淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2707201111475700
中文論文名稱 無線視覺感測網路下具監控品質保證之環繞覆蓋防衛線建構
英文論文名稱 Encircled β-Breadth Belt-Barrier Coverage in Wireless Visual Sensor Networks
校院名稱 淡江大學
系所名稱(中) 資訊工程學系資訊網路與通訊碩士班
系所名稱(英) Master's Program in Networking and Communications, Department of Computer Science and Information En
學年度 99
學期 2
出版年 100
研究生中文姓名 蔡國堂
研究生英文姓名 Kuo-Tang Tasi
學號 698420436
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2011-06-09
論文頁數 73頁
口試委員 指導教授-鄭建富
委員-張兆村
委員-張志勇
委員-鄭建富
委員-洪麗玲
中文關鍵字 防禦線覆蓋  影像厚度  監控品質  影像重要性  環繞覆蓋  無線視覺感測網路 
英文關鍵字 Barrier Coverage  Breadth of Image  Quality of Monitor  Importance of Image  encircled coverage  Wireless Visual Sensors Network 
學科別分類 學科別應用科學資訊工程
中文摘要 無線視覺感測網路(Wireless Visual Sensor Networks,WVSNs)是由許多分散在場景中的視覺感測節點所構成。相較於傳統的無線感測網路(Wireless Sensor Networks,WSNs)而言,無線視覺感測網路不僅能達到監控之功用,並且能夠進一步取得影像資訊,如此一來將更能有效地立即掌控監控場景之現況。這也使得無線視覺感測網路中之防禦線覆蓋(barrier coverage)問題受到許多研究學者的重視。然而,此問題有著許多的挑戰,原因在於WVSNs所收集的資料為影像資訊,若使用過多的視覺感測節點佈建防線,將收集到過多且不必要之影像。如此一來,將增加影像回傳時所需的頻寬負載。並且,過多重覆影像也將造成後端影像處理之困難度。因此,如何挑選較少數量的視覺感測節點來佈建防線,已成為無線視覺感測網路中一項非常重要之議題。此外,過往針對無線視覺感測網路下之防禦線覆蓋研究,並未考慮到其所收集到的每一片段影像應具有一定大小之影像厚度,如此一來將難以辨視其所收集到的影像。因此,本研究將加入影像厚度之考量,藉此提供較佳之監控品質(Quality of Monitor, QoM)。
此外,當有入侵者穿越防禦線時,過往的視覺防禦線只能確保該入侵者在穿越防禦線時其影像資訊能夠被偵測並擷取下來,但並無法保證其所擷取到的影像資訊為入侵者之重要部分。因此,為了更進一步的提升QoM,我們將加入影像重要性(Importance of Image, IoI)之考量,藉由加入環繞覆蓋(encircled coverage),來提供入侵者之環繞影像資訊,如此一來,將可確保重要角度之影像能夠被擷取下來。綜合上述各點,本研究將針對無線視覺感測網路中之防禦線覆蓋問題重新做一探討,並提出分散式的視覺防禦線建構演算法,藉以找尋較少數量之視覺感測節點來佈建具備一定影像監控厚度及環繞覆蓋能力之防禦線。
英文摘要 Wireless visual sensor networks (WVSNs) can not only provide monitoring functions like wireless sensor networks (WSNs) but also capture real-time images of the monitored scene. This capability has made the barrier coverage of WVSNs an issue of interest to many researchers. For instance, in the construction of a barrier, using too many camera sensors may produce an excessive number of redundant and overlapping images, which in turn increase the bandwidth of data transmission, occurrence of packet collisions, and difficulty of post image processing. Therefore, how to use a minimum number of camera sensors to construct a barrier has become an important issue in WVSNs. Besides, previous research of barrier coverage did not consider breadth of coverage, i.e. the width of collected images. In this paper, we consider breadth and Importance of Image (IoI) to increase the Quality of Monitor (QoM) of WVSNs. Finally, the proposed algorithms’ successful rate of barrier construction under different conditions, including β requirement, sensor distribution, and rotation capability is also tested through simulations.
