (BEN-BEG) process for synthesizing the nanocrystalline (NCD) diamond films.
In the beginning, we systematically adjust the processing parameters, including bias voltage, microwave power, total pressure and methane concentration, so as to optimized the electron field emission properties of the diamond films (BEN for 10 min and BEG for 60 min in CH4(5-7%)/H2 plasma). Then we investigated the effect of bias voltage on the characteristics, microstructure and EFE properties, of the diamond films. In the third part of research, we examined the evolution of microstructure and EEE properties during the BEN-BEG process. In the final part of research, we compared the characteristics of the NCD films prepared by BEN-BEG process with those of the two-step processed UNCD films. The two-step process includes the formation of UNCD layer to serve as nucleation layer, followed by the growth in CH4/Ar/H2 plasma. We used the optical emission spectroscopy (OES) and the bias current to monitor the BEN-BEG process and used Raman spectroscopy, SEM/TEM and EFE to characterize the diamond films.
We observed that the processing parameters imposed significant change on the morphology and EFE properties of the diamond films. The NCD films prepared by BEN-BEG process exhibit superior EFE properties to the UNCD films prepared by the CH4/Ar plasma (or the two-step MCD/UNCD process). Transmission Electron Microscopy (TEM) examination revealed that the diamond films prepared by BEN-BEG process have grains about 50 nm in size, which is markedly smaller than those prepared by conventional MPECVD (CH4/H2) process (~500 nm), but is not as small as those synthesized in CH4/Ar-MPECVD process (~5 nm). Moreover, the diamond nucleated on Si-substrates without the formation of amorphous carbon (a-C) phase and there formed a graphitic filament inside the NCD films, which can account for the lower EFE turn-on field with higher EFE current density for the BEN-BEG derived NCD films, as compared with the two-step processed UNCD films.
第三語言摘要
論文目次
目錄

第一章 緒論	1
1.1	研究動機	1
1.2	鑽石的基本特性	2
1.2.1 硬度	2
1.2.2 熱傳導係數	3
1.2.3 化學反應性(	3
1.2.4 密度	3
1.2.5 光學性質	3
1.2.6 電子特性	3
1.2.7 鑽石的負電子親和力特性	4
1.3	微米及超奈米晶鑽石薄膜之應用	4
1.4  微米及超奈米晶鑽石薄膜之合成方法與理	9
1.4.1合成鑽石薄膜之方法	9
1.4.2 鑽石薄膜成核相關理論	10
第二章 實驗方法	34
2.1 薄膜製備	34
2.1.1 實驗設備與方法	34
2.1.1.1實驗設備	34
2.1.1.2實驗方法	36
2.1.1.3實驗步驟:	37
(A)偏壓輔助成長奈米晶鑽石薄膜	37
(B)成長超奈米晶鑽石薄膜	38
2.2 薄膜物性量測	40
2.2.1 拉曼光譜	42
