§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2707201023393800
DOI 10.6846/TKU.2010.01018
論文名稱(中文) 微波電漿系統設計及其應用在超奈米微晶鑽石成長之研究
論文名稱(英文) Design of microwave plasma enhanced CVD system and their application in the growth of ultra-nano crystalline diamond film.
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系碩士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 林聖昌
研究生(英文) Sheng-Chang Lin
學號 697210051
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-07-12
論文頁數 96頁
口試委員 指導教授 - 林諭男(inanlin@mail.tku.edu.tw)
共同指導教授 - 柳克強(kcleou@ess.nthu.edu.tw)
委員 - 林諭男(inanlin@mail.tku.edu.tw)
委員 - 柳克強(kcleou@ess.nthu.edu.tw)
委員 - 葉炳宏(phyeh331@mail.tku.edu.tw)
關鍵字(中) 鑽石
波導管
化學汽相沉積
電漿
關鍵字(英) UNCD
MPCVD
HFSS
第三語言關鍵字
學科別分類
中文摘要
微波電漿共振器的設計主要是要利用化學汽相沉積成長大面積的鑽石薄膜。而微波電漿共振器採用了環形微波偶合技術。首先從一個規格WR340的矩形波導管其中剖面電場分佈必需要有8個半波長,然後將此矩形波導管彎成環形共振結構。隙縫(2.5 mm x 50 mm)的適當位置位於環形共振器上表面電流最大值處,而隙縫主要是讓微波從環形共振器上耦合到環形共振器中間的圓柱石英管內,並且激發電漿。電漿被引用到理想的共振條件中模擬,而其差別是為了確保微波和反應氣體之間充分的耦合。系統機械的結構,主要基於微波模擬時的尺寸而定。最後利用空氣去點起電漿,證明了系統設計為正確無誤的。
此外,在一個相似的實驗程序中,利用Ar/CH4電漿在Si基材上成功地成長超奈米微晶鑽石(UNCD)。其中可以發現合成最好場發射的UNCD其最重要的鍍膜參數有甲烷含量、總壓力和微波功率。在分析方面,SEM在微結構上會有最深切地改變。而Raman光譜對UNCD結構為最不敏感的。在UNCD薄膜擁有最佳的場發射條件為:CH4=1%,微波功率1200 W和總壓力100 Torr。
英文摘要
A microwave plasma reactor was designed for growing large area diamond films by plasma-enhanced chemical vapor deposition process. The annular microwave coupling technique is adopted for designing the microwave plasma reactor. The first step in the reactor designing process is to determine the length (8 half-wavelength) of a rectangular wave guide with WR 340 cross-sectional dimension, bend it to form a annular resonance structure. The slots of proper dimension (2.5 mm x 50 mm) were located at the point of maximum surface current to couple the microwave from the annular resonator to the cylindrical quartz for the purpose of inducing the plasma. Deviation from the ideal resonance condition due to the introduction of plasma was simulated to assure that the sufficient coupling between the microwave and reaction gases. The mechanics of the setup based on the microwave simulation was designed and machined. The induction of air plasma was demonstrated to verify the correctness of the design.
Moreover, ultra-nanocrystalline diamond films were successfully grown on Si-substrates using Ar/CH4 plasma in a setup of similar structure. It is found that the most important parameters for synthesizing UNCD films with good electron field emission properties are methane-content, total pressure and the microwave powers. The SEM microstructure changed most profoundly with these parameters, whereas the Raman structure is least sensitive to them. The EFE properties were optimized for the UNCD films grown in the following conditions: CH4=1%, microwave power of 1200 W and total pressure of 100 Torr.
