淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2707201110201700
中文論文名稱 漣漪差排之滑移機制
英文論文名稱 Slip mechanism of ripple dislocations
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 莊郁凡
研究生英文姓名 Yu-Fan Chuang
學號 698370284
學位類別 碩士
語文別 中文
口試日期 2010-06-27
論文頁數 43頁
口試委員 指導教授-林清彬
委員-蔡有仁
委員-張子欽
委員-林清彬
中文關鍵字 漣漪差排  滑移  動力學  牛頓運動定律 
英文關鍵字 Ripple dislocation  Slip  dynamics  Newton motion law 
學科別分類 學科別應用科學機械工程
中文摘要 漣漪差排滑移的機制與動力學已被研究。PDMS薄膜給予一固定拉伸應變後鍍金,接著釋放拉伸應變,薄膜會形成漣漪結構、排向表面裂縫、裂痕及漣漪差排。若將同時具漣漪差排的試片給予和漣漪正交方向夾一角度之拉伸應力,發現漣漪差排會產生滑移現象,且漣漪差排滑移的動力學符合牛頓運動定律,其中滑移速度隨拉伸應力及拉伸應變增加而增加及減少。
英文摘要 Slip mechanism of ripple dislocation has been investigated. A tension stress was applied in the polydimethylsiloxane (PDMS) film, next the following steps was should be done: fixed tensile strain, sputtering a gold layer on the surface of the film, releasing the tensile strain, a large-scale area ripple structure is formed. During the process of forming the ripple structure, there will be the ripple dislocations, the cracks and the oriented surface cracks simultaneously appearing within the ripple structure. In addition, this study also explored the amount of tensile stress and tensile strain effect on the slip velocity of the ripple dislocation. The slip kinetic of ripple dislocation obeys the Newton motion law and the slip velocity of ripple dislocation increases in tensile stress increase or decreases in tensile strain.
論文目次 目錄
中文摘要..................................................................................................Ⅰ
英文摘要...................................................................................................II
總目錄.................................................................................................... Ⅲ
圖目錄......................................................................................................Ⅴ
表目錄......................................................................................................Ⅷ
壹、 導論..................................................................................................1
1-1前言..................................................................................................1
1-2 文獻回顧.........................................................................................3
1-2.1 漣漪形成的方法......................................................................3
1-2.2 漣漪差排之滑移機制..............................................................5
1-3 研究範疇.........................................................................................8
貳、 實驗設計........................................................................................15
2-1 PDMS溶膠調製............................................................................15
2-2矽晶片清洗....................................................................................15
2-3 PDMS薄膜製作............................................................................15
2-4漣漪試片製作................................................................................16
2-5漣漪差排滑移................................................................................16
參、 結果與討論....................................................................................20
3-1漣漪形成機制與漣漪差排型態....................................................20
3-2 漣漪差排之滑移...........................................................................21
3-2.1漣漪差排之滑移行為.............................................................21
3-2.2漣漪結構轉向.........................................................................21
3-2.3 漣漪差排之滑移機制............................................................22
3-3漣漪差排滑移之動力學................................................................23
3-4拉伸應力對漣漪差排滑移之影響................................................25
3-5回復應變對漣漪差排滑移之影響................................................26
3-6滑移軌跡交錯對漣漪差排滑移之影響........................................27
3-7 漣漪差排相互影響.......................................................................27
肆、 結論................................................................................................42
伍、 參考文獻........................................................................................43

圖目錄
圖1-1 (a) 濺鍍後拉伸;(b) 拉伸後濺鍍,進行應變回復之示意圖。....9
圖1-2 拉伸實驗,波長與拉伸應變之關係圖。........................................9
圖1-3 壓縮實驗,波長與回復應變之關係圖。........................................9
圖1-4 (a) 皺波波紋形成機制:先將PDMS加熱膨脹後,經過氧化電
漿法生成一層類二氧化矽(Silica-like)層後,冷卻至室溫 (b) 階
梯浮雕圖案邊緣的熱應力分佈;其中σx為X方向的應力,
σy 為Y方向的應力,此處為Y方向的雙軸向回復應力。..........10
圖1-5 (a) 無階梯浮雕或離波紋很遠時,雙軸向回復所產生的無序波
紋,稱之為皺波 (b)~(d) 經過不同階梯浮雕所產生之波紋,可
由浮雕附近發現其波紋方向與階梯垂直 (e) 原子力顯微鏡下