2.2.2 掃描式電子顯微鏡	44
2.2.3 電子場發射	45
2.2.4 穿透式電子顯微鏡	50
第三章 結果與討論	66
3.1不同BEN-BEG時間成長之奈米晶鑽石薄膜	66
3.1.1掃描式電子顯微結構分析	67
3.1.2拉曼光譜分析	67
3.1.3電子場發射分析	67
3.2固定成長時間60分鐘,改變負偏壓、微波功率、氣體壓力與甲烷濃度	67
3.1.1放射式光譜分析	68
3.2.2偏壓電流分析	68
3.2.3掃描式電子顯微結構分析	68
3.2.4拉曼光譜分析	68
3.2.5電子場發射分析	69
3.3固定偏壓成核後改變偏壓輔助成長奈米晶鑽石薄膜	69
3.3.1偏壓電流分析	69
3.3.2掃描式電子顯微結構分析	70
3.3.3 拉曼光譜分析	70
3.3.4  電子場發射分析	70
3.4二階段製程	71
3.4.1成長不同甲烷比例之超奈米晶鑽石薄膜孕核層	71
3.4.1.1 拉曼光譜分析	71
3.4.1.2 掃描式電子顯微結構分析	72
3.4.1.3 電子場發射分析	72
3.4.2成長添加50%氬氣之微晶鑽石於超奈米晶鑽石薄膜上	72
3.4.2.1 拉曼光譜分析	72
3.4.2.3 掃描式電子顯微結構分析	73
3.4.2.4 電子場發射分析	73
3.5 BEN-BEG與超音波震盪成核成長出來的薄膜之比較	74
3.5.1掃描式電子顯微結構分析	74
3.5.2電子場發射分析	74
3.5.3穿透式電子顯微鏡分析	74
第四章 結論	107
附錄A 電子溫度計算理論	108
參考文獻	110
圖目錄
圖 1. 1鑽石的結構	19
圖 1. 2石墨的結構	19
圖 1. 3微米晶至超奈米晶鑽石薄膜表面型態。	21
圖 1. 4 HRTEM分析超奈米晶鑽石晶粒及晶界	23
圖 1. 5 超奈米晶鑽石晶粒間距及繞射圖	23
圖 1. 6同波長的超奈米晶鑽石膜拉圖曼光譜	24
圖 1. 7微波電漿CVD示意圖	24
圖 1. 8熱燈絲法示意圖	25
圖 1. 9微波電漿放電系統示意圖	25
圖 1. 10射頻電漿放電系統示意圖	26
圖 1. 11電子迴旋共振微波放電示意圖	26
圖 1. 12鑽石之椅狀堆積構造	27
圖 1. 13石墨及鑽石的活化能相對圖	27
圖 1. 14薄膜與基材之早期成核方式	28
圖 1. 15與基材不反應者之孕核、成長機制	28
圖 1. 16與基材形成碳化物之孕核、成長機制	29
圖 1. 17偏壓輔助孕核法的反應機制	30
圖 1. 18偏壓輔助成核示意圖	31
圖 1. 19分別運用奈米鑽石粉(ND)和奈米鑽石粉+鈦粉(ND + TI)以超音波振盪法成長不同時間之UNCD(A)ND 20 MIN,(B)ND + TI 20 MIN,(C)ND 60 MIN,(D)ND + TI 60 MIN,(E)比較(ND)以及(ND + TI)成核密度隨成長時間的變化	32
圖 1. 20超音波振盪法及偏壓輔助孕核法成長鑽石薄膜之SEM圖	33
圖 2. 1本研究所採用MPECVD:IPLAS, CYRANNUS® I                微波電漿化學汽相沉積系統	53
圖 2. 2 IPLAS, CYRANNUS® I微波電漿化學汽相沉積系統示意圖:	54
圖 2. 3偏壓系統示意圖	55
圖 2. 4 (A)拉曼光譜(RAMAN SPECTRA:RENISHAW®, INVIA)系統,	56
圖 2. 5  (A) 掃描式電子顯微結構系統(SCANNING ELECTRON MICROSTRUCTURE, SEM:LEO(ZEISS), LEO 1530VP),(B)掃描式電子顯微結構示意圖。	58
圖 2. 6 (A)電子場發射(EFE)特性量測系統,(B)電子場發射(EFE)陰極(CATHODE)、陽極(ANODE)位置圖。	59
圖 2. 7金屬-真空能帶示意圖(A)未加電場,(B)外加高電場[51]。	60
圖 2. 8穿透式電子顯微鏡(TEM:JEOL, JEM-2100F)。	61
圖 2. 9穿透式電子顯微鏡(TEM:JEOL, JEM-2100F)的基本構造示意圖 。	62
圖 2. 10研磨/拋光機(GRINDER/POLISHER:ALLIED HIGH TECH PRO, METPREP 3™)。	63
圖 2. 11精密離子蝕薄機(ION-MILLER:GATAN, 691 PIPS™)。	63
圖 2. 12碳原子SP3結構圖(A)CUBIC DIAMOND(C-D),(B)NEW DIAMOND(N-D),(C)I-CARBON(I-C)[58]	65
圖 3. 1 實驗流程圖	76
圖 3. 2 不同時間BEN-BEG之掃描式電子顯微結構	77
圖 3. 3 不同時間BEN-BEG之拉曼光譜	77
圖 3. 4 不同時間BEN-BEG之電子場發射J-E 曲線	78
圖 3. 5  1400 W -400 V 甲烷7%和9%之光放射光譜	79
圖 3. 6  1400 W -500 V 甲烷7%和9%之光放射光譜	79
圖 3. 7  1600 W -400 V 甲烷7%之光放射光譜	80
圖 3. 8  1600 W -400 V 甲烷9%之光放射光譜	80
圖 3. 9  1600 W -500 V 甲烷9%之光放射光譜	81
圖 3. 10  電子溫度	81
圖 3. 11  1600 W -400 V 甲烷7%之偏壓電流	82
圖 3. 12 1600 W -400 V甲烷9%之偏壓電流	83
圖 3. 13  1600 W -500 V甲烷9%之偏壓電流	83