論文目次 圖目錄 VI
表目錄 IX
第一章、簡介 1
第二章、相關研究 8
2.1WSNs中Barrier Coverage Problem之相關研究 8
2.2WVSNs中Barrier Coverage Problem之相關研究 10
第三章、問題之正規化及系統模型 13
第四章、防禦線建構演算法 17
4.1建構具β-QoM等級品質保證之防禦線 17
4.2建構具β-IoI等級品質保證之防禦線 30
第五章、實驗分析及模擬 43
5.1D-TriB以及D-TriBR的實驗模擬 43
5.2D-eTriB以及D-eTriBR的實驗模擬 49
第六章、結論 56
參考文獻 58
附錄-英文論文 63

圖目錄
圖 1. Crossing Paths以及Non-Crossing Paths 2
圖 2. Weak Barrier以及Strong Barrier 3
圖 3. 不具厚度考量以及具厚度考量之影像監控 3
圖 4. 影像資訊重要性之比較 4
圖 5. 厚度示意圖 5
圖 6. 環繞覆蓋之示意圖 5
圖 7. 幅角限制之示意圖 13
圖 8. 扇形區域示意圖 13
圖 9. Virtual Line Function 18
圖 10. Virtual Line 轉換示意圖 19
圖 11. 防禦線挑選示意圖 21
圖 12. 直線L與視覺感測節點vi之FoV交於兩點 22
圖 13. 最小厚度計算示意圖 23
圖 14. Basic Distributed β-Breadth Belt-Barrier Construction Algorithm without rotation (D-TriB) 26
圖 15. 轉動後所能提供之貢獻度示意圖 27
圖 16. 順逆時鐘轉時所需轉動角度之示意圖 28
圖 17. 轉動角度對應關係之示意圖 29
圖 18. Rotation Function 29
圖 19. 防禦線挑選示意圖 33
圖 20. 節點貢獻度之示意圖 34
圖 21. 兩視覺感測節點之合作示意圖 35
圖 22. 三個視覺感測節點合作示意圖 37
圖 23. 四個視覺感測節點合作示意圖 38
圖 24. Basic Distributed β-Breadth Belt-Barrier Encircled Coverage Construction Algorithm without rotation (D-eTriB) 40
圖 25. 三個節點藉由轉動所能建立之最大環繞覆蓋區域 42
圖 26. 新加入節點藉由轉動所能夠建立之環繞覆蓋區域 42
圖 27. 隨機分佈 44
圖 28. 在不同λ值下之卜瓦松分佈 44
圖 29. 不同撒落間隔下之節點密度分佈(節點總數為100個) 45
圖 30. 在不同空投點的間隔下之高斯分佈 46
圖 31. 在不同β值下之隨機分佈(節點總數為200個) 47
圖 32. 在不同β值下之卜瓦松分佈(λ=8,節點總數為200個) 48
圖 33. 在不同β值下之高斯分佈(空投點的間隔為20,節點總數為200個) 48
圖 34. 在不同β值下之高斯分佈(空投點的間隔為20,節點總數為100個) 48
圖 35. 隨機分佈 50
圖 36. 在不同λ值下之卜瓦松分佈 50
圖 37. 不同撒落間隔下之節點密度分佈(節點總數為1600個) 52
圖 38. 在不同空投點的間隔下之高斯分佈 52
圖 39. 在不同β值下之隨機分佈(節點總數為2800個) 54
圖 40. 在不同β值下之卜瓦松分佈(λ=7,節點總數為2800個) 54
圖 41. 在不同β值下之高斯分佈(空投點的間隔為20,節點總數為2800個) 54
圖 42. 在不同β值下之高斯分佈(空投點的間隔為20,節點總數為1400個) 55

表目錄
表 1. 模擬參數_1 43
表 2. 模擬參數_2 49
參考文獻 [1] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, "A Survey on Wireless Multimedia Sensor Networks," Computer Network, vol. 51, no. 4, pp.921-960, 2007.
[2] X. Bai, Z. Yun, D. Xuan, T. H. Lai, and W. Jia, "Optimal Patterns for Four-Connectivity and Full Coverage in Wireless Sensor Networks," IEEE Transactions on Mobile Computing, vol. 9, no. 3, pp. 435-448, 2010.
[3] Y. Cai, W. Lou, M. Li, and X. Y. Li, "Energy Efficient Target-Oriented Scheduling in Directional Sensor Networks," IEEE Transactions on Computers, vol. 58, no. 9, pp. 1259-1274, 2009.
[4] C. Y. Chang, C. T. Chang, and S. C. Tu, "Obstacle-Free Geocasting Routing Protocol for Ad-Hoc Wireless Networks," ACM/Baltzer Journal of Wireless Networks, vol. 9, no. 2, pp.143-155, 2003.
[5] A. Chen, S. Kumar, and T. H. Lai, "Local Barrier Coverage in Wireless Sensor Networks," IEEE Transactions on Mobile Computing, vol. 9, no. 4, pp. 491 - 504, 2010.