的皺波。........................................................................................10
圖1-6 氧化時間與波長和振幅之關係圖。............................................11
圖1-7 滑移機制示意圖。......................................................................11
圖1-8 θ與Φ之關係圖(穩態區)。...........................................................11
圖1-9 差排滑移與差排消失。................................................................12
圖1-10 奈米壓印圖案,其中d=1 μm, p=0.5μ m,w=1.8μm,l=4μm。...12
圖1-11 四種優選方位。..........................................................................13
圖1-12 暫態波紋。..................................................................................13
圖1-13 磁滯反應。..................................................................................13
圖1-14 磁滯程度與λ0/d之關係圖。......................................................14
圖1-15 應變與磁滯程度關係圖。.........................................................14
圖2-1 拉伸試片示意圖。.......................................................................18
圖2-2 拉伸治具示意圖。.......................................................................18
圖2-3 漣漪差排滑移用之治具。...........................................................19
圖2-4 拉伸應力施加方向與漣漪正交方向夾角示意圖。....................19
圖3-1漣漪波紋如白色箭頭所示。........................................................29
圖3-2 (a) 晶格漣漪差排;(b)暫態Y型漣漪差排 之AFM圖。........29
圖3-3漣漪差排類型 (a) 負刃暫態Y型漣漪差排;(b) 負刃晶格漣
漪差排;(c) 正刃暫態Y型漣漪差排;(d) 正刃晶格漣漪差
排之OM圖。……………...……………………………………30
圖3-4漣漪差排滑移歷程之OM圖,白色箭頭為漣漪差排滑移所
產生之滑移軌跡。........................................................................31
圖3-5 (a) 漣漪條紋彎曲改向;(b)收縮合力方向。.............................32
圖3-6 裂痕之AFM圖。...........................................................................32
圖3-7正刃漣漪差排之滑移行為示意圖,圖中實線箭頭為收縮合力方
向,虛線箭頭方向為晶格漣漪差排受擠壓而延長之方向。......33
圖3-8負刃漣漪差排之滑移行為示意圖,圖中實線箭頭為收縮合力
方向,虛線箭頭方向為晶格漣漪差排受擠壓而延長之方向。..33
圖3-9 箭頭方向為漣漪差排滑移方向,其中A箭頭是在較小拉伸
力的狀況下,B箭頭之拉伸力較大。....................................34
圖3-10拉伸應力對滑移軌跡之影響,左圖之拉伸力較小(49mN),
右圖之拉伸力較大(137.2mN)。.....................................…....34
圖3-11 400μm PDMS薄膜,鍍金層4Å,固定拉伸應變12%,漣漪
差排滑移距離與時間關係圖,其中實線為牛頓第二運動定律
之擬合曲線。...............................................................................35
圖3-12 400μm PDMS薄膜,鍍金層4Å,固定拉伸應變30%,漣漪
差排滑移距離與時間關係圖,其中實線為牛頓第二運動定
律之擬合曲線。.........................................................................36
圖3-13 400μm PDMS薄膜,鍍金層4Å,固定拉伸力137.2mN,漣漪
差排滑移距離與時間關係圖,其中實線為牛頓第二運動定
律之擬合曲線。..........................................................................37
圖3-14滑移軌跡交錯之漣漪差排位移與時間關係圖,圖中實圈為
受軌跡交錯影響點。..................................................................38
圖3-15 箭頭A為漣漪差排之滑移軌跡,箭頭B為滑移軌跡。........39
圖3-16 正負刃漣漪差排復合過程。.............................................40
圖3-17 正負刃漣漪差排滑動端重疊產生差排偶。..............................41

表目錄
表1 400μm PDMS薄膜,鍍金層4Å,固定拉伸應變12%之曲線擬合
參數數值。....................................35
表2 400μm PDMS薄膜,鍍金層4Å,固定拉伸應變30%之曲線擬合
參數數值....................................36
表3 400μm PDMS薄膜,鍍金層4Å,固定拉伸力137.2mN之曲線
擬合參數數值..................................................................................37
參考文獻 1. Bowden, N., Huck, W.T.S., Paul, K.E., Whitesides, G.M., “The controlled formation of ordered, sinusoidal structures by plasmaoxidation of an elastomeric polymer”, Applied Physics Letters 75 (1999) pp. 2557-2559.
2. Stafford, C.M.,Harrison, C.,Beers, K.,Karim, A.,Amis, E.J.,Vanlandingham, M.R.,Kim, H.C.,Volksen, W.,Miller, R.D., Simonyi, E.E.,”A bucking-based metrology for measuring the elastic modili of polymeric thin films”,Nature Materials 3 (2004) pp.545-550.
3. Ohzono, T., Shimomura, M., “Defect-mediated stripe reordering in wrinkles upon gradual changes in compression direction”, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 73(2006), art. no. 040601.
4. A. L. VolynskII, S. Bazhenov, O. V. Lebedeva, N. F. Bakeev,
“Mechanical buckling instability of thin coatings deposited on soft
polymer substrates”, Journal of materials science 35(2000)
pp547-554.
5. Groenewold, J.,”Wrinkling of plates coupled with soft elastic media”,Physica A 298(2001) pp.32-45.
6. Efimenko, K., Rackaitis, M., Manias, E., Vaziri, A., Mahadevan, L., Genzer, J., “Nested self-similar wrinkling patterns in skins”, Nature Materials 4 (2005) pp. 293-297.
7. Berdichevsky, Y.,Khandurina, J.,Guttman, A.,Lo, Y.h.,”UV/ozone modification of ploy(dimethylsiloxane) microfludic channels”,Sensors and Actuators B 97 (2004) pp.402-408.
8. Takuya Ohzono,” Control of cooperative switching of microwrinkle orientationsby nanopatterns”, Chose 19 (2009), art. no.033104.
9. 李育修,”聚二甲基矽氧烷鍍金之漣漪形成機制與型態”,淡江大學機電系碩士論文(2005).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-07-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信