圖 3. 14  1400 W -400 V 甲烷7%和9%之偏壓電流	84
圖 3. 15  1400 W -500 V甲烷7%和9%之偏壓電流	84
圖 3. 16  1600 W -400 V和-500 V甲烷9%之偏壓飽和電流	85
圖 3. 17  1600 W -400 V和-500 V甲烷9%之偏壓電流飽和時間	85
圖 3. 18  1400 W -400 V 甲烷7%和9%之掃描式電子顯微結構	86
圖 3. 19  1400 W -500 V 甲烷7%和9%之掃描式電子顯微結構	86
圖 3. 20  1400 W -400 V 甲烷7%和9%之拉曼光譜圖	87
圖 3. 21  1400 W -500 V 甲烷7%和9%之拉曼光譜圖	87
圖 3. 22  1400 W之電子場發射J-E 曲線	88
圖 3. 23  1400 W之電子場發射起始電場曲面圖	89
圖 3. 24  1600 W -400 V 甲烷7%和9%之掃描式電子顯微結構	90
圖 3. 25  1600 W -400 V 甲烷7%之拉曼光譜	91
圖 3. 26  1600 W -400 V 甲烷9%之拉曼光譜	91
圖 3. 27  1600 W -400 V之電子場發射J-E 曲線	92
圖 3. 28  1600 W -400V之電子場發射起始電場曲面圖	93
圖 3. 29  1600 W -500 V 甲烷9%之掃描式電子顯微結構	94
圖 3. 30  1600 W -500 V之電子場發射J-E 曲線	95
圖 3. 31  1600 W -500 V 甲烷9%之拉曼光譜	95
圖 3. 32孕核10分鐘與改變偏壓之電流	96
圖 3. 33改變偏壓之飽和電流	96
圖 3. 34 改變偏壓之電漿照片	97
圖 3. 35改變偏壓之掃描式電子顯微結構	98
圖 3. 36改變偏壓之拉曼光譜	98
圖 3. 37改變偏壓之電子場發射J-E 曲線	99
圖 3. 38  不同甲烷流量之UNCD與成長在UNCD上的氬氣50%之示意圖	100
圖 3. 39不同甲烷流量之UNCD與成長在UNCD上的氬氣50%之	101
圖 3. 40不同甲烷流量之UNCD之拉曼光譜	101
圖 3. 41氬氣50%之MCD成長在不同甲烷流量之UNCD之拉曼光譜	102
圖 3. 42 不同甲烷流量之UNCD與成長在UNCD上的氬氣50%之	102
圖 3. 43  BEN-BEG成長之NCD與超音波震盪成核之UNCD比較	104
圖 3. 44  BEN-BEG與超音波震盪成核之鑽石薄膜的場發射J-E曲線	104
圖 3. 45  BEN-BEG與超音波震盪成核之鑽石薄膜的TEM 明場像與HR	105
圖 3. 46  BEN-BEG與超音波震盪成核之UNCD的TEM暗場疊加	105
圖 3. 47  BEN-BEG與超音波震盪成核之UNCD CROSS-SECTION的TEM HR	106
圖 3. 48  BEN-BEG  CROSS-SECTION的TEM HR	106

表目錄
表 1. 1鑽石的基本特性	20
表 1. 2微米晶鑽石與超奈米晶鑽石的特性比較	22
表 1. 3超音波振盪法以及偏壓輔助孕核法其孕核特性之比較	33

表 2. 1碳結構的各種拉曼峰值。	57
表 2. 2碳原子SP3結構1/D值與其出現之晶相對照表。	64

表 3. 1不同時間BEN-BEG之實驗參數與電子場發射起始電場	78
表 3. 2改變不同條件之實驗參數	82
表 3. 3  1400 W之實驗參數與電子場發射起始電場	88
表 3. 4  1600 W -400 V之實驗參數與電子場發射起始電場	92
表 3. 5  1600 W -500 V之實驗參數與電子場發射起始電場	95
表 3. 6改變偏壓之實驗參數與電子場發射起始電場	99
表 3. 7  不同甲烷流量之UNCD與成長在UNCD上的氬氣50%之實驗參數	100
表 3. 8  不同甲烷流量之UNCD與成長在UNCD上的氬氣50%之場發射	103
參考文獻
[1]	A. Lavoisier , "Elements of Chemistry", Dover Publications(1772)
[2]	Jasprit Singh, McGraw-Hill, "Physics of Semiconductors and Their Heterostructures ", New York (1993)
[3]	S. M. Sze, John Wiley & Sons, "Physics of Semiconductor Devices, 2nd Edition", New York (1981)
[4]	W. P. Kang, J. L. Davidson, A. Wisitsora-at, D. V. Kerns, and S, Kerns, “Recent development of diamond microtip field emitter cathodes and devices”, J. Vac. Sci. Technol. B, 19(3), 936 (2001)
[5]	Nevin N. Naguib, Jeffrey W. Elam, James Birrell, Jian Wang, David S. Grierson, and Bernd Kabius, “Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers,” Chemical Physics Letters, 430 (4-6), 345-350 (2006). 