第三語言摘要
論文目次
目錄
第一章 緒論	1
  1.1 研究動機	1
  2.1鑽石的基本性質	3
    2.1.1 碳的性質	3
    2.1.2硬度(Hardness):	3
    2.1.3 熱傳導係數(Thermal conductivity):	4
    2.1.4 化學反應性(Chemical reactivity):	4
    2.1.5密度(Density)	4
    2.1.6 光學性質(Optical properties)﹕	4
    2.1.7 電子特性﹕	5
    2.1.8鑽石的負電子親和力特性:	5
  2.2 人工鑽石發展	6
  2.3鑽石膜成核理論	8
    2.3.1結構及相圖	8
    2.3.2 早期孕核和成長方式	9
  2.4鑽石薄膜分類	10
  2.5鑽石薄膜之合成方法	12
  2.6鑽石薄膜之應用	13
第三章 研究方法與實驗步驟	21
  3.1 微波電漿CVD鑽石鍍膜	21
    3.1.1  IPLAS CVD 系統	21
    3.1.2 實驗方法	22
    3.1.3 實驗步驟	23
  3.2 鑽石薄膜分析設備	24
    3.2.1 場發射掃描式電子顯微鏡分析(SEM)	24
    3.2.2 拉曼光譜分析(Raman)	25
    3.2.3 電子場發射電性量測 (Field Emission)	26
      3.2.3.1 電子場發射理論	27
    3.2.4 可見光發射光譜儀(OES)	30
      3.2.4.1 光譜儀之校正	30
      3.2.4.2 電子溫度計算理論	31
第四章MPCVD設計與模擬	42
  4.1 結構計算	42
  4.2 結構模擬	45
  4.3 連接環形波導管與共振腔的隙縫位置	47
  4.4 電漿介電常數和損耗正切	48
  4.5 模擬結果	50
  4.6 結構設計	51
第五章 結果與討論	64
  5.1 微波功率對超奈米微晶鑽石薄膜成長的影響	64
    5.1.1 掃瞄式電子顯微鏡(SEM)	64
    5.1.2光激發光譜(OES)	65
    5.1.3拉曼光譜(Raman)	65
    5.1.4 場發射(field-Emission)	66
    5.1.5 小結	66
  5.2 甲烷的含量對超奈米微晶鑽石膜的影響	67
    5.2.1掃瞄式電子顯微鏡(SEM)	67
    5.2.2 拉曼光譜(Raman)	67
    5.2.3光激發光譜(OES)	67
    5.2.4場發射(Field-Emission)	68
    5-2-5 小結	68
  5.3壓力對超奈米微晶鑽石膜的影響	69
    5.3.1掃瞄式電子顯微鏡(SEM)	69
    5.3.2 光激發光譜(OES)	69
    5.3.3拉曼光譜儀(Raman)	70
    5.3.4場發射(Field-Emission)	70
    5.3.4 小結	71
第六章 結論	72

圖目錄
圖 2- 1鑽石的結構 ................................................................................. 15
圖 2- 2石墨的結構 ................................................................................. 15
圖 2- 3鑽石的椅狀堆積構造 ................................................................. 16
圖 2- 4鑽石的相變化圖 ......................................................................... 16
圖 2- 5 MPCVD 構造圖 ........................................................................ 17
圖 2- 6 HFCVD 構造圖 ......................................................................... 17
圖 2- 7射頻電漿放電系統構造圖 ......................................................... 18
圖 2- 8電子迴旋共振微波放電系統構造圖 ......................................... 18
圖3- 1 IPLAS 微波電漿輔助化學氣相沉積系統 .................... 33
圖3- 2微波電漿輔助化學汽相沉積示意圖 ............................... 33
圖 3- 3掃描式電子顯微鏡工作原理 .............................................. 34
圖3- 4拉曼光譜系統 ......................................................................... 35
圖3- 5場發射系統示意圖 ............................................................... 35
圖3- 6金屬-真空能帶示意圖(a)未加電場(b)外加高電場 .... 36
圖 3- 7可見光發射光譜儀 ................................................................ 37
圖3- 8 汞-氬燈 ................................................................................... 37
圖 3- 9 汞-氬燈光譜譜線 .................................................................. 38
圖 3- 10波長和pixel的關係圖 ....................................................... 38
圖 3- 11波長校正係數 ........................................................................ 39
圖4-1四吋共振腔結構圖 ................................................................. 53
圖 4- 2 環形波導管的電場圖 ........................................................................ 54
圖 4- 3左圖為沒加載物台的電場圖,右圖為加了載物台的電場圖 . 54
圖 4- 4矩形波導管共振時的電場分佈(上圖)和表面電流密度(下圖) ............................................................................................................ 55
圖 4- 5環形波導管電場分佈圖(左圖)和表面電流分佈圖(右圖) ....... 55
圖 4- 6四個隙縫(上面四張圖)和三個隙縫的場形分佈(下面四張圖) ............................................................................................................ 56
圖 4- 7不同電漿密的電漿介電常數和損耗正切 ....................... 57
圖 4- 8模擬結構圖 (上)未加電漿物質(下)添加電漿物質 .. 57
圖 4- 9四吋MPCVD電場模擬圖(上)未加電漿物質(下)添加電漿物質 ............................................................................................................ 58
圖 4- 10電漿密度和S11的關係圖 ....................................................... 58
圖 4- 11四吋MPCVD電場模擬圖(上)未加電漿物質(下)添加電漿物質 ........................................................................................................ 59
圖 4- 12四吋MPCVD在不同電漿密度下的電場分佈 ...................... 59
圖 4- 13六吋MPCVD在不同電漿密度下的電場分佈 ...................... 60
圖 4- 14 四吋大氣電漿設計模型 .......................................................... 60
圖 4- 15 四吋大氣電漿系統模型剖面圖 .............................................. 61
圖 4- 16 remote plasma 示意圖 ............................................................ 61
圖 4- 17 四吋大氣電漿內部放大剖面圖 .............................................. 62
圖 4- 18 四吋大氣電漿內部反應氣體流向圖 ...................................... 62
圖 5- 1 Ar 99%,CH4 1%,120 torr,600w ..................................... 75
圖 5- 2 Ar 99%,CH4 1%,120 torr,800w ..................................... 75
圖 5- 3Ar 99%,CH4 1%,120 torr,1000w .................................... 75
圖 5- 4 Ar 99%,CH4 1%,120 torr,1200w ................................... 76