[6] T. S. Chen, H. W Tsai, C. P. Chen and J. J. Peng, "Object Coverage with Camera Rotation in Visual Sensor Networks," Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCNC), pp. 79-83, 2010
[7] K.Y. Chow, K.S. Lui, and E.Y. Lam, "Maximizing Angle Coverage in Visual Sensor Networks," Proceeding of the IEEE International Conference on Communications (ICC), pp. 3516–3521, 2007.
[8] K. Y. Chow, K. S. Lui, and E. Y. Lam, "Achieving 360 Angle Coverage with Minimum Transmission Cost in Visual Sensor Networks," Proceeding of the IEEE Wireless Communications and Networking Conference(WCNC), pp. 4112-4116, 2007.
[9] A. O. Ercan, A. El Gamal, and L. J. Guibas, "Object Tracking in the Presence of Occlusions via a Camera Network," Proceeding of the International Conference on Information Processing in Sensor Networks (IPSN), pp.509-518, 2007.
[10] G. Fusco and H. Gupta, "Selection and Orientation of Directional Sensors for Coverage Maximization," IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks(SECON), pp.1-9, 2009
[11] C. T. Huang, C. H. Wu, Y. N. Lee and J. T. Chen; "A novel indoor RSS-based position location algorithm using factor graphs," IEEE Transactions on Wireless Communications, vol. 8, no 6, pp. 3050-3058, 2009.
[12] P. Kulkarni, D. Ganesan, P. Shenoy, and Q. Lu, "SensEye: A Multi-tier Camera Sensor Network," Proceedings of the annual ACM international conference on Multimedia, pp. 229–238, 2005.
[13] S. Kumar, T.H. Lai, and A. Arora, "Barrier Coverage with Wireless Sensors," Proceeding of the Annual ACM International Conference on Mobile Computing and Networking (MobiCom), pp. 284-298, 2005.
[14] B. Liu, O. Dousse, J. Wang, and A. Saipulla, "Strong Barrier Coverage of Wireless Sensor Networks," Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 411-419, 2008.
[15] L. Liu, H. Ma, and X. Zhang, "Analysis for Localization-Oriented Coverage in Camera Sensor Networks," Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), pp. 2579-2584, 2008.
[16] H. Ma and Y. Liu, “Some Problems of Directional Sensor Networks,” International Journal of Sensor Networks, vol. 2, no. 1/2, pp. 44–52, 2007.
[17] S. Y. Pyun and D. H. Cho, "Power-saving Scheduling for Multiple-target Coverage in Wireless Sensor Networks," IEEE Communications Letters, vol. 13, no. 2, pp. 130-132, 2009.
[18] B. Rinner and W. Wolf, "An Introduction of Distributed Smart Cameras," Proceedings of the IEEE, vol. 96, no. 10, pp. 1565 - 1575, 2008.
[19] A. Saipulla, B. Liu, G. Xing, X. Fu, and J. Wang. "Barrier coverage with sensors of limited mobility," Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 201-210, 2010
[20] K.P. Shih, C.M. Chou, I H. Liu and C.C. Li, "On Barrier Coverage in Wireless Camera Sensor Networks," Proceeding of the IEEE Advanced Information Networking and Applications (AINA), pp. 873-879, 2010.
[21] S. F. A. Shah, S. Srirangarajan and A. H. Tewfik, "Implementation of a Directional Beacon-based Position Location Algorithm in a Signal Processing Framework," IEEE Transactions on Wireless Communications, vol. 9, no 3, pp. 1044-1053, 2010.
[22] P. Wang, R. Dai, and I. F. Akyildiz, "Collaborative Data Compression using Clustered Source Coding for Wireless Multimedia Sensor Networks," Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), pp.1-9, 2010.
[23] W. Wang; V. Srinivasan, B. Wang and K. C. Chua, "Coverage for Target Localization in Wireless Sensor Networks," IEEE Transactions on Wireless Communications, vol. 7, no. 2, pp. 667-676, 2008.
[24] H. Yang, D. Li and H. Chen, "Coverage Quality Based Target-Oriented Scheduling in Directional Sensor Networks," Proceeding of the IEEE International Conference on Communications (ICC), pp. 1-5, 2010.
[25] G. Yang and D. Qiao, "Multi-Round Sensor Deployment for Guaranteed Barrier Coverage," Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), pp. 1-9, 2010.
[26] G. Yang and D. Qiao. "Barrier information coverage with wireless sensors," Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), pp. 918-926, 2009.
[27] Z. Yun, X. Bai, D. Xuan, T. H. Lai and W. Jia, "Optimal Deployment Patterns for Full Coverage and k-Connectivity (k≤6) wireless sensor networks," IEEE/ACM Transactions on Networking, vol. 18, no. 3, pp. 934-947, 2010.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-07-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-07-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信