[6]	L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, and Y. Chen, “Nanocrystalline diamond from carbon nanotubes,” Applied Physics Letters, 84 (15), 2901-2903 (2004). 
[7]	P. W. May and Yu. A. Mankelevich, “Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth,” Journal of Applied Physics, 100 024301-1-024301-9 (2006). 
[8]	L. Kreines, G. Halperin, I. Etsion, M. Varenberg, A. Hoffman, and R. Akhvlediani, “Fretting wear of thin diamond films deposited on steel substrates,” Diamond and Related Materials, 13 (9), 1731-1739 (2004). 
[9]	C.K. Lee, “Wear-corrosion behavior of ultra-thin diamond-like carbon nitride films on aluminum alloy,” Diamond and Related Materials, 17 (3), 306-312 (2008). 
[10]	J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond,” Applied Physics Letters, 81 (12), 2235-2237 (2002). 
[11]	M. Nesladek, D. Tromson, Bergonzo, P. Hubik, P. Mares, J.J. Kristofik, J. Kindl, and Gruen, D., “Low-temperature magnetoresistance study of electrical transport in N- and B-doped ultrananocrystalline and nanocrystalline diamond films,” Diamond & Related Materials, 15 (4-8), 607-613 (2006). 
[12]	Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, and I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires,” Diamond and Related Materials, 17 (4-5), 753-757(2008). 
[13]	P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films,” Journal of Applied Physics, 103 043720-1-043720-7 (2008). 
[14]	W. Zhu, “Vacuum Microelectronics,” John Wiley & Sons (2001). 
[15]	S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2,” Journal of Applied Physics, 90 118-122 (2001). 
[16]	Ferrari, Andrea Carlo, Robertson, and John, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362 2477 (2004). 
[17]	M. Veres, S. Tóth, and M. Koós, “Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering,”Applied Physics Letters, 91 031913-1- 031913-3 (2007). 
[18]	M. Veres, S. Tóth, E. Perevedentseva, A.Karmenyan, and M. Koós, “Raman spectroscopy of UNCD grain boundaries,”Volume . ISBN 978-1-4020-9915-1. Springer Netherlands, 115 (2009).
[19]	A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond,” Physical Review B, 63 121405-1-121405-4 (2001). 
[20]	James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond,” Journal of Applied Physics, 93 5606-5612 (2003). 
[21]	Chao Liu, Xingcheng Xiao, Hsien-Hau Wang, Orlando Auciello, and John A. Carlisle , “Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films,” Journal of Applied Physics, 101 123924-1-123924-6 (2007). 
[22]	M. Wiora, K. Bruhne, A. Floter, P. Gluche, T. M. Willey, S. O. Kucheyev, A. W. Van Buuren, and H. J. Fecht, “Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD,” Diamond & Related Materials, 18 927-930 (2009). 
[23]	S. J. Ray and G. M. Hieftje, “ Microwave plasma torch -atmospheric-sampling glow discharge modulated tandem source for the sequential acquisition of molecular fragmentation and atomic mass spectra ,” Analytica Chimica Acta, 445 (1), 35 (2001). 
[24]	A. T. Sowers, B. L. Ward, S. L. Englih, and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films,” Journal of Applied Physics, 86 3973-3982 (1999). 
[25]	K. H. Chen, D. M. Bhusari, J. R. Yang, S. T. Lin, T. Y. Wang, and L. C. Chen,“Highly transparent nano-crystalline diamond films via substrate pretreament and methane fraction optimization,” Thin Solid Films, 332 (1-2), 34-39 (1998). 
[26]	Huimin Liu and David S. Dandy, “Diamond Chemical Vapor Deposition Nucleation and Early Growth Stages,” Noyes Publication, Park Ridge, New Jersey (1995). 