圖 5- 5Ar 99%,CH4 1%,120 torr,1400w .................................... 76
圖 5- 6Ar 99%,CH4 1%,120 torr,1600w .................................... 76
圖 5- 7改變功率(600w~1600w)的Raman圖 ............................. 77
圖 5- 8ID和IG的比值隨著功率的改變 ................................................. 77
圖 5- 9 改變微波功率的場發射特性 .......................................... 78
圖 5- 10改變微波功率的F-N plot .............................................. 78
圖 5- 11 改變微波功率的OES ..................................................... 79
圖 5- 12 IC2和ICH的比值隨著微波功率變化圖 .................................. 79
圖 5- 13Ar 98%,CH4 2%,120 torr,1200w ..................................... 80
圖 5- 14Ar 97%,CH4 3%,120 torr,1200w .................................. 80
圖 5- 15Ar 96%,CH4 4%,120 torr,1200w .................................. 80
圖 5- 16Ar 96%,CH4 4%,120 torr,1200w .................................. 81
圖 5- 17 改變微波功率的拉曼圖 ................................................. 81
圖 5- 18 ID和IG的筆隨著甲烷含量的改變 .............................. 82
圖 5- 19改變甲烷含量的場發射圖 .............................................. 82
圖 5- 20改變甲烷含量的F-N plot .............................................. 83
圖 5- 21 改變甲烷含量的OES ............................................................. 84
圖 5- 22 IC2和ICH的比值隨的甲烷含量的變化 ................................... 84
圖5- 23Ar 99%,CH4 1%,30 torr,1200w ...................................... 85
圖 5- 24Ar 99%,CH4 1%,50 torr,1200w ..................................... 85
圖 5- 25Ar 99%,CH4 1%,70 torr,1200w ..................................... 85
圖 5- 26Ar 99%,CH4 1%,100 torr,1200w .................................. 86
圖 5- 27 Ar 99%,CH4 1%,130 torr,1200w .................................... 86
圖 5- 28 改變壓力的632nm拉曼圖 .................................................... 86
圖 5- 29改變壓力的場發射圖 ....................................................... 87
圖 5- 30改變壓力的F-N plot ........................................................ 87
圖 5- 31改變壓力下的OES ........................................................... 88
圖 5- 32 IC2和ICH的比值隨的壓力的變化 ............................... 88
圖 6- 1 電漿點起來的情況..................................................................89


表目錄
表2- 1鑽石的基本特性 ............................................................... 19
表2- 2 不同種類鑽石膜與類鑽石膜之特性比較 .............................. 20
表3- 1 拉曼特性峰.........................................................................40
表3- 2 OES 規格 ........................................................................... 41
表4-1圓柱波導管TM modes pnm值................................63
表4-2不同電漿密度的電漿介電常數和損耗正切 ................. 63
表 4- 3 在不同電漿電漿密度所對應的共振頻率 ............................. 63
表 5- 1改變功率的長膜參數.......................................................74
表 5- 2改變甲烷比例的長膜參數 .............................................. 74
表 5- 3改變壓力的長膜參數 ....................................................... 74
表5-4改變微波功率的起始電壓值 .......................................... 78
表5-5 改變甲烷含量的起始電壓值 ......................................... 83
參考文獻
[1]	A. Lavoisier , "Elements of Chemistry", Dover Publications(1772)
[2]	Jasprit Singh, McGraw-Hill, "Physics of Semiconductors and Their Heterostructures ", New York (1993)
[3]	S. M. Sze, John Wiley & Sons, "Physics of Semiconductor Devices, 2nd Edition", New York (1981)
[4]	W. P. Kang, J. L. Davidson, A. Wisitsora-at, D. V. Kerns, and S, Kerns, “Recent development of diamond microtip field emitter cathodes and devices”, J. Vac. Sci. Technol. B, 19(3), 936 (2001)
[5]	Karl E Spear, John P Dismukes, "Synthetic diamonds", New York, 193(5),42(1993)
[6]	W. G. Eversole, U.S. Patent No. 3,030,188, (1962)
[7]	J. C. Angus, H. A. Will, and W. S. Stanko, Journal of Applied Physics, 39(6),2915 (1968)
[8]	B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, "Vapor growth of diamond on diamond and other surface", Journal of Crystal Growth, 52, 219 (1981)
[9]	S. Matzumoto, Y. Sato, M. Kamo, and N. Setaka, "Vapor deposition of diamondparticles from methane", Japanese Journal of Applied Physics 2, 21, L183 (1982)
[10]	M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, Journal of Crystal Growth, 62, 642 (1983)
[11]	D. M. Gruen, S. Liu, A. R. Krauss, J. Lua, and X. Pan, "Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions", Applied Physics Letters, 64(12), 1502 (1994)
[12]	T. D. McCauley, D. M. Gruen, and A. R. Krauss, "Temperature dependence of growth rate for nanocrystalline  diamond films deposited from an Ar/CH4 microwave plasma", Applied Physics Letters, 73 (12), 1646 (1998)
[13]	D. M. Gruen, "Nanocrystalline diamond films",  Annual Review Material Science, 29 , 211 (1999)
[14]	J. E. Green, S. A. Barnett, J. E. Sundgren , A. Rockett,
 Plasma-Surface Interactions and Processing of Materials,
 pp281-311 (1990).