[27]	Robert F. Davis, “Diamond Films and Coatings Development, Properties, and Applications,” Noyes Publications, Park Ridge, New Jersey (1992).
[28]	J. E. Green, S. A. Barnett, J. E. Sundgren, and A. Rockett, “Plasma-surface interactions and processing of materials,” 28-31(1990). 
[29]	X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, “Epitaxial diamond thin films on (001) silicon substrate,” Applied Physics Letters, 62 3438-3440 (1993). 
[30]	S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films,” Applied Physics Letters, 57 (25), 2646-2648 (1990). 
[31]	N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films,” Journal of Crystal Growth, 242 (3-4), 362-366 (2002).
[32]	H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages,” Noyes (1995).
[33]	Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz, “Orientation 
relationship between chemical vapor deposited diamond and graphite substrates,” Journal of Applied Physics, 73(2), 711-715 (1993). 
[34]	D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth,” Applied Physics Letters, 54 (5), 416-417 (1989). 
[35]	N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate,” Journal of Materials Research, 9 (10), 2695 (1994). 
[36]	W. L. Wang, K. J. Liao, L. Fang, J. Esteve, and M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition,” Diamond and Related Materials, 10 (3-7), 383-387 (2001). 
[37]	S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition,” Applied Physics Letters, 58 (10), 1036-1038 (1991). 
[38]	B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass, “ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy,” Physical Review B, 45 (19), 11067-11084 (1992). 
[39]	J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on ilicon,” Journal of Applied Physics, 79 (8), 4388-4396 (1996). 
[40]	P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films,” Physical Review B, 56 (4), 2183-2190 (1997). 
[41]	R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films,” Journal of Applied Physics, 79 768-775 (1996). 
[42]	R. Stöckel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions,” Journal of Applied Physics, 83 531-539 (1998). 
[43]	J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si,” Applied Physics Letters, 66 (24), 3287 (1995). 
[44]	S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond,” Applied Physics Letters, 66 (23), 3117-3119 (1995). 
[45]	L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100),” Journal of Applied Physics 76 (11), 7483-7486 (1994). 
[46]	S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step.” Journal of Applied Physics 84 (4), 1870-1880 (1998). 
[47]	Debabrata Pradhan, Li-Ju Chen, Yen-Chih Lee, Chi-Young Lee, Nyan-Hwa Tai, and I-Nan Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature,” Diamond and Related Materials, 15 1779-1783 (2006).
[48]	J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor- deposition,” Journal of Materials Science, 27 (23), 6324-6330 (1992). 
[49]	Serapinas, P. D. and Shalkauskas, Y. S., “Homology and concentration sensitivity in equilibrium excitation,” Zh. Prikl. Spektrosk. 251 496–501(Translation) (1976).
[50]	Podder, N. K, Johnson, J. A. III Loch S D, and Pindzola M S, “Helium line intensity ratio in microwave-generated plasmas,” Physics of Plasmas, 11 (12), 5436-5443 (2004).
[51]	顏澤宇, “硼摻雜在偏壓下對鑽石膜沈積的影響,” 國立台灣師範大學物理研究所碩士論文, 28-32 (2004).
[52]	Chiharu Kimura, Satoshi Koizumi, Mutsukazu Kamo, Takashi Sugino, “Behavior of electron emission from phosphorus-doped epitaxial diamond films,” Diamond and Related Materials, 8 (2-5), 759-762 (1999).
[53]	Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires,” Diamond and Related Materials, 17 (4-5), 753-757 (2008).
[54]	P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “ Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films,” Journal of Applied Physics 103 043720-1-043720-7 (2008).
[55]	T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond,” Encyclopedia of Nanoscience and Nanotechnology, X, I (2003).
[56]	Robert Gomer, Field emission and field ionization, American Institute of Physics, 21-29 (1993).
[57]	陳皇欽, “超奈米微晶鑽石薄膜之微結構及電子場發射特性之研究,” 淡江大學物理學系博士論文, 58-59 (2010).
[58]	羅聖全, “以先進影像能譜電鏡技術:研究銅金屬化製程中低介電常數材料之介電性質與熱穩定性,”, 國立清華大學工程與系統科學系博士論文, Ch.2 (2003).
[59]	李彥志, “元件用奈米晶鑽石薄膜,” 國立清華大學材料科學與工程學系博士論文, 80-81 (2006).
[60]	Se Youn Moon, W. Choe, Han S. Uhm, Y. S. Choi, "Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tebe", Physics of plasmas vol. 9 (2002)
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信