[15]	A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices” Diamond and Related Materials 10,(2001).
[16]	H. Yamada, A. Chayahara, Y. Mokuno, Y. Horino, S. Shikata, "Numerical analyses of a microwave plasma chemical vapor deposition reactor for thick diamond syntheses", Diamond and Related Material 12 (2006)
[17]	A. Sawabe and T. Inuzuka, “Growth of Diamond Thin-Films by Electron Assisted Chemical Vapor-Deposition”, Appl. Phys. Lett., 46, pp146 (1985).
[18]	S. Matsumoto, “Chemical Vapor-Deposition of Diamond in RF Glow-Discharge”, J. Mater. Sci. Lett., 4, pp600 (1985).
[19]	A. Hatta, K. Kadota, Y. Mori, T. Ito, T. Sasake, and A. Hiraki, S. Okada, "Pulse modulated electron cyclotron resonance plasma for chemical vapor deposition of diamond films." Applied Physics Letters, 66 (13), (1995)
[20]	Michael Shur; "Physic of semiconductor Devices" ,prentice-Hall, 1990.
[21]	Docdiamond," http://www.docdiamond.com"
[22]	BHC,"http://facweb.bhc.edu"
[23]	F. Werner, D. Korzec, J. Engemann, "Plasma Source", Sci. Technol. 3 (1994) 473–481.
[24]	 Jacob Filik ,"Raman spectroscopy:a simple,non-desrructive way to characterise diamond and diamond-like materials", VOL.17
 NO.5(2005)
[25]	Spear, Dismukes, "Synthetic Diamond-Emerging CVD Science and Technology", Wiley, New York (1994)
[26]	S. A. Solin, K. Ramdas, Phys. Rev., B 1, 1687 (1970)
[27]	Paul William May, James A Smith, Keith N Rosser," 785 nm Raman Spectroscopy of CVD Diamond Films", Materials Research Society Vol. 1039 (2008)
[28]	"Measuring Diamond-like Carbon Films by Dispersive Raman Spectroscopy", Part of Thermo Fisher Scientific
[29]	YAN yan,GU Chang-zhi, LIU Wei," Study of 1145cm-1 Raman Peak of CVD Diamond Films", Chinese journal of light scattering Nol.16 (2004)
[30]	David Cameron, "Raman spectroscopy in thin films analysis”, FTIR Symposium (2008)
[31]	Se Youn Moon, W. Choe, Han S. Uhm, Y. S. Choi, "Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tebe", Physics of plasmas vol. 9 (2002)
[32]	David M. Pozar, "MICROWAVE ENGINEERING", Wiley;3 edition, pp.106-117.
[33]	David M. Pozar, "MICROWAVE ENGINEERING", Wiley;3 edition, pp.117-126.
[34]	Allan J. Lichtenberg, "Principles of plasma discharge and materials processing", Wiley-Interscience; 2 edition (April 14,2005), pp.93-97
[35]	Volkmar Hopfe, David W. Sheel, "Atmospheric-Pressure PECVD Coating and Plasma Chemical Etching Continuous Processing", IEEE Transactions on Plasma Science, Vol.35,No 2,(April, 2007)
[36]	David M. Pozar, "MICROWAVE ENGINEERING", Wiley 3 edition, pp.122.
[37]	李彥志,清華大學,材料科學與工程學系
[38]	陳莉如,清華大學,材料科學與工程學系
[39]	周義評,清華大學,物理系
[40]	童景浤,淡江大學,物理系
[41]	蕭明澤,淡江大學,物理系